android_kernel_xiaomi_sm8350/arch/mips/include/asm/octeon/cvmx.h
David Daney e8635b484f MIPS: Add Cavium OCTEON PCI support.
This patch adds support for PCI and PCIe to the base Cavium OCTEON
processor support.

Signed-off-by: David Daney <ddaney@caviumnetworks.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2009-06-17 11:06:25 +01:00

518 lines
14 KiB
C

/***********************license start***************
* Author: Cavium Networks
*
* Contact: support@caviumnetworks.com
* This file is part of the OCTEON SDK
*
* Copyright (c) 2003-2008 Cavium Networks
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
* or visit http://www.gnu.org/licenses/.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium Networks for more information
***********************license end**************************************/
#ifndef __CVMX_H__
#define __CVMX_H__
#include <linux/kernel.h>
#include <linux/string.h>
#include "cvmx-asm.h"
#include "cvmx-packet.h"
#include "cvmx-sysinfo.h"
#include "cvmx-ciu-defs.h"
#include "cvmx-gpio-defs.h"
#include "cvmx-iob-defs.h"
#include "cvmx-ipd-defs.h"
#include "cvmx-l2c-defs.h"
#include "cvmx-l2d-defs.h"
#include "cvmx-l2t-defs.h"
#include "cvmx-led-defs.h"
#include "cvmx-mio-defs.h"
#include "cvmx-pow-defs.h"
#include "cvmx-bootinfo.h"
#include "cvmx-bootmem.h"
#include "cvmx-l2c.h"
#ifndef CVMX_ENABLE_DEBUG_PRINTS
#define CVMX_ENABLE_DEBUG_PRINTS 1
#endif
#if CVMX_ENABLE_DEBUG_PRINTS
#define cvmx_dprintf printk
#else
#define cvmx_dprintf(...) {}
#endif
#define CVMX_MAX_CORES (16)
#define CVMX_CACHE_LINE_SIZE (128) /* In bytes */
#define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) /* In bytes */
#define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE)))
#define CAST64(v) ((long long)(long)(v))
#define CASTPTR(type, v) ((type *)(long)(v))
/*
* Returns processor ID, different Linux and simple exec versions
* provided in the cvmx-app-init*.c files.
*/
static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure));
static inline uint32_t cvmx_get_proc_id(void)
{
uint32_t id;
asm("mfc0 %0, $15,0" : "=r"(id));
return id;
}
/* turn the variable name into a string */
#define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
#define CVMX_TMP_STR2(x) #x
/**
* Builds a bit mask given the required size in bits.
*
* @bits: Number of bits in the mask
* Returns The mask
*/ static inline uint64_t cvmx_build_mask(uint64_t bits)
{
return ~((~0x0ull) << bits);
}
/**
* Builds a memory address for I/O based on the Major and Sub DID.
*
* @major_did: 5 bit major did
* @sub_did: 3 bit sub did
* Returns I/O base address
*/
static inline uint64_t cvmx_build_io_address(uint64_t major_did,
uint64_t sub_did)
{
return (0x1ull << 48) | (major_did << 43) | (sub_did << 40);
}
/**
* Perform mask and shift to place the supplied value into
* the supplied bit rage.
*
* Example: cvmx_build_bits(39,24,value)
* <pre>
* 6 5 4 3 3 2 1
* 3 5 7 9 1 3 5 7 0
* +-------+-------+-------+-------+-------+-------+-------+------+
* 000000000000000000000000___________value000000000000000000000000
* </pre>
*
* @high_bit: Highest bit value can occupy (inclusive) 0-63
* @low_bit: Lowest bit value can occupy inclusive 0-high_bit
* @value: Value to use
* Returns Value masked and shifted
*/
static inline uint64_t cvmx_build_bits(uint64_t high_bit,
uint64_t low_bit, uint64_t value)
{
return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit;
}
enum cvmx_mips_space {
CVMX_MIPS_SPACE_XKSEG = 3LL,
CVMX_MIPS_SPACE_XKPHYS = 2LL,
CVMX_MIPS_SPACE_XSSEG = 1LL,
CVMX_MIPS_SPACE_XUSEG = 0LL
};
/* These macros for use when using 32 bit pointers. */
#define CVMX_MIPS32_SPACE_KSEG0 1l
#define CVMX_ADD_SEG32(segment, add) \
(((int32_t)segment << 31) | (int32_t)(add))
#define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS
/* These macros simplify the process of creating common IO addresses */
#define CVMX_ADD_SEG(segment, add) \
((((uint64_t)segment) << 62) | (add))
#ifndef CVMX_ADD_IO_SEG
#define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add))
#endif
/**
* Convert a memory pointer (void*) into a hardware compatable
* memory address (uint64_t). Octeon hardware widgets don't
* understand logical addresses.
*
* @ptr: C style memory pointer
* Returns Hardware physical address
*/
static inline uint64_t cvmx_ptr_to_phys(void *ptr)
{
if (sizeof(void *) == 8) {
/*
* We're running in 64 bit mode. Normally this means
* that we can use 40 bits of address space (the
* hardware limit). Unfortunately there is one case
* were we need to limit this to 30 bits, sign
* extended 32 bit. Although these are 64 bits wide,
* only 30 bits can be used.
*/
if ((CAST64(ptr) >> 62) == 3)
return CAST64(ptr) & cvmx_build_mask(30);
else
return CAST64(ptr) & cvmx_build_mask(40);
} else {
return (long)(ptr) & 0x1fffffff;
}
}
/**
* Convert a hardware physical address (uint64_t) into a
* memory pointer (void *).
*
* @physical_address:
* Hardware physical address to memory
* Returns Pointer to memory
*/
static inline void *cvmx_phys_to_ptr(uint64_t physical_address)
{
if (sizeof(void *) == 8) {
/* Just set the top bit, avoiding any TLB uglyness */
return CASTPTR(void,
CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
physical_address));
} else {
return CASTPTR(void,
CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
physical_address));
}
}
/* The following #if controls the definition of the macro
CVMX_BUILD_WRITE64. This macro is used to build a store operation to
a full 64bit address. With a 64bit ABI, this can be done with a simple
pointer access. 32bit ABIs require more complicated assembly */
/* We have a full 64bit ABI. Writing to a 64bit address can be done with
a simple volatile pointer */
#define CVMX_BUILD_WRITE64(TYPE, ST) \
static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \
{ \
*CASTPTR(volatile TYPE##_t, addr) = val; \
}
/* The following #if controls the definition of the macro
CVMX_BUILD_READ64. This macro is used to build a load operation from
a full 64bit address. With a 64bit ABI, this can be done with a simple
pointer access. 32bit ABIs require more complicated assembly */
/* We have a full 64bit ABI. Writing to a 64bit address can be done with
a simple volatile pointer */
#define CVMX_BUILD_READ64(TYPE, LT) \
static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \
{ \
return *CASTPTR(volatile TYPE##_t, addr); \
}
/* The following defines 8 functions for writing to a 64bit address. Each
takes two arguments, the address and the value to write.
cvmx_write64_int64 cvmx_write64_uint64
cvmx_write64_int32 cvmx_write64_uint32
cvmx_write64_int16 cvmx_write64_uint16
cvmx_write64_int8 cvmx_write64_uint8 */
CVMX_BUILD_WRITE64(int64, "sd");
CVMX_BUILD_WRITE64(int32, "sw");
CVMX_BUILD_WRITE64(int16, "sh");
CVMX_BUILD_WRITE64(int8, "sb");
CVMX_BUILD_WRITE64(uint64, "sd");
CVMX_BUILD_WRITE64(uint32, "sw");
CVMX_BUILD_WRITE64(uint16, "sh");
CVMX_BUILD_WRITE64(uint8, "sb");
#define cvmx_write64 cvmx_write64_uint64
/* The following defines 8 functions for reading from a 64bit address. Each
takes the address as the only argument
cvmx_read64_int64 cvmx_read64_uint64
cvmx_read64_int32 cvmx_read64_uint32
cvmx_read64_int16 cvmx_read64_uint16
cvmx_read64_int8 cvmx_read64_uint8 */
CVMX_BUILD_READ64(int64, "ld");
CVMX_BUILD_READ64(int32, "lw");
CVMX_BUILD_READ64(int16, "lh");
CVMX_BUILD_READ64(int8, "lb");
CVMX_BUILD_READ64(uint64, "ld");
CVMX_BUILD_READ64(uint32, "lw");
CVMX_BUILD_READ64(uint16, "lhu");
CVMX_BUILD_READ64(uint8, "lbu");
#define cvmx_read64 cvmx_read64_uint64
static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
{
cvmx_write64(csr_addr, val);
/*
* Perform an immediate read after every write to an RSL
* register to force the write to complete. It doesn't matter
* what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT
* because it is fast and harmless.
*/
if ((csr_addr >> 40) == (0x800118))
cvmx_read64(CVMX_MIO_BOOT_BIST_STAT);
}
static inline void cvmx_write_io(uint64_t io_addr, uint64_t val)
{
cvmx_write64(io_addr, val);
}
static inline uint64_t cvmx_read_csr(uint64_t csr_addr)
{
uint64_t val = cvmx_read64(csr_addr);
return val;
}
static inline void cvmx_send_single(uint64_t data)
{
const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;
cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
}
static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr)
{
union {
uint64_t u64;
struct {
uint64_t scraddr:8;
uint64_t len:8;
uint64_t addr:48;
} s;
} addr;
addr.u64 = csr_addr;
addr.s.scraddr = scraddr >> 3;
addr.s.len = 1;
cvmx_send_single(addr.u64);
}
/* Return true if Octeon is CN38XX pass 1 */
static inline int cvmx_octeon_is_pass1(void)
{
#if OCTEON_IS_COMMON_BINARY()
return 0; /* Pass 1 isn't supported for common binaries */
#else
/* Now that we know we're built for a specific model, only check CN38XX */
#if OCTEON_IS_MODEL(OCTEON_CN38XX)
return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1;
#else
return 0; /* Built for non CN38XX chip, we're not CN38XX pass1 */
#endif
#endif
}
static inline unsigned int cvmx_get_core_num(void)
{
unsigned int core_num;
CVMX_RDHWRNV(core_num, 0);
return core_num;
}
/**
* Returns the number of bits set in the provided value.
* Simple wrapper for POP instruction.
*
* @val: 32 bit value to count set bits in
*
* Returns Number of bits set
*/
static inline uint32_t cvmx_pop(uint32_t val)
{
uint32_t pop;
CVMX_POP(pop, val);
return pop;
}
/**
* Returns the number of bits set in the provided value.
* Simple wrapper for DPOP instruction.
*
* @val: 64 bit value to count set bits in
*
* Returns Number of bits set
*/
static inline int cvmx_dpop(uint64_t val)
{
int pop;
CVMX_DPOP(pop, val);
return pop;
}
/**
* Provide current cycle counter as a return value
*
* Returns current cycle counter
*/
static inline uint64_t cvmx_get_cycle(void)
{
uint64_t cycle;
CVMX_RDHWR(cycle, 31);
return cycle;
}
/**
* Wait for the specified number of cycle
*
*/
static inline void cvmx_wait(uint64_t cycles)
{
uint64_t done = cvmx_get_cycle() + cycles;
while (cvmx_get_cycle() < done)
; /* Spin */
}
/**
* Reads a chip global cycle counter. This counts CPU cycles since
* chip reset. The counter is 64 bit.
* This register does not exist on CN38XX pass 1 silicion
*
* Returns Global chip cycle count since chip reset.
*/
static inline uint64_t cvmx_get_cycle_global(void)
{
if (cvmx_octeon_is_pass1())
return 0;
else
return cvmx_read64(CVMX_IPD_CLK_COUNT);
}
/**
* This macro spins on a field waiting for it to reach a value. It
* is common in code to need to wait for a specific field in a CSR
* to match a specific value. Conceptually this macro expands to:
*
* 1) read csr at "address" with a csr typedef of "type"
* 2) Check if ("type".s."field" "op" "value")
* 3) If #2 isn't true loop to #1 unless too much time has passed.
*/
#define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\
( \
{ \
int result; \
do { \
uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
cvmx_sysinfo_get()->cpu_clock_hz / 1000000; \
type c; \
while (1) { \
c.u64 = cvmx_read_csr(address); \
if ((c.s.field) op(value)) { \
result = 0; \
break; \
} else if (cvmx_get_cycle() > done) { \
result = -1; \
break; \
} else \
cvmx_wait(100); \
} \
} while (0); \
result; \
})
/***************************************************************************/
static inline void cvmx_reset_octeon(void)
{
union cvmx_ciu_soft_rst ciu_soft_rst;
ciu_soft_rst.u64 = 0;
ciu_soft_rst.s.soft_rst = 1;
cvmx_write_csr(CVMX_CIU_SOFT_RST, ciu_soft_rst.u64);
}
/* Return the number of cores available in the chip */
static inline uint32_t cvmx_octeon_num_cores(void)
{
uint32_t ciu_fuse = (uint32_t) cvmx_read_csr(CVMX_CIU_FUSE) & 0xffff;
return cvmx_pop(ciu_fuse);
}
/**
* Read a byte of fuse data
* @byte_addr: address to read
*
* Returns fuse value: 0 or 1
*/
static uint8_t cvmx_fuse_read_byte(int byte_addr)
{
union cvmx_mio_fus_rcmd read_cmd;
read_cmd.u64 = 0;
read_cmd.s.addr = byte_addr;
read_cmd.s.pend = 1;
cvmx_write_csr(CVMX_MIO_FUS_RCMD, read_cmd.u64);
while ((read_cmd.u64 = cvmx_read_csr(CVMX_MIO_FUS_RCMD))
&& read_cmd.s.pend)
;
return read_cmd.s.dat;
}
/**
* Read a single fuse bit
*
* @fuse: Fuse number (0-1024)
*
* Returns fuse value: 0 or 1
*/
static inline int cvmx_fuse_read(int fuse)
{
return (cvmx_fuse_read_byte(fuse >> 3) >> (fuse & 0x7)) & 1;
}
static inline int cvmx_octeon_model_CN36XX(void)
{
return OCTEON_IS_MODEL(OCTEON_CN38XX)
&& !cvmx_octeon_is_pass1()
&& cvmx_fuse_read(264);
}
static inline int cvmx_octeon_zip_present(void)
{
return octeon_has_feature(OCTEON_FEATURE_ZIP);
}
static inline int cvmx_octeon_dfa_present(void)
{
if (!OCTEON_IS_MODEL(OCTEON_CN38XX)
&& !OCTEON_IS_MODEL(OCTEON_CN31XX)
&& !OCTEON_IS_MODEL(OCTEON_CN58XX))
return 0;
else if (OCTEON_IS_MODEL(OCTEON_CN3020))
return 0;
else if (cvmx_octeon_is_pass1())
return 1;
else
return !cvmx_fuse_read(120);
}
static inline int cvmx_octeon_crypto_present(void)
{
return octeon_has_feature(OCTEON_FEATURE_CRYPTO);
}
#endif /* __CVMX_H__ */