android_kernel_xiaomi_sm8350/drivers/net/wireless/rt2x00/rt2x00dev.c
Johannes Berg 8318d78a44 cfg80211 API for channels/bitrates, mac80211 and driver conversion
This patch creates new cfg80211 wiphy API for channel and bitrate
registration and converts mac80211 and drivers to the new API. The
old mac80211 API is completely ripped out. All drivers (except ath5k)
are updated to the new API, in many cases I expect that optimisations
can be done.

Along with the regulatory code I've also ripped out the
IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED flag, I believe it to be
unnecessary if the hardware simply gives us whatever channels it wants
to support and we then enable/disable them as required, which is pretty
much required for travelling.

Additionally, the patch adds proper "basic" rate handling for STA
mode interface, AP mode interface will have to have new API added
to allow userspace to set the basic rate set, currently it'll be
empty... However, the basic rate handling will need to be moved to
the BSS conf stuff.

I do expect there to be bugs in this, especially wrt. transmit
power handling where I'm basically clueless about how it should work.

Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-02-29 15:19:32 -05:00

1305 lines
32 KiB
C

/*
Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 generic device routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
#include "rt2x00dump.h"
/*
* Link tuning handlers
*/
void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Reset link information.
* Both the currently active vgc level as well as
* the link tuner counter should be reset. Resetting
* the counter is important for devices where the
* device should only perform link tuning during the
* first minute after being enabled.
*/
rt2x00dev->link.count = 0;
rt2x00dev->link.vgc_level = 0;
/*
* Reset the link tuner.
*/
rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
}
static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
{
/*
* Clear all (possibly) pre-existing quality statistics.
*/
memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
/*
* The RX and TX percentage should start at 50%
* this will assure we will get at least get some
* decent value when the link tuner starts.
* The value will be dropped and overwritten with
* the correct (measured )value anyway during the
* first run of the link tuner.
*/
rt2x00dev->link.qual.rx_percentage = 50;
rt2x00dev->link.qual.tx_percentage = 50;
rt2x00lib_reset_link_tuner(rt2x00dev);
queue_delayed_work(rt2x00dev->hw->workqueue,
&rt2x00dev->link.work, LINK_TUNE_INTERVAL);
}
static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
{
cancel_delayed_work_sync(&rt2x00dev->link.work);
}
/*
* Radio control handlers.
*/
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int status;
/*
* Don't enable the radio twice.
* And check if the hardware button has been disabled.
*/
if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
return 0;
/*
* Initialize all data queues.
*/
rt2x00queue_init_rx(rt2x00dev);
rt2x00queue_init_tx(rt2x00dev);
/*
* Enable radio.
*/
status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
STATE_RADIO_ON);
if (status)
return status;
__set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
/*
* Enable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
/*
* Start the TX queues.
*/
ieee80211_start_queues(rt2x00dev->hw);
return 0;
}
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Stop all scheduled work.
*/
if (work_pending(&rt2x00dev->intf_work))
cancel_work_sync(&rt2x00dev->intf_work);
if (work_pending(&rt2x00dev->filter_work))
cancel_work_sync(&rt2x00dev->filter_work);
/*
* Stop the TX queues.
*/
ieee80211_stop_queues(rt2x00dev->hw);
/*
* Disable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
/*
* Disable radio.
*/
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
}
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
/*
* When we are disabling the RX, we should also stop the link tuner.
*/
if (state == STATE_RADIO_RX_OFF)
rt2x00lib_stop_link_tuner(rt2x00dev);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
/*
* When we are enabling the RX, we should also start the link tuner.
*/
if (state == STATE_RADIO_RX_ON &&
(rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
rt2x00lib_start_link_tuner(rt2x00dev);
}
static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
{
enum antenna rx = rt2x00dev->link.ant.active.rx;
enum antenna tx = rt2x00dev->link.ant.active.tx;
int sample_a =
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
int sample_b =
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
/*
* We are done sampling. Now we should evaluate the results.
*/
rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
/*
* During the last period we have sampled the RSSI
* from both antenna's. It now is time to determine
* which antenna demonstrated the best performance.
* When we are already on the antenna with the best
* performance, then there really is nothing for us
* left to do.
*/
if (sample_a == sample_b)
return;
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}
static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
{
enum antenna rx = rt2x00dev->link.ant.active.rx;
enum antenna tx = rt2x00dev->link.ant.active.tx;
int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
/*
* Legacy driver indicates that we should swap antenna's
* when the difference in RSSI is greater that 5. This
* also should be done when the RSSI was actually better
* then the previous sample.
* When the difference exceeds the threshold we should
* sample the rssi from the other antenna to make a valid
* comparison between the 2 antennas.
*/
if (abs(rssi_curr - rssi_old) < 5)
return;
rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}
static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
{
/*
* Determine if software diversity is enabled for
* either the TX or RX antenna (or both).
* Always perform this check since within the link
* tuner interval the configuration might have changed.
*/
rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
!(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
rt2x00dev->link.ant.flags = 0;
return;
}
/*
* If we have only sampled the data over the last period
* we should now harvest the data. Otherwise just evaluate
* the data. The latter should only be performed once
* every 2 seconds.
*/
if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
rt2x00lib_evaluate_antenna_sample(rt2x00dev);
else if (rt2x00dev->link.count & 1)
rt2x00lib_evaluate_antenna_eval(rt2x00dev);
}
static void rt2x00lib_update_link_stats(struct link *link, int rssi)
{
int avg_rssi = rssi;
/*
* Update global RSSI
*/
if (link->qual.avg_rssi)
avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
link->qual.avg_rssi = avg_rssi;
/*
* Update antenna RSSI
*/
if (link->ant.rssi_ant)
rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
link->ant.rssi_ant = rssi;
}
static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
{
if (qual->rx_failed || qual->rx_success)
qual->rx_percentage =
(qual->rx_success * 100) /
(qual->rx_failed + qual->rx_success);
else
qual->rx_percentage = 50;
if (qual->tx_failed || qual->tx_success)
qual->tx_percentage =
(qual->tx_success * 100) /
(qual->tx_failed + qual->tx_success);
else
qual->tx_percentage = 50;
qual->rx_success = 0;
qual->rx_failed = 0;
qual->tx_success = 0;
qual->tx_failed = 0;
}
static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
int rssi)
{
int rssi_percentage = 0;
int signal;
/*
* We need a positive value for the RSSI.
*/
if (rssi < 0)
rssi += rt2x00dev->rssi_offset;
/*
* Calculate the different percentages,
* which will be used for the signal.
*/
if (rt2x00dev->rssi_offset)
rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
/*
* Add the individual percentages and use the WEIGHT
* defines to calculate the current link signal.
*/
signal = ((WEIGHT_RSSI * rssi_percentage) +
(WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
(WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
return (signal > 100) ? 100 : signal;
}
static void rt2x00lib_link_tuner(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, link.work.work);
/*
* When the radio is shutting down we should
* immediately cease all link tuning.
*/
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Update statistics.
*/
rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
rt2x00dev->low_level_stats.dot11FCSErrorCount +=
rt2x00dev->link.qual.rx_failed;
/*
* Only perform the link tuning when Link tuning
* has been enabled (This could have been disabled from the EEPROM).
*/
if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
rt2x00dev->ops->lib->link_tuner(rt2x00dev);
/*
* Precalculate a portion of the link signal which is
* in based on the tx/rx success/failure counters.
*/
rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
/*
* Evaluate antenna setup, make this the last step since this could
* possibly reset some statistics.
*/
rt2x00lib_evaluate_antenna(rt2x00dev);
/*
* Increase tuner counter, and reschedule the next link tuner run.
*/
rt2x00dev->link.count++;
queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
LINK_TUNE_INTERVAL);
}
static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, filter_work);
unsigned int filter = rt2x00dev->packet_filter;
/*
* Since we had stored the filter inside rt2x00dev->packet_filter,
* we should now clear that field. Otherwise the driver will
* assume nothing has changed (*total_flags will be compared
* to rt2x00dev->packet_filter to determine if any action is required).
*/
rt2x00dev->packet_filter = 0;
rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
filter, &filter, 0, NULL);
}
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
struct rt2x00_intf *intf = vif_to_intf(vif);
struct sk_buff *skb;
struct ieee80211_tx_control control;
struct ieee80211_bss_conf conf;
int delayed_flags;
/*
* Copy all data we need during this action under the protection
* of a spinlock. Otherwise race conditions might occur which results
* into an invalid configuration.
*/
spin_lock(&intf->lock);
memcpy(&conf, &intf->conf, sizeof(conf));
delayed_flags = intf->delayed_flags;
intf->delayed_flags = 0;
spin_unlock(&intf->lock);
if (delayed_flags & DELAYED_UPDATE_BEACON) {
skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
if (skb) {
rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
&control);
dev_kfree_skb(skb);
}
}
if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
rt2x00lib_config_preamble(rt2x00dev, intf,
intf->conf.use_short_preamble);
}
static void rt2x00lib_intf_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, intf_work);
/*
* Iterate over each interface and perform the
* requested configurations.
*/
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
rt2x00lib_intf_scheduled_iter,
rt2x00dev);
}
/*
* Interrupt context handlers.
*/
static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
if (vif->type != IEEE80211_IF_TYPE_AP &&
vif->type != IEEE80211_IF_TYPE_IBSS)
return;
spin_lock(&intf->lock);
intf->delayed_flags |= DELAYED_UPDATE_BEACON;
spin_unlock(&intf->lock);
}
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
rt2x00lib_beacondone_iter,
rt2x00dev);
queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
void rt2x00lib_txdone(struct queue_entry *entry,
struct txdone_entry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_status tx_status;
int success = !!(txdesc->status == TX_SUCCESS ||
txdesc->status == TX_SUCCESS_RETRY);
int fail = !!(txdesc->status == TX_FAIL_RETRY ||
txdesc->status == TX_FAIL_INVALID ||
txdesc->status == TX_FAIL_OTHER);
/*
* Update TX statistics.
*/
rt2x00dev->link.qual.tx_success += success;
rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
/*
* Initialize TX status
*/
tx_status.flags = 0;
tx_status.ack_signal = 0;
tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
tx_status.retry_count = txdesc->retry;
memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control));
if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
if (success)
tx_status.flags |= IEEE80211_TX_STATUS_ACK;
else
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
}
tx_status.queue_length = entry->queue->limit;
tx_status.queue_number = tx_status.control.queue;
if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
if (success)
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
else
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
}
/*
* Send the tx_status to mac80211 & debugfs.
* mac80211 will clean up the skb structure.
*/
get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
rt2x00debug_dump_frame(rt2x00dev, entry->skb);
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
void rt2x00lib_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
struct ieee80211_supported_band *sband;
struct ieee80211_rate *rate;
struct ieee80211_hdr *hdr;
unsigned int i;
int val = 0, idx = -1;
u16 fc;
/*
* Update RX statistics.
*/
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
for (i = 0; i < sband->n_bitrates; i++) {
rate = &sband->bitrates[i];
/*
* When frame was received with an OFDM bitrate,
* the signal is the PLCP value. If it was received with
* a CCK bitrate the signal is the rate in 0.5kbit/s.
*/
if (!rxdesc->ofdm)
val = DEVICE_GET_RATE_FIELD(rate->hw_value, RATE);
else
val = DEVICE_GET_RATE_FIELD(rate->hw_value, PLCP);
if (val == rxdesc->signal) {
idx = i;
break;
}
}
/*
* Only update link status if this is a beacon frame carrying our bssid.
*/
hdr = (struct ieee80211_hdr*)entry->skb->data;
fc = le16_to_cpu(hdr->frame_control);
if (is_beacon(fc) && rxdesc->my_bss)
rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
rt2x00dev->link.qual.rx_success++;
rx_status->rate_idx = idx;
rx_status->signal =
rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
rx_status->ssi = rxdesc->rssi;
rx_status->flag = rxdesc->flags;
rx_status->antenna = rt2x00dev->link.ant.active.rx;
/*
* Send frame to mac80211 & debugfs.
* mac80211 will clean up the skb structure.
*/
get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
rt2x00debug_dump_frame(rt2x00dev, entry->skb);
ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
/*
* TX descriptor initializer
*/
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct ieee80211_tx_control *control)
{
struct txentry_desc txdesc;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
int tx_rate;
int bitrate;
int length;
int duration;
int residual;
u16 frame_control;
u16 seq_ctrl;
memset(&txdesc, 0, sizeof(txdesc));
txdesc.queue = skbdesc->entry->queue->qid;
txdesc.cw_min = skbdesc->entry->queue->cw_min;
txdesc.cw_max = skbdesc->entry->queue->cw_max;
txdesc.aifs = skbdesc->entry->queue->aifs;
/*
* Read required fields from ieee80211 header.
*/
frame_control = le16_to_cpu(ieee80211hdr->frame_control);
seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
tx_rate = control->tx_rate->hw_value;
/*
* Check whether this frame is to be acked
*/
if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
__set_bit(ENTRY_TXD_ACK, &txdesc.flags);
/*
* Check if this is a RTS/CTS frame
*/
if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
__set_bit(ENTRY_TXD_BURST, &txdesc.flags);
if (is_rts_frame(frame_control)) {
__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
__set_bit(ENTRY_TXD_ACK, &txdesc.flags);
} else
__clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
if (control->rts_cts_rate)
tx_rate = control->rts_cts_rate->hw_value;
}
/*
* Check for OFDM
*/
if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
__set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
/*
* Check if more fragments are pending
*/
if (ieee80211_get_morefrag(ieee80211hdr)) {
__set_bit(ENTRY_TXD_BURST, &txdesc.flags);
__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
}
/*
* Beacons and probe responses require the tsf timestamp
* to be inserted into the frame.
*/
if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
is_probe_resp(frame_control))
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
/*
* Determine with what IFS priority this frame should be send.
* Set ifs to IFS_SIFS when the this is not the first fragment,
* or this fragment came after RTS/CTS.
*/
if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
txdesc.ifs = IFS_SIFS;
else
txdesc.ifs = IFS_BACKOFF;
/*
* PLCP setup
* Length calculation depends on OFDM/CCK rate.
*/
txdesc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
txdesc.service = 0x04;
length = skb->len + FCS_LEN;
if (test_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags)) {
txdesc.length_high = (length >> 6) & 0x3f;
txdesc.length_low = length & 0x3f;
} else {
bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
/*
* Convert length to microseconds.
*/
residual = get_duration_res(length, bitrate);
duration = get_duration(length, bitrate);
if (residual != 0) {
duration++;
/*
* Check if we need to set the Length Extension
*/
if (bitrate == 110 && residual <= 30)
txdesc.service |= 0x80;
}
txdesc.length_high = (duration >> 8) & 0xff;
txdesc.length_low = duration & 0xff;
/*
* When preamble is enabled we should set the
* preamble bit for the signal.
*/
if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
txdesc.signal |= 0x08;
}
rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
/*
* Update queue entry.
*/
skbdesc->entry->skb = skb;
/*
* The frame has been completely initialized and ready
* for sending to the device. The caller will push the
* frame to the device, but we are going to push the
* frame to debugfs here.
*/
skbdesc->frame_type = DUMP_FRAME_TX;
rt2x00debug_dump_frame(rt2x00dev, skb);
}
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
/*
* Driver initialization handlers.
*/
static void rt2x00lib_channel(struct ieee80211_channel *entry,
const int channel, const int tx_power,
const int value)
{
if (channel <= 14)
entry->center_freq = 2407 + (5 * channel);
else
entry->center_freq = 5000 + (5 * channel);
entry->hw_value = value;
entry->max_power = tx_power;
entry->max_antenna_gain = 0xff;
}
static void rt2x00lib_rate(struct ieee80211_rate *entry,
const int rate, const int mask,
const int plcp, const int flags)
{
entry->bitrate = rate;
entry->hw_value =
DEVICE_SET_RATE_FIELD(rate, RATE) |
DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
DEVICE_SET_RATE_FIELD(plcp, PLCP);
entry->flags = flags;
entry->hw_value_short = entry->hw_value;
if (entry->flags & IEEE80211_RATE_SHORT_PREAMBLE)
entry->hw_value_short |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
}
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
struct hw_mode_spec *spec)
{
struct ieee80211_hw *hw = rt2x00dev->hw;
struct ieee80211_supported_band *sbands;
struct ieee80211_channel *channels;
struct ieee80211_rate *rates;
unsigned int i;
unsigned char tx_power;
sbands = &rt2x00dev->bands[0];
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
if (!channels)
return -ENOMEM;
rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
if (!rates)
goto exit_free_channels;
/*
* Initialize Rate list.
*/
rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
0x00, 0);
rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
0x01, IEEE80211_RATE_SHORT_PREAMBLE);
rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
0x02, IEEE80211_RATE_SHORT_PREAMBLE);
rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
0x03, IEEE80211_RATE_SHORT_PREAMBLE);
if (spec->num_rates > 4) {
rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
0x0b, 0);
rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
0x0f, 0);
rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
0x0a, 0);
rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
0x0e, 0);
rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
0x09, 0);
rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
0x0d, 0);
rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
0x08, 0);
rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
0x0c, 0);
}
/*
* Initialize Channel list.
*/
for (i = 0; i < spec->num_channels; i++) {
if (spec->channels[i].channel <= 14)
tx_power = spec->tx_power_bg[i];
else if (spec->tx_power_a)
tx_power = spec->tx_power_a[i];
else
tx_power = spec->tx_power_default;
rt2x00lib_channel(&channels[i],
spec->channels[i].channel, tx_power, i);
}
/*
* Intitialize 802.11b
* Rates: CCK.
* Channels: 2.4 GHz
*/
if (spec->num_modes > HWMODE_B) {
sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
sbands[IEEE80211_BAND_2GHZ].n_bitrates = 4;
sbands[IEEE80211_BAND_2GHZ].channels = channels;
sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
}
/*
* Intitialize 802.11g
* Rates: CCK, OFDM.
* Channels: 2.4 GHz
*/
if (spec->num_modes > HWMODE_G) {
sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
sbands[IEEE80211_BAND_2GHZ].n_bitrates = spec->num_rates;
sbands[IEEE80211_BAND_2GHZ].channels = channels;
sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
}
/*
* Intitialize 802.11a
* Rates: OFDM.
* Channels: OFDM, UNII, HiperLAN2.
*/
if (spec->num_modes > HWMODE_A) {
sbands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14;
sbands[IEEE80211_BAND_5GHZ].n_bitrates = spec->num_rates - 4;
sbands[IEEE80211_BAND_5GHZ].channels = &channels[14];
sbands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
}
return 0;
exit_free_channels:
kfree(channels);
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
return -ENOMEM;
}
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
ieee80211_unregister_hw(rt2x00dev->hw);
if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
}
}
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
int status;
/*
* Initialize HW modes.
*/
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
if (status)
return status;
/*
* Register HW.
*/
status = ieee80211_register_hw(rt2x00dev->hw);
if (status) {
rt2x00lib_remove_hw(rt2x00dev);
return status;
}
__set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
return 0;
}
/*
* Initialization/uninitialization handlers.
*/
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return;
/*
* Unregister rfkill.
*/
rt2x00rfkill_unregister(rt2x00dev);
/*
* Allow the HW to uninitialize.
*/
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
/*
* Free allocated queue entries.
*/
rt2x00queue_uninitialize(rt2x00dev);
}
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
int status;
if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return 0;
/*
* Allocate all queue entries.
*/
status = rt2x00queue_initialize(rt2x00dev);
if (status)
return status;
/*
* Initialize the device.
*/
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
if (status)
goto exit;
__set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
/*
* Register the rfkill handler.
*/
status = rt2x00rfkill_register(rt2x00dev);
if (status)
goto exit;
return 0;
exit:
rt2x00lib_uninitialize(rt2x00dev);
return status;
}
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
{
int retval;
if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
return 0;
/*
* If this is the first interface which is added,
* we should load the firmware now.
*/
retval = rt2x00lib_load_firmware(rt2x00dev);
if (retval)
return retval;
/*
* Initialize the device.
*/
retval = rt2x00lib_initialize(rt2x00dev);
if (retval)
return retval;
/*
* Enable radio.
*/
retval = rt2x00lib_enable_radio(rt2x00dev);
if (retval) {
rt2x00lib_uninitialize(rt2x00dev);
return retval;
}
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
__set_bit(DEVICE_STARTED, &rt2x00dev->flags);
return 0;
}
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
return;
/*
* Perhaps we can add something smarter here,
* but for now just disabling the radio should do.
*/
rt2x00lib_disable_radio(rt2x00dev);
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
__clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
}
/*
* driver allocation handlers.
*/
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
int retval = -ENOMEM;
/*
* Make room for rt2x00_intf inside the per-interface
* structure ieee80211_vif.
*/
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
/*
* Let the driver probe the device to detect the capabilities.
*/
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to allocate device.\n");
goto exit;
}
/*
* Initialize configuration work.
*/
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
/*
* Allocate queue array.
*/
retval = rt2x00queue_allocate(rt2x00dev);
if (retval)
goto exit;
/*
* Initialize ieee80211 structure.
*/
retval = rt2x00lib_probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to initialize hw.\n");
goto exit;
}
/*
* Allocatie rfkill.
*/
retval = rt2x00rfkill_allocate(rt2x00dev);
if (retval)
goto exit;
/*
* Open the debugfs entry.
*/
rt2x00debug_register(rt2x00dev);
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
return 0;
exit:
rt2x00lib_remove_dev(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Disable radio.
*/
rt2x00lib_disable_radio(rt2x00dev);
/*
* Uninitialize device.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Close debugfs entry.
*/
rt2x00debug_deregister(rt2x00dev);
/*
* Free rfkill
*/
rt2x00rfkill_free(rt2x00dev);
/*
* Free ieee80211_hw memory.
*/
rt2x00lib_remove_hw(rt2x00dev);
/*
* Free firmware image.
*/
rt2x00lib_free_firmware(rt2x00dev);
/*
* Free queue structures.
*/
rt2x00queue_free(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
/*
* Device state handlers
*/
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
int retval;
NOTICE(rt2x00dev, "Going to sleep.\n");
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Only continue if mac80211 has open interfaces.
*/
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
goto exit;
__set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
/*
* Disable radio and unitialize all items
* that must be recreated on resume.
*/
rt2x00lib_stop(rt2x00dev);
rt2x00lib_uninitialize(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
exit:
/*
* Set device mode to sleep for power management.
*/
retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
if (retval)
return retval;
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
static void rt2x00lib_resume_intf(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
struct rt2x00_intf *intf = vif_to_intf(vif);
spin_lock(&intf->lock);
rt2x00lib_config_intf(rt2x00dev, intf,
vif->type, intf->mac, intf->bssid);
/*
* Master or Ad-hoc mode require a new beacon update.
*/
if (vif->type == IEEE80211_IF_TYPE_AP ||
vif->type == IEEE80211_IF_TYPE_IBSS)
intf->delayed_flags |= DELAYED_UPDATE_BEACON;
spin_unlock(&intf->lock);
}
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
int retval;
NOTICE(rt2x00dev, "Waking up.\n");
/*
* Open the debugfs entry.
*/
rt2x00debug_register(rt2x00dev);
/*
* Only continue if mac80211 had open interfaces.
*/
if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
return 0;
/*
* Reinitialize device and all active interfaces.
*/
retval = rt2x00lib_start(rt2x00dev);
if (retval)
goto exit;
/*
* Reconfigure device.
*/
rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
if (!rt2x00dev->hw->conf.radio_enabled)
rt2x00lib_disable_radio(rt2x00dev);
/*
* Iterator over each active interface to
* reconfigure the hardware.
*/
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
rt2x00lib_resume_intf, rt2x00dev);
/*
* We are ready again to receive requests from mac80211.
*/
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* It is possible that during that mac80211 has attempted
* to send frames while we were suspending or resuming.
* In that case we have disabled the TX queue and should
* now enable it again
*/
ieee80211_start_queues(rt2x00dev->hw);
/*
* During interface iteration we might have changed the
* delayed_flags, time to handles the event by calling
* the work handler directly.
*/
rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
return 0;
exit:
rt2x00lib_disable_radio(rt2x00dev);
rt2x00lib_uninitialize(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */
/*
* rt2x00lib module information.
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");