android_kernel_xiaomi_sm8350/sound/pci/ac97/ac97_codec.c
James C Georgas e8bb036a46 [ALSA] ac97_codec - trivial fix for bit update functions
This patch fixes a couple of bit update functions in
alsa-kernel/pci/ac97/ac97_codec.c, which could possibly corrupt bits not
in the given mask.
Specifically, it'll clobber unset bits in the target that are not in the
mask, when the corresponding bit in the given new value is set.

Signed-off-by: James C Georgas <jgeorgas@rogers.com>
Signed-off-by: Jaroslav Kysela <perex@suse.cz>
2006-12-20 08:56:10 +01:00

2866 lines
91 KiB
C

/*
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
* Universal interface for Audio Codec '97
*
* For more details look to AC '97 component specification revision 2.2
* by Intel Corporation (http://developer.intel.com).
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <sound/driver.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include <sound/ac97_codec.h>
#include <sound/asoundef.h>
#include <sound/initval.h>
#include "ac97_local.h"
#include "ac97_id.h"
#include "ac97_patch.h"
MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("Universal interface for Audio Codec '97");
MODULE_LICENSE("GPL");
static int enable_loopback;
module_param(enable_loopback, bool, 0444);
MODULE_PARM_DESC(enable_loopback, "Enable AC97 ADC/DAC Loopback Control");
#ifdef CONFIG_SND_AC97_POWER_SAVE
static int power_save;
module_param(power_save, bool, 0644);
MODULE_PARM_DESC(power_save, "Enable AC97 power-saving control");
#endif
/*
*/
struct ac97_codec_id {
unsigned int id;
unsigned int mask;
const char *name;
int (*patch)(struct snd_ac97 *ac97);
int (*mpatch)(struct snd_ac97 *ac97);
unsigned int flags;
};
static const struct ac97_codec_id snd_ac97_codec_id_vendors[] = {
{ 0x414b4d00, 0xffffff00, "Asahi Kasei", NULL, NULL },
{ 0x41445300, 0xffffff00, "Analog Devices", NULL, NULL },
{ 0x414c4300, 0xffffff00, "Realtek", NULL, NULL },
{ 0x414c4700, 0xffffff00, "Realtek", NULL, NULL },
{ 0x434d4900, 0xffffff00, "C-Media Electronics", NULL, NULL },
{ 0x43525900, 0xffffff00, "Cirrus Logic", NULL, NULL },
{ 0x43585400, 0xffffff00, "Conexant", NULL, NULL },
{ 0x44543000, 0xffffff00, "Diamond Technology", NULL, NULL },
{ 0x454d4300, 0xffffff00, "eMicro", NULL, NULL },
{ 0x45838300, 0xffffff00, "ESS Technology", NULL, NULL },
{ 0x48525300, 0xffffff00, "Intersil", NULL, NULL },
{ 0x49434500, 0xffffff00, "ICEnsemble", NULL, NULL },
{ 0x49544500, 0xffffff00, "ITE Tech.Inc", NULL, NULL },
{ 0x4e534300, 0xffffff00, "National Semiconductor", NULL, NULL },
{ 0x50534300, 0xffffff00, "Philips", NULL, NULL },
{ 0x53494c00, 0xffffff00, "Silicon Laboratory", NULL, NULL },
{ 0x54524100, 0xffffff00, "TriTech", NULL, NULL },
{ 0x54584e00, 0xffffff00, "Texas Instruments", NULL, NULL },
{ 0x56494100, 0xffffff00, "VIA Technologies", NULL, NULL },
{ 0x57454300, 0xffffff00, "Winbond", NULL, NULL },
{ 0x574d4c00, 0xffffff00, "Wolfson", NULL, NULL },
{ 0x594d4800, 0xffffff00, "Yamaha", NULL, NULL },
{ 0x83847600, 0xffffff00, "SigmaTel", NULL, NULL },
{ 0, 0, NULL, NULL, NULL }
};
static const struct ac97_codec_id snd_ac97_codec_ids[] = {
{ 0x414b4d00, 0xffffffff, "AK4540", NULL, NULL },
{ 0x414b4d01, 0xffffffff, "AK4542", NULL, NULL },
{ 0x414b4d02, 0xffffffff, "AK4543", NULL, NULL },
{ 0x414b4d06, 0xffffffff, "AK4544A", NULL, NULL },
{ 0x414b4d07, 0xffffffff, "AK4545", NULL, NULL },
{ 0x41445303, 0xffffffff, "AD1819", patch_ad1819, NULL },
{ 0x41445340, 0xffffffff, "AD1881", patch_ad1881, NULL },
{ 0x41445348, 0xffffffff, "AD1881A", patch_ad1881, NULL },
{ 0x41445360, 0xffffffff, "AD1885", patch_ad1885, NULL },
{ 0x41445361, 0xffffffff, "AD1886", patch_ad1886, NULL },
{ 0x41445362, 0xffffffff, "AD1887", patch_ad1881, NULL },
{ 0x41445363, 0xffffffff, "AD1886A", patch_ad1881, NULL },
{ 0x41445368, 0xffffffff, "AD1888", patch_ad1888, NULL },
{ 0x41445370, 0xffffffff, "AD1980", patch_ad1980, NULL },
{ 0x41445372, 0xffffffff, "AD1981A", patch_ad1981a, NULL },
{ 0x41445374, 0xffffffff, "AD1981B", patch_ad1981b, NULL },
{ 0x41445375, 0xffffffff, "AD1985", patch_ad1985, NULL },
{ 0x41445378, 0xffffffff, "AD1986", patch_ad1985, NULL },
{ 0x414c4300, 0xffffff00, "ALC100,100P", NULL, NULL },
{ 0x414c4710, 0xfffffff0, "ALC200,200P", NULL, NULL },
{ 0x414c4721, 0xffffffff, "ALC650D", NULL, NULL }, /* already patched */
{ 0x414c4722, 0xffffffff, "ALC650E", NULL, NULL }, /* already patched */
{ 0x414c4723, 0xffffffff, "ALC650F", NULL, NULL }, /* already patched */
{ 0x414c4720, 0xfffffff0, "ALC650", patch_alc650, NULL },
{ 0x414c4760, 0xfffffff0, "ALC655", patch_alc655, NULL },
{ 0x414c4781, 0xffffffff, "ALC658D", NULL, NULL }, /* already patched */
{ 0x414c4780, 0xfffffff0, "ALC658", patch_alc655, NULL },
{ 0x414c4790, 0xfffffff0, "ALC850", patch_alc850, NULL },
{ 0x414c4730, 0xffffffff, "ALC101", NULL, NULL },
{ 0x414c4740, 0xfffffff0, "ALC202", NULL, NULL },
{ 0x414c4750, 0xfffffff0, "ALC250", NULL, NULL },
{ 0x414c4770, 0xfffffff0, "ALC203", NULL, NULL },
{ 0x434d4941, 0xffffffff, "CMI9738", patch_cm9738, NULL },
{ 0x434d4961, 0xffffffff, "CMI9739", patch_cm9739, NULL },
{ 0x434d4969, 0xffffffff, "CMI9780", patch_cm9780, NULL },
{ 0x434d4978, 0xffffffff, "CMI9761", patch_cm9761, NULL },
{ 0x434d4982, 0xffffffff, "CMI9761", patch_cm9761, NULL },
{ 0x434d4983, 0xffffffff, "CMI9761", patch_cm9761, NULL },
{ 0x43525900, 0xfffffff8, "CS4297", NULL, NULL },
{ 0x43525910, 0xfffffff8, "CS4297A", patch_cirrus_spdif, NULL },
{ 0x43525920, 0xfffffff8, "CS4298", patch_cirrus_spdif, NULL },
{ 0x43525928, 0xfffffff8, "CS4294", NULL, NULL },
{ 0x43525930, 0xfffffff8, "CS4299", patch_cirrus_cs4299, NULL },
{ 0x43525948, 0xfffffff8, "CS4201", NULL, NULL },
{ 0x43525958, 0xfffffff8, "CS4205", patch_cirrus_spdif, NULL },
{ 0x43525960, 0xfffffff8, "CS4291", NULL, NULL },
{ 0x43525970, 0xfffffff8, "CS4202", NULL, NULL },
{ 0x43585421, 0xffffffff, "HSD11246", NULL, NULL }, // SmartMC II
{ 0x43585428, 0xfffffff8, "Cx20468", patch_conexant, NULL }, // SmartAMC fixme: the mask might be different
{ 0x44543031, 0xfffffff0, "DT0398", NULL, NULL },
{ 0x454d4328, 0xffffffff, "EM28028", NULL, NULL }, // same as TR28028?
{ 0x45838308, 0xffffffff, "ESS1988", NULL, NULL },
{ 0x48525300, 0xffffff00, "HMP9701", NULL, NULL },
{ 0x49434501, 0xffffffff, "ICE1230", NULL, NULL },
{ 0x49434511, 0xffffffff, "ICE1232", NULL, NULL }, // alias VIA VT1611A?
{ 0x49434514, 0xffffffff, "ICE1232A", NULL, NULL },
{ 0x49434551, 0xffffffff, "VT1616", patch_vt1616, NULL },
{ 0x49434552, 0xffffffff, "VT1616i", patch_vt1616, NULL }, // VT1616 compatible (chipset integrated)
{ 0x49544520, 0xffffffff, "IT2226E", NULL, NULL },
{ 0x49544561, 0xffffffff, "IT2646E", patch_it2646, NULL },
{ 0x4e534300, 0xffffffff, "LM4540,43,45,46,48", NULL, NULL }, // only guess --jk
{ 0x4e534331, 0xffffffff, "LM4549", NULL, NULL },
{ 0x4e534350, 0xffffffff, "LM4550", patch_lm4550, NULL }, // volume wrap fix
{ 0x50534304, 0xffffffff, "UCB1400", patch_ucb1400, NULL },
{ 0x53494c20, 0xffffffe0, "Si3036,8", mpatch_si3036, mpatch_si3036, AC97_MODEM_PATCH },
{ 0x54524102, 0xffffffff, "TR28022", NULL, NULL },
{ 0x54524106, 0xffffffff, "TR28026", NULL, NULL },
{ 0x54524108, 0xffffffff, "TR28028", patch_tritech_tr28028, NULL }, // added by xin jin [07/09/99]
{ 0x54524123, 0xffffffff, "TR28602", NULL, NULL }, // only guess --jk [TR28023 = eMicro EM28023 (new CT1297)]
{ 0x54584e20, 0xffffffff, "TLC320AD9xC", NULL, NULL },
{ 0x56494161, 0xffffffff, "VIA1612A", NULL, NULL }, // modified ICE1232 with S/PDIF
{ 0x56494170, 0xffffffff, "VIA1617A", patch_vt1617a, NULL }, // modified VT1616 with S/PDIF
{ 0x56494182, 0xffffffff, "VIA1618", NULL, NULL },
{ 0x57454301, 0xffffffff, "W83971D", NULL, NULL },
{ 0x574d4c00, 0xffffffff, "WM9701A", NULL, NULL },
{ 0x574d4C03, 0xffffffff, "WM9703,WM9707,WM9708,WM9717", patch_wolfson03, NULL},
{ 0x574d4C04, 0xffffffff, "WM9704M,WM9704Q", patch_wolfson04, NULL},
{ 0x574d4C05, 0xffffffff, "WM9705,WM9710", patch_wolfson05, NULL},
{ 0x574d4C09, 0xffffffff, "WM9709", NULL, NULL},
{ 0x574d4C12, 0xffffffff, "WM9711,WM9712", patch_wolfson11, NULL},
{ 0x574d4c13, 0xffffffff, "WM9713,WM9714", patch_wolfson13, NULL, AC97_DEFAULT_POWER_OFF},
{ 0x594d4800, 0xffffffff, "YMF743", NULL, NULL },
{ 0x594d4802, 0xffffffff, "YMF752", NULL, NULL },
{ 0x594d4803, 0xffffffff, "YMF753", patch_yamaha_ymf753, NULL },
{ 0x83847600, 0xffffffff, "STAC9700,83,84", patch_sigmatel_stac9700, NULL },
{ 0x83847604, 0xffffffff, "STAC9701,3,4,5", NULL, NULL },
{ 0x83847605, 0xffffffff, "STAC9704", NULL, NULL },
{ 0x83847608, 0xffffffff, "STAC9708,11", patch_sigmatel_stac9708, NULL },
{ 0x83847609, 0xffffffff, "STAC9721,23", patch_sigmatel_stac9721, NULL },
{ 0x83847644, 0xffffffff, "STAC9744", patch_sigmatel_stac9744, NULL },
{ 0x83847650, 0xffffffff, "STAC9750,51", NULL, NULL }, // patch?
{ 0x83847652, 0xffffffff, "STAC9752,53", NULL, NULL }, // patch?
{ 0x83847656, 0xffffffff, "STAC9756,57", patch_sigmatel_stac9756, NULL },
{ 0x83847658, 0xffffffff, "STAC9758,59", patch_sigmatel_stac9758, NULL },
{ 0x83847666, 0xffffffff, "STAC9766,67", NULL, NULL }, // patch?
{ 0, 0, NULL, NULL, NULL }
};
static void update_power_regs(struct snd_ac97 *ac97);
/*
* I/O routines
*/
static int snd_ac97_valid_reg(struct snd_ac97 *ac97, unsigned short reg)
{
/* filter some registers for buggy codecs */
switch (ac97->id) {
case AC97_ID_AK4540:
case AC97_ID_AK4542:
if (reg <= 0x1c || reg == 0x20 || reg == 0x26 || reg >= 0x7c)
return 1;
return 0;
case AC97_ID_AD1819: /* AD1819 */
case AC97_ID_AD1881: /* AD1881 */
case AC97_ID_AD1881A: /* AD1881A */
if (reg >= 0x3a && reg <= 0x6e) /* 0x59 */
return 0;
return 1;
case AC97_ID_AD1885: /* AD1885 */
case AC97_ID_AD1886: /* AD1886 */
case AC97_ID_AD1886A: /* AD1886A - !!verify!! --jk */
case AC97_ID_AD1887: /* AD1887 - !!verify!! --jk */
if (reg == 0x5a)
return 1;
if (reg >= 0x3c && reg <= 0x6e) /* 0x59 */
return 0;
return 1;
case AC97_ID_STAC9700:
case AC97_ID_STAC9704:
case AC97_ID_STAC9705:
case AC97_ID_STAC9708:
case AC97_ID_STAC9721:
case AC97_ID_STAC9744:
case AC97_ID_STAC9756:
if (reg <= 0x3a || reg >= 0x5a)
return 1;
return 0;
}
return 1;
}
/**
* snd_ac97_write - write a value on the given register
* @ac97: the ac97 instance
* @reg: the register to change
* @value: the value to set
*
* Writes a value on the given register. This will invoke the write
* callback directly after the register check.
* This function doesn't change the register cache unlike
* #snd_ca97_write_cache(), so use this only when you don't want to
* reflect the change to the suspend/resume state.
*/
void snd_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
if (!snd_ac97_valid_reg(ac97, reg))
return;
if ((ac97->id & 0xffffff00) == AC97_ID_ALC100) {
/* Fix H/W bug of ALC100/100P */
if (reg == AC97_MASTER || reg == AC97_HEADPHONE)
ac97->bus->ops->write(ac97, AC97_RESET, 0); /* reset audio codec */
}
ac97->bus->ops->write(ac97, reg, value);
}
EXPORT_SYMBOL(snd_ac97_write);
/**
* snd_ac97_read - read a value from the given register
*
* @ac97: the ac97 instance
* @reg: the register to read
*
* Reads a value from the given register. This will invoke the read
* callback directly after the register check.
*
* Returns the read value.
*/
unsigned short snd_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
if (!snd_ac97_valid_reg(ac97, reg))
return 0;
return ac97->bus->ops->read(ac97, reg);
}
/* read a register - return the cached value if already read */
static inline unsigned short snd_ac97_read_cache(struct snd_ac97 *ac97, unsigned short reg)
{
if (! test_bit(reg, ac97->reg_accessed)) {
ac97->regs[reg] = ac97->bus->ops->read(ac97, reg);
// set_bit(reg, ac97->reg_accessed);
}
return ac97->regs[reg];
}
EXPORT_SYMBOL(snd_ac97_read);
/**
* snd_ac97_write_cache - write a value on the given register and update the cache
* @ac97: the ac97 instance
* @reg: the register to change
* @value: the value to set
*
* Writes a value on the given register and updates the register
* cache. The cached values are used for the cached-read and the
* suspend/resume.
*/
void snd_ac97_write_cache(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
if (!snd_ac97_valid_reg(ac97, reg))
return;
mutex_lock(&ac97->reg_mutex);
ac97->regs[reg] = value;
ac97->bus->ops->write(ac97, reg, value);
set_bit(reg, ac97->reg_accessed);
mutex_unlock(&ac97->reg_mutex);
}
EXPORT_SYMBOL(snd_ac97_write_cache);
/**
* snd_ac97_update - update the value on the given register
* @ac97: the ac97 instance
* @reg: the register to change
* @value: the value to set
*
* Compares the value with the register cache and updates the value
* only when the value is changed.
*
* Returns 1 if the value is changed, 0 if no change, or a negative
* code on failure.
*/
int snd_ac97_update(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
int change;
if (!snd_ac97_valid_reg(ac97, reg))
return -EINVAL;
mutex_lock(&ac97->reg_mutex);
change = ac97->regs[reg] != value;
if (change) {
ac97->regs[reg] = value;
ac97->bus->ops->write(ac97, reg, value);
}
set_bit(reg, ac97->reg_accessed);
mutex_unlock(&ac97->reg_mutex);
return change;
}
EXPORT_SYMBOL(snd_ac97_update);
/**
* snd_ac97_update_bits - update the bits on the given register
* @ac97: the ac97 instance
* @reg: the register to change
* @mask: the bit-mask to change
* @value: the value to set
*
* Updates the masked-bits on the given register only when the value
* is changed.
*
* Returns 1 if the bits are changed, 0 if no change, or a negative
* code on failure.
*/
int snd_ac97_update_bits(struct snd_ac97 *ac97, unsigned short reg, unsigned short mask, unsigned short value)
{
int change;
if (!snd_ac97_valid_reg(ac97, reg))
return -EINVAL;
mutex_lock(&ac97->reg_mutex);
change = snd_ac97_update_bits_nolock(ac97, reg, mask, value);
mutex_unlock(&ac97->reg_mutex);
return change;
}
EXPORT_SYMBOL(snd_ac97_update_bits);
/* no lock version - see snd_ac97_updat_bits() */
int snd_ac97_update_bits_nolock(struct snd_ac97 *ac97, unsigned short reg,
unsigned short mask, unsigned short value)
{
int change;
unsigned short old, new;
old = snd_ac97_read_cache(ac97, reg);
new = (old & ~mask) | (value & mask);
change = old != new;
if (change) {
ac97->regs[reg] = new;
ac97->bus->ops->write(ac97, reg, new);
}
set_bit(reg, ac97->reg_accessed);
return change;
}
static int snd_ac97_ad18xx_update_pcm_bits(struct snd_ac97 *ac97, int codec, unsigned short mask, unsigned short value)
{
int change;
unsigned short old, new, cfg;
mutex_lock(&ac97->page_mutex);
old = ac97->spec.ad18xx.pcmreg[codec];
new = (old & ~mask) | (value & mask);
change = old != new;
if (change) {
mutex_lock(&ac97->reg_mutex);
cfg = snd_ac97_read_cache(ac97, AC97_AD_SERIAL_CFG);
ac97->spec.ad18xx.pcmreg[codec] = new;
/* select single codec */
ac97->bus->ops->write(ac97, AC97_AD_SERIAL_CFG,
(cfg & ~0x7000) |
ac97->spec.ad18xx.unchained[codec] | ac97->spec.ad18xx.chained[codec]);
/* update PCM bits */
ac97->bus->ops->write(ac97, AC97_PCM, new);
/* select all codecs */
ac97->bus->ops->write(ac97, AC97_AD_SERIAL_CFG,
cfg | 0x7000);
mutex_unlock(&ac97->reg_mutex);
}
mutex_unlock(&ac97->page_mutex);
return change;
}
/*
* Controls
*/
int snd_ac97_info_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
uinfo->value.enumerated.items = e->mask;
if (uinfo->value.enumerated.item > e->mask - 1)
uinfo->value.enumerated.item = e->mask - 1;
strcpy(uinfo->value.enumerated.name, e->texts[uinfo->value.enumerated.item]);
return 0;
}
int snd_ac97_get_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
unsigned short val, bitmask;
for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
;
val = snd_ac97_read_cache(ac97, e->reg);
ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
if (e->shift_l != e->shift_r)
ucontrol->value.enumerated.item[1] = (val >> e->shift_r) & (bitmask - 1);
return 0;
}
int snd_ac97_put_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
unsigned short val;
unsigned short mask, bitmask;
for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
;
if (ucontrol->value.enumerated.item[0] > e->mask - 1)
return -EINVAL;
val = ucontrol->value.enumerated.item[0] << e->shift_l;
mask = (bitmask - 1) << e->shift_l;
if (e->shift_l != e->shift_r) {
if (ucontrol->value.enumerated.item[1] > e->mask - 1)
return -EINVAL;
val |= ucontrol->value.enumerated.item[1] << e->shift_r;
mask |= (bitmask - 1) << e->shift_r;
}
return snd_ac97_update_bits(ac97, e->reg, mask, val);
}
/* save/restore ac97 v2.3 paging */
static int snd_ac97_page_save(struct snd_ac97 *ac97, int reg, struct snd_kcontrol *kcontrol)
{
int page_save = -1;
if ((kcontrol->private_value & (1<<25)) &&
(ac97->ext_id & AC97_EI_REV_MASK) >= AC97_EI_REV_23 &&
(reg >= 0x60 && reg < 0x70)) {
unsigned short page = (kcontrol->private_value >> 26) & 0x0f;
mutex_lock(&ac97->page_mutex); /* lock paging */
page_save = snd_ac97_read(ac97, AC97_INT_PAGING) & AC97_PAGE_MASK;
snd_ac97_update_bits(ac97, AC97_INT_PAGING, AC97_PAGE_MASK, page);
}
return page_save;
}
static void snd_ac97_page_restore(struct snd_ac97 *ac97, int page_save)
{
if (page_save >= 0) {
snd_ac97_update_bits(ac97, AC97_INT_PAGING, AC97_PAGE_MASK, page_save);
mutex_unlock(&ac97->page_mutex); /* unlock paging */
}
}
/* volume and switch controls */
int snd_ac97_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
int mask = (kcontrol->private_value >> 16) & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = shift == rshift ? 1 : 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
int snd_ac97_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0x01;
int page_save;
page_save = snd_ac97_page_save(ac97, reg, kcontrol);
ucontrol->value.integer.value[0] = (snd_ac97_read_cache(ac97, reg) >> shift) & mask;
if (shift != rshift)
ucontrol->value.integer.value[1] = (snd_ac97_read_cache(ac97, reg) >> rshift) & mask;
if (invert) {
ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
if (shift != rshift)
ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
}
snd_ac97_page_restore(ac97, page_save);
return 0;
}
int snd_ac97_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
int invert = (kcontrol->private_value >> 24) & 0x01;
int err, page_save;
unsigned short val, val2, val_mask;
page_save = snd_ac97_page_save(ac97, reg, kcontrol);
val = (ucontrol->value.integer.value[0] & mask);
if (invert)
val = mask - val;
val_mask = mask << shift;
val = val << shift;
if (shift != rshift) {
val2 = (ucontrol->value.integer.value[1] & mask);
if (invert)
val2 = mask - val2;
val_mask |= mask << rshift;
val |= val2 << rshift;
}
err = snd_ac97_update_bits(ac97, reg, val_mask, val);
snd_ac97_page_restore(ac97, page_save);
#ifdef CONFIG_SND_AC97_POWER_SAVE
/* check analog mixer power-down */
if ((val_mask & 0x8000) &&
(kcontrol->private_value & (1<<30))) {
if (val & 0x8000)
ac97->power_up &= ~(1 << (reg>>1));
else
ac97->power_up |= 1 << (reg>>1);
update_power_regs(ac97);
}
#endif
return err;
}
static const struct snd_kcontrol_new snd_ac97_controls_master_mono[2] = {
AC97_SINGLE("Master Mono Playback Switch", AC97_MASTER_MONO, 15, 1, 1),
AC97_SINGLE("Master Mono Playback Volume", AC97_MASTER_MONO, 0, 31, 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_tone[2] = {
AC97_SINGLE("Tone Control - Bass", AC97_MASTER_TONE, 8, 15, 1),
AC97_SINGLE("Tone Control - Treble", AC97_MASTER_TONE, 0, 15, 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_pc_beep[2] = {
AC97_SINGLE("PC Speaker Playback Switch", AC97_PC_BEEP, 15, 1, 1),
AC97_SINGLE("PC Speaker Playback Volume", AC97_PC_BEEP, 1, 15, 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_mic_boost =
AC97_SINGLE("Mic Boost (+20dB)", AC97_MIC, 6, 1, 0);
static const char* std_rec_sel[] = {"Mic", "CD", "Video", "Aux", "Line", "Mix", "Mix Mono", "Phone"};
static const char* std_3d_path[] = {"pre 3D", "post 3D"};
static const char* std_mix[] = {"Mix", "Mic"};
static const char* std_mic[] = {"Mic1", "Mic2"};
static const struct ac97_enum std_enum[] = {
AC97_ENUM_DOUBLE(AC97_REC_SEL, 8, 0, 8, std_rec_sel),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 15, 2, std_3d_path),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 9, 2, std_mix),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 8, 2, std_mic),
};
static const struct snd_kcontrol_new snd_ac97_control_capture_src =
AC97_ENUM("Capture Source", std_enum[0]);
static const struct snd_kcontrol_new snd_ac97_control_capture_vol =
AC97_DOUBLE("Capture Volume", AC97_REC_GAIN, 8, 0, 15, 0);
static const struct snd_kcontrol_new snd_ac97_controls_mic_capture[2] = {
AC97_SINGLE("Mic Capture Switch", AC97_REC_GAIN_MIC, 15, 1, 1),
AC97_SINGLE("Mic Capture Volume", AC97_REC_GAIN_MIC, 0, 15, 0)
};
enum {
AC97_GENERAL_PCM_OUT = 0,
AC97_GENERAL_STEREO_ENHANCEMENT,
AC97_GENERAL_3D,
AC97_GENERAL_LOUDNESS,
AC97_GENERAL_MONO,
AC97_GENERAL_MIC,
AC97_GENERAL_LOOPBACK
};
static const struct snd_kcontrol_new snd_ac97_controls_general[7] = {
AC97_ENUM("PCM Out Path & Mute", std_enum[1]),
AC97_SINGLE("Simulated Stereo Enhancement", AC97_GENERAL_PURPOSE, 14, 1, 0),
AC97_SINGLE("3D Control - Switch", AC97_GENERAL_PURPOSE, 13, 1, 0),
AC97_SINGLE("Loudness (bass boost)", AC97_GENERAL_PURPOSE, 12, 1, 0),
AC97_ENUM("Mono Output Select", std_enum[2]),
AC97_ENUM("Mic Select", std_enum[3]),
AC97_SINGLE("ADC/DAC Loopback", AC97_GENERAL_PURPOSE, 7, 1, 0)
};
const struct snd_kcontrol_new snd_ac97_controls_3d[2] = {
AC97_SINGLE("3D Control - Center", AC97_3D_CONTROL, 8, 15, 0),
AC97_SINGLE("3D Control - Depth", AC97_3D_CONTROL, 0, 15, 0)
};
static const struct snd_kcontrol_new snd_ac97_controls_center[2] = {
AC97_SINGLE("Center Playback Switch", AC97_CENTER_LFE_MASTER, 7, 1, 1),
AC97_SINGLE("Center Playback Volume", AC97_CENTER_LFE_MASTER, 0, 31, 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_lfe[2] = {
AC97_SINGLE("LFE Playback Switch", AC97_CENTER_LFE_MASTER, 15, 1, 1),
AC97_SINGLE("LFE Playback Volume", AC97_CENTER_LFE_MASTER, 8, 31, 1)
};
static const struct snd_kcontrol_new snd_ac97_control_eapd =
AC97_SINGLE("External Amplifier", AC97_POWERDOWN, 15, 1, 1);
static const struct snd_kcontrol_new snd_ac97_controls_modem_switches[2] = {
AC97_SINGLE("Off-hook Switch", AC97_GPIO_STATUS, 0, 1, 0),
AC97_SINGLE("Caller ID Switch", AC97_GPIO_STATUS, 2, 1, 0)
};
/* change the existing EAPD control as inverted */
static void set_inv_eapd(struct snd_ac97 *ac97, struct snd_kcontrol *kctl)
{
kctl->private_value = AC97_SINGLE_VALUE(AC97_POWERDOWN, 15, 1, 0);
snd_ac97_update_bits(ac97, AC97_POWERDOWN, (1<<15), (1<<15)); /* EAPD up */
ac97->scaps |= AC97_SCAP_INV_EAPD;
}
static int snd_ac97_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ac97_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_CON_EMPHASIS_5015 |
IEC958_AES0_CON_NOT_COPYRIGHT;
ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
IEC958_AES1_CON_ORIGINAL;
ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
return 0;
}
static int snd_ac97_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
/* FIXME: AC'97 spec doesn't say which bits are used for what */
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_PRO_FS |
IEC958_AES0_PRO_EMPHASIS_5015;
return 0;
}
static int snd_ac97_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
mutex_lock(&ac97->reg_mutex);
ucontrol->value.iec958.status[0] = ac97->spdif_status & 0xff;
ucontrol->value.iec958.status[1] = (ac97->spdif_status >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (ac97->spdif_status >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (ac97->spdif_status >> 24) & 0xff;
mutex_unlock(&ac97->reg_mutex);
return 0;
}
static int snd_ac97_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
unsigned int new = 0;
unsigned short val = 0;
int change;
new = val = ucontrol->value.iec958.status[0] & (IEC958_AES0_PROFESSIONAL|IEC958_AES0_NONAUDIO);
if (ucontrol->value.iec958.status[0] & IEC958_AES0_PROFESSIONAL) {
new |= ucontrol->value.iec958.status[0] & (IEC958_AES0_PRO_FS|IEC958_AES0_PRO_EMPHASIS_5015);
switch (new & IEC958_AES0_PRO_FS) {
case IEC958_AES0_PRO_FS_44100: val |= 0<<12; break;
case IEC958_AES0_PRO_FS_48000: val |= 2<<12; break;
case IEC958_AES0_PRO_FS_32000: val |= 3<<12; break;
default: val |= 1<<12; break;
}
if ((new & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
val |= 1<<3;
} else {
new |= ucontrol->value.iec958.status[0] & (IEC958_AES0_CON_EMPHASIS_5015|IEC958_AES0_CON_NOT_COPYRIGHT);
new |= ((ucontrol->value.iec958.status[1] & (IEC958_AES1_CON_CATEGORY|IEC958_AES1_CON_ORIGINAL)) << 8);
new |= ((ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) << 24);
if ((new & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
val |= 1<<3;
if (!(new & IEC958_AES0_CON_NOT_COPYRIGHT))
val |= 1<<2;
val |= ((new >> 8) & 0xff) << 4; // category + original
switch ((new >> 24) & 0xff) {
case IEC958_AES3_CON_FS_44100: val |= 0<<12; break;
case IEC958_AES3_CON_FS_48000: val |= 2<<12; break;
case IEC958_AES3_CON_FS_32000: val |= 3<<12; break;
default: val |= 1<<12; break;
}
}
mutex_lock(&ac97->reg_mutex);
change = ac97->spdif_status != new;
ac97->spdif_status = new;
if (ac97->flags & AC97_CS_SPDIF) {
int x = (val >> 12) & 0x03;
switch (x) {
case 0: x = 1; break; // 44.1
case 2: x = 0; break; // 48.0
default: x = 0; break; // illegal.
}
change |= snd_ac97_update_bits_nolock(ac97, AC97_CSR_SPDIF, 0x3fff, ((val & 0xcfff) | (x << 12)));
} else if (ac97->flags & AC97_CX_SPDIF) {
int v;
v = new & (IEC958_AES0_CON_EMPHASIS_5015|IEC958_AES0_CON_NOT_COPYRIGHT) ? 0 : AC97_CXR_COPYRGT;
v |= new & IEC958_AES0_NONAUDIO ? AC97_CXR_SPDIF_AC3 : AC97_CXR_SPDIF_PCM;
change |= snd_ac97_update_bits_nolock(ac97, AC97_CXR_AUDIO_MISC,
AC97_CXR_SPDIF_MASK | AC97_CXR_COPYRGT,
v);
} else {
unsigned short extst = snd_ac97_read_cache(ac97, AC97_EXTENDED_STATUS);
snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); /* turn off */
change |= snd_ac97_update_bits_nolock(ac97, AC97_SPDIF, 0x3fff, val);
if (extst & AC97_EA_SPDIF) {
snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
}
}
mutex_unlock(&ac97->reg_mutex);
return change;
}
static int snd_ac97_put_spsa(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xff;
int shift = (kcontrol->private_value >> 8) & 0xff;
int mask = (kcontrol->private_value >> 16) & 0xff;
// int invert = (kcontrol->private_value >> 24) & 0xff;
unsigned short value, old, new;
int change;
value = (ucontrol->value.integer.value[0] & mask);
mutex_lock(&ac97->reg_mutex);
mask <<= shift;
value <<= shift;
old = snd_ac97_read_cache(ac97, reg);
new = (old & ~mask) | value;
change = old != new;
if (change) {
unsigned short extst = snd_ac97_read_cache(ac97, AC97_EXTENDED_STATUS);
snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); /* turn off */
change = snd_ac97_update_bits_nolock(ac97, reg, mask, value);
if (extst & AC97_EA_SPDIF)
snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
}
mutex_unlock(&ac97->reg_mutex);
return change;
}
const struct snd_kcontrol_new snd_ac97_controls_spdif[5] = {
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_ac97_spdif_mask_info,
.get = snd_ac97_spdif_cmask_get,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
.info = snd_ac97_spdif_mask_info,
.get = snd_ac97_spdif_pmask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_ac97_spdif_mask_info,
.get = snd_ac97_spdif_default_get,
.put = snd_ac97_spdif_default_put,
},
AC97_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),AC97_EXTENDED_STATUS, 2, 1, 0),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,NONE) "AC97-SPSA",
.info = snd_ac97_info_volsw,
.get = snd_ac97_get_volsw,
.put = snd_ac97_put_spsa,
.private_value = AC97_SINGLE_VALUE(AC97_EXTENDED_STATUS, 4, 3, 0)
},
};
#define AD18XX_PCM_BITS(xname, codec, lshift, rshift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_ac97_ad18xx_pcm_info_bits, \
.get = snd_ac97_ad18xx_pcm_get_bits, .put = snd_ac97_ad18xx_pcm_put_bits, \
.private_value = (codec) | ((lshift) << 8) | ((rshift) << 12) | ((mask) << 16) }
static int snd_ac97_ad18xx_pcm_info_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int mask = (kcontrol->private_value >> 16) & 0x0f;
int lshift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES))
uinfo->count = 2;
else
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = mask;
return 0;
}
static int snd_ac97_ad18xx_pcm_get_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->private_value & 3;
int lshift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
ucontrol->value.integer.value[0] = mask - ((ac97->spec.ad18xx.pcmreg[codec] >> lshift) & mask);
if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES))
ucontrol->value.integer.value[1] = mask - ((ac97->spec.ad18xx.pcmreg[codec] >> rshift) & mask);
return 0;
}
static int snd_ac97_ad18xx_pcm_put_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->private_value & 3;
int lshift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
int mask = (kcontrol->private_value >> 16) & 0xff;
unsigned short val, valmask;
val = (mask - (ucontrol->value.integer.value[0] & mask)) << lshift;
valmask = mask << lshift;
if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES)) {
val |= (mask - (ucontrol->value.integer.value[1] & mask)) << rshift;
valmask |= mask << rshift;
}
return snd_ac97_ad18xx_update_pcm_bits(ac97, codec, valmask, val);
}
#define AD18XX_PCM_VOLUME(xname, codec) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_ac97_ad18xx_pcm_info_volume, \
.get = snd_ac97_ad18xx_pcm_get_volume, .put = snd_ac97_ad18xx_pcm_put_volume, \
.private_value = codec }
static int snd_ac97_ad18xx_pcm_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 31;
return 0;
}
static int snd_ac97_ad18xx_pcm_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->private_value & 3;
mutex_lock(&ac97->page_mutex);
ucontrol->value.integer.value[0] = 31 - ((ac97->spec.ad18xx.pcmreg[codec] >> 0) & 31);
ucontrol->value.integer.value[1] = 31 - ((ac97->spec.ad18xx.pcmreg[codec] >> 8) & 31);
mutex_unlock(&ac97->page_mutex);
return 0;
}
static int snd_ac97_ad18xx_pcm_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int codec = kcontrol->private_value & 3;
unsigned short val1, val2;
val1 = 31 - (ucontrol->value.integer.value[0] & 31);
val2 = 31 - (ucontrol->value.integer.value[1] & 31);
return snd_ac97_ad18xx_update_pcm_bits(ac97, codec, 0x1f1f, (val1 << 8) | val2);
}
static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_pcm[2] = {
AD18XX_PCM_BITS("PCM Playback Switch", 0, 15, 7, 1),
AD18XX_PCM_VOLUME("PCM Playback Volume", 0)
};
static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_surround[2] = {
AD18XX_PCM_BITS("Surround Playback Switch", 1, 15, 7, 1),
AD18XX_PCM_VOLUME("Surround Playback Volume", 1)
};
static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_center[2] = {
AD18XX_PCM_BITS("Center Playback Switch", 2, 15, 15, 1),
AD18XX_PCM_BITS("Center Playback Volume", 2, 8, 8, 31)
};
static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_lfe[2] = {
AD18XX_PCM_BITS("LFE Playback Switch", 2, 7, 7, 1),
AD18XX_PCM_BITS("LFE Playback Volume", 2, 0, 0, 31)
};
/*
*
*/
static void snd_ac97_powerdown(struct snd_ac97 *ac97);
static int snd_ac97_bus_free(struct snd_ac97_bus *bus)
{
if (bus) {
snd_ac97_bus_proc_done(bus);
kfree(bus->pcms);
if (bus->private_free)
bus->private_free(bus);
kfree(bus);
}
return 0;
}
static int snd_ac97_bus_dev_free(struct snd_device *device)
{
struct snd_ac97_bus *bus = device->device_data;
return snd_ac97_bus_free(bus);
}
static int snd_ac97_free(struct snd_ac97 *ac97)
{
if (ac97) {
#ifdef CONFIG_SND_AC97_POWER_SAVE
if (ac97->power_workq)
destroy_workqueue(ac97->power_workq);
#endif
snd_ac97_proc_done(ac97);
if (ac97->bus)
ac97->bus->codec[ac97->num] = NULL;
if (ac97->private_free)
ac97->private_free(ac97);
kfree(ac97);
}
return 0;
}
static int snd_ac97_dev_free(struct snd_device *device)
{
struct snd_ac97 *ac97 = device->device_data;
snd_ac97_powerdown(ac97); /* for avoiding click noises during shut down */
return snd_ac97_free(ac97);
}
static int snd_ac97_try_volume_mix(struct snd_ac97 * ac97, int reg)
{
unsigned short val, mask = 0x8000;
if (! snd_ac97_valid_reg(ac97, reg))
return 0;
switch (reg) {
case AC97_MASTER_TONE:
return ac97->caps & 0x04 ? 1 : 0;
case AC97_HEADPHONE:
return ac97->caps & 0x10 ? 1 : 0;
case AC97_REC_GAIN_MIC:
return ac97->caps & 0x01 ? 1 : 0;
case AC97_3D_CONTROL:
if (ac97->caps & 0x7c00) {
val = snd_ac97_read(ac97, reg);
/* if nonzero - fixed and we can't set it */
return val == 0;
}
return 0;
case AC97_CENTER_LFE_MASTER: /* center */
if ((ac97->ext_id & AC97_EI_CDAC) == 0)
return 0;
break;
case AC97_CENTER_LFE_MASTER+1: /* lfe */
if ((ac97->ext_id & AC97_EI_LDAC) == 0)
return 0;
reg = AC97_CENTER_LFE_MASTER;
mask = 0x0080;
break;
case AC97_SURROUND_MASTER:
if ((ac97->ext_id & AC97_EI_SDAC) == 0)
return 0;
break;
}
val = snd_ac97_read(ac97, reg);
if (!(val & mask)) {
/* nothing seems to be here - mute flag is not set */
/* try another test */
snd_ac97_write_cache(ac97, reg, val | mask);
val = snd_ac97_read(ac97, reg);
val = snd_ac97_read(ac97, reg);
if (!(val & mask))
return 0; /* nothing here */
}
return 1; /* success, useable */
}
static void check_volume_resolution(struct snd_ac97 *ac97, int reg, unsigned char *lo_max, unsigned char *hi_max)
{
unsigned short cbit[3] = { 0x20, 0x10, 0x01 };
unsigned char max[3] = { 63, 31, 15 };
int i;
/* first look up the static resolution table */
if (ac97->res_table) {
const struct snd_ac97_res_table *tbl;
for (tbl = ac97->res_table; tbl->reg; tbl++) {
if (tbl->reg == reg) {
*lo_max = tbl->bits & 0xff;
*hi_max = (tbl->bits >> 8) & 0xff;
return;
}
}
}
*lo_max = *hi_max = 0;
for (i = 0 ; i < ARRAY_SIZE(cbit); i++) {
unsigned short val;
snd_ac97_write(ac97, reg, 0x8080 | cbit[i] | (cbit[i] << 8));
/* Do the read twice due to buffers on some ac97 codecs.
* e.g. The STAC9704 returns exactly what you wrote the the register
* if you read it immediately. This causes the detect routine to fail.
*/
val = snd_ac97_read(ac97, reg);
val = snd_ac97_read(ac97, reg);
if (! *lo_max && (val & 0x7f) == cbit[i])
*lo_max = max[i];
if (! *hi_max && ((val >> 8) & 0x7f) == cbit[i])
*hi_max = max[i];
if (*lo_max && *hi_max)
break;
}
}
int snd_ac97_try_bit(struct snd_ac97 * ac97, int reg, int bit)
{
unsigned short mask, val, orig, res;
mask = 1 << bit;
orig = snd_ac97_read(ac97, reg);
val = orig ^ mask;
snd_ac97_write(ac97, reg, val);
res = snd_ac97_read(ac97, reg);
snd_ac97_write_cache(ac97, reg, orig);
return res == val;
}
/* check the volume resolution of center/lfe */
static void snd_ac97_change_volume_params2(struct snd_ac97 * ac97, int reg, int shift, unsigned char *max)
{
unsigned short val, val1;
*max = 63;
val = 0x8080 | (0x20 << shift);
snd_ac97_write(ac97, reg, val);
val1 = snd_ac97_read(ac97, reg);
if (val != val1) {
*max = 31;
}
/* reset volume to zero */
snd_ac97_write_cache(ac97, reg, 0x8080);
}
static inline int printable(unsigned int x)
{
x &= 0xff;
if (x < ' ' || x >= 0x71) {
if (x <= 0x89)
return x - 0x71 + 'A';
return '?';
}
return x;
}
struct snd_kcontrol *snd_ac97_cnew(const struct snd_kcontrol_new *_template, struct snd_ac97 * ac97)
{
struct snd_kcontrol_new template;
memcpy(&template, _template, sizeof(template));
template.index = ac97->num;
return snd_ctl_new1(&template, ac97);
}
/*
* create mute switch(es) for normal stereo controls
*/
static int snd_ac97_cmute_new_stereo(struct snd_card *card, char *name, int reg,
int check_stereo, int check_amix,
struct snd_ac97 *ac97)
{
struct snd_kcontrol *kctl;
int err;
unsigned short val, val1, mute_mask;
if (! snd_ac97_valid_reg(ac97, reg))
return 0;
mute_mask = 0x8000;
val = snd_ac97_read(ac97, reg);
if (check_stereo || (ac97->flags & AC97_STEREO_MUTES)) {
/* check whether both mute bits work */
val1 = val | 0x8080;
snd_ac97_write(ac97, reg, val1);
if (val1 == snd_ac97_read(ac97, reg))
mute_mask = 0x8080;
}
if (mute_mask == 0x8080) {
struct snd_kcontrol_new tmp = AC97_DOUBLE(name, reg, 15, 7, 1, 1);
if (check_amix)
tmp.private_value |= (1 << 30);
tmp.index = ac97->num;
kctl = snd_ctl_new1(&tmp, ac97);
} else {
struct snd_kcontrol_new tmp = AC97_SINGLE(name, reg, 15, 1, 1);
if (check_amix)
tmp.private_value |= (1 << 30);
tmp.index = ac97->num;
kctl = snd_ctl_new1(&tmp, ac97);
}
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
/* mute as default */
snd_ac97_write_cache(ac97, reg, val | mute_mask);
return 0;
}
/*
* set dB information
*/
static DECLARE_TLV_DB_SCALE(db_scale_4bit, -4500, 300, 0);
static DECLARE_TLV_DB_SCALE(db_scale_5bit, -4650, 150, 0);
static DECLARE_TLV_DB_SCALE(db_scale_6bit, -9450, 150, 0);
static DECLARE_TLV_DB_SCALE(db_scale_5bit_12db_max, -3450, 150, 0);
static DECLARE_TLV_DB_SCALE(db_scale_rec_gain, 0, 150, 0);
static unsigned int *find_db_scale(unsigned int maxval)
{
switch (maxval) {
case 0x0f: return db_scale_4bit;
case 0x1f: return db_scale_5bit;
case 0x3f: return db_scale_6bit;
}
return NULL;
}
static void set_tlv_db_scale(struct snd_kcontrol *kctl, unsigned int *tlv)
{
kctl->tlv.p = tlv;
if (tlv)
kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
}
/*
* create a volume for normal stereo/mono controls
*/
static int snd_ac97_cvol_new(struct snd_card *card, char *name, int reg, unsigned int lo_max,
unsigned int hi_max, struct snd_ac97 *ac97)
{
int err;
struct snd_kcontrol *kctl;
if (! snd_ac97_valid_reg(ac97, reg))
return 0;
if (hi_max) {
/* invert */
struct snd_kcontrol_new tmp = AC97_DOUBLE(name, reg, 8, 0, lo_max, 1);
tmp.index = ac97->num;
kctl = snd_ctl_new1(&tmp, ac97);
} else {
/* invert */
struct snd_kcontrol_new tmp = AC97_SINGLE(name, reg, 0, lo_max, 1);
tmp.index = ac97->num;
kctl = snd_ctl_new1(&tmp, ac97);
}
if (reg >= AC97_PHONE && reg <= AC97_PCM)
set_tlv_db_scale(kctl, db_scale_5bit_12db_max);
else
set_tlv_db_scale(kctl, find_db_scale(lo_max));
err = snd_ctl_add(card, kctl);
if (err < 0)
return err;
snd_ac97_write_cache(ac97, reg,
(snd_ac97_read(ac97, reg) & 0x8080) |
lo_max | (hi_max << 8));
return 0;
}
/*
* create a mute-switch and a volume for normal stereo/mono controls
*/
static int snd_ac97_cmix_new_stereo(struct snd_card *card, const char *pfx,
int reg, int check_stereo, int check_amix,
struct snd_ac97 *ac97)
{
int err;
char name[44];
unsigned char lo_max, hi_max;
if (! snd_ac97_valid_reg(ac97, reg))
return 0;
if (snd_ac97_try_bit(ac97, reg, 15)) {
sprintf(name, "%s Switch", pfx);
if ((err = snd_ac97_cmute_new_stereo(card, name, reg,
check_stereo, check_amix,
ac97)) < 0)
return err;
}
check_volume_resolution(ac97, reg, &lo_max, &hi_max);
if (lo_max) {
sprintf(name, "%s Volume", pfx);
if ((err = snd_ac97_cvol_new(card, name, reg, lo_max, hi_max, ac97)) < 0)
return err;
}
return 0;
}
#define snd_ac97_cmix_new(card, pfx, reg, acheck, ac97) \
snd_ac97_cmix_new_stereo(card, pfx, reg, 0, acheck, ac97)
#define snd_ac97_cmute_new(card, name, reg, acheck, ac97) \
snd_ac97_cmute_new_stereo(card, name, reg, 0, acheck, ac97)
static unsigned int snd_ac97_determine_spdif_rates(struct snd_ac97 *ac97);
static int snd_ac97_mixer_build(struct snd_ac97 * ac97)
{
struct snd_card *card = ac97->bus->card;
struct snd_kcontrol *kctl;
int err;
unsigned int idx;
unsigned char max;
/* build master controls */
/* AD claims to remove this control from AD1887, although spec v2.2 does not allow this */
if (snd_ac97_try_volume_mix(ac97, AC97_MASTER)) {
if (ac97->flags & AC97_HAS_NO_MASTER_VOL)
err = snd_ac97_cmute_new(card, "Master Playback Switch",
AC97_MASTER, 0, ac97);
else
err = snd_ac97_cmix_new(card, "Master Playback",
AC97_MASTER, 0, ac97);
if (err < 0)
return err;
}
ac97->regs[AC97_CENTER_LFE_MASTER] = 0x8080;
/* build center controls */
if ((snd_ac97_try_volume_mix(ac97, AC97_CENTER_LFE_MASTER))
&& !(ac97->flags & AC97_AD_MULTI)) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_center[0], ac97))) < 0)
return err;
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_center[1], ac97))) < 0)
return err;
snd_ac97_change_volume_params2(ac97, AC97_CENTER_LFE_MASTER, 0, &max);
kctl->private_value &= ~(0xff << 16);
kctl->private_value |= (int)max << 16;
set_tlv_db_scale(kctl, find_db_scale(max));
snd_ac97_write_cache(ac97, AC97_CENTER_LFE_MASTER, ac97->regs[AC97_CENTER_LFE_MASTER] | max);
}
/* build LFE controls */
if ((snd_ac97_try_volume_mix(ac97, AC97_CENTER_LFE_MASTER+1))
&& !(ac97->flags & AC97_AD_MULTI)) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_lfe[0], ac97))) < 0)
return err;
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_lfe[1], ac97))) < 0)
return err;
snd_ac97_change_volume_params2(ac97, AC97_CENTER_LFE_MASTER, 8, &max);
kctl->private_value &= ~(0xff << 16);
kctl->private_value |= (int)max << 16;
set_tlv_db_scale(kctl, find_db_scale(max));
snd_ac97_write_cache(ac97, AC97_CENTER_LFE_MASTER, ac97->regs[AC97_CENTER_LFE_MASTER] | max << 8);
}
/* build surround controls */
if ((snd_ac97_try_volume_mix(ac97, AC97_SURROUND_MASTER))
&& !(ac97->flags & AC97_AD_MULTI)) {
/* Surround Master (0x38) is with stereo mutes */
if ((err = snd_ac97_cmix_new_stereo(card, "Surround Playback",
AC97_SURROUND_MASTER, 1, 0,
ac97)) < 0)
return err;
}
/* build headphone controls */
if (snd_ac97_try_volume_mix(ac97, AC97_HEADPHONE)) {
if ((err = snd_ac97_cmix_new(card, "Headphone Playback",
AC97_HEADPHONE, 0, ac97)) < 0)
return err;
}
/* build master mono controls */
if (snd_ac97_try_volume_mix(ac97, AC97_MASTER_MONO)) {
if ((err = snd_ac97_cmix_new(card, "Master Mono Playback",
AC97_MASTER_MONO, 0, ac97)) < 0)
return err;
}
/* build master tone controls */
if (!(ac97->flags & AC97_HAS_NO_TONE)) {
if (snd_ac97_try_volume_mix(ac97, AC97_MASTER_TONE)) {
for (idx = 0; idx < 2; idx++) {
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_tone[idx], ac97))) < 0)
return err;
if (ac97->id == AC97_ID_YMF753) {
kctl->private_value &= ~(0xff << 16);
kctl->private_value |= 7 << 16;
}
}
snd_ac97_write_cache(ac97, AC97_MASTER_TONE, 0x0f0f);
}
}
/* build PC Speaker controls */
if (!(ac97->flags & AC97_HAS_NO_PC_BEEP) &&
((ac97->flags & AC97_HAS_PC_BEEP) ||
snd_ac97_try_volume_mix(ac97, AC97_PC_BEEP))) {
for (idx = 0; idx < 2; idx++)
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_pc_beep[idx], ac97))) < 0)
return err;
set_tlv_db_scale(kctl, db_scale_4bit);
snd_ac97_write_cache(ac97, AC97_PC_BEEP,
snd_ac97_read(ac97, AC97_PC_BEEP) | 0x801e);
}
/* build Phone controls */
if (!(ac97->flags & AC97_HAS_NO_PHONE)) {
if (snd_ac97_try_volume_mix(ac97, AC97_PHONE)) {
if ((err = snd_ac97_cmix_new(card, "Phone Playback",
AC97_PHONE, 1, ac97)) < 0)
return err;
}
}
/* build MIC controls */
if (!(ac97->flags & AC97_HAS_NO_MIC)) {
if (snd_ac97_try_volume_mix(ac97, AC97_MIC)) {
if ((err = snd_ac97_cmix_new(card, "Mic Playback",
AC97_MIC, 1, ac97)) < 0)
return err;
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_mic_boost, ac97))) < 0)
return err;
}
}
/* build Line controls */
if (snd_ac97_try_volume_mix(ac97, AC97_LINE)) {
if ((err = snd_ac97_cmix_new(card, "Line Playback",
AC97_LINE, 1, ac97)) < 0)
return err;
}
/* build CD controls */
if (!(ac97->flags & AC97_HAS_NO_CD)) {
if (snd_ac97_try_volume_mix(ac97, AC97_CD)) {
if ((err = snd_ac97_cmix_new(card, "CD Playback",
AC97_CD, 1, ac97)) < 0)
return err;
}
}
/* build Video controls */
if (!(ac97->flags & AC97_HAS_NO_VIDEO)) {
if (snd_ac97_try_volume_mix(ac97, AC97_VIDEO)) {
if ((err = snd_ac97_cmix_new(card, "Video Playback",
AC97_VIDEO, 1, ac97)) < 0)
return err;
}
}
/* build Aux controls */
if (!(ac97->flags & AC97_HAS_NO_AUX)) {
if (snd_ac97_try_volume_mix(ac97, AC97_AUX)) {
if ((err = snd_ac97_cmix_new(card, "Aux Playback",
AC97_AUX, 1, ac97)) < 0)
return err;
}
}
/* build PCM controls */
if (ac97->flags & AC97_AD_MULTI) {
unsigned short init_val;
if (ac97->flags & AC97_STEREO_MUTES)
init_val = 0x9f9f;
else
init_val = 0x9f1f;
for (idx = 0; idx < 2; idx++)
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_pcm[idx], ac97))) < 0)
return err;
set_tlv_db_scale(kctl, db_scale_5bit);
ac97->spec.ad18xx.pcmreg[0] = init_val;
if (ac97->scaps & AC97_SCAP_SURROUND_DAC) {
for (idx = 0; idx < 2; idx++)
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_surround[idx], ac97))) < 0)
return err;
set_tlv_db_scale(kctl, db_scale_5bit);
ac97->spec.ad18xx.pcmreg[1] = init_val;
}
if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC) {
for (idx = 0; idx < 2; idx++)
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_center[idx], ac97))) < 0)
return err;
set_tlv_db_scale(kctl, db_scale_5bit);
for (idx = 0; idx < 2; idx++)
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_lfe[idx], ac97))) < 0)
return err;
set_tlv_db_scale(kctl, db_scale_5bit);
ac97->spec.ad18xx.pcmreg[2] = init_val;
}
snd_ac97_write_cache(ac97, AC97_PCM, init_val);
} else {
if (!(ac97->flags & AC97_HAS_NO_STD_PCM)) {
if (ac97->flags & AC97_HAS_NO_PCM_VOL)
err = snd_ac97_cmute_new(card,
"PCM Playback Switch",
AC97_PCM, 0, ac97);
else
err = snd_ac97_cmix_new(card, "PCM Playback",
AC97_PCM, 0, ac97);
if (err < 0)
return err;
}
}
/* build Capture controls */
if (!(ac97->flags & AC97_HAS_NO_REC_GAIN)) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_control_capture_src, ac97))) < 0)
return err;
if (snd_ac97_try_bit(ac97, AC97_REC_GAIN, 15)) {
err = snd_ac97_cmute_new(card, "Capture Switch",
AC97_REC_GAIN, 0, ac97);
if (err < 0)
return err;
}
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_control_capture_vol, ac97))) < 0)
return err;
set_tlv_db_scale(kctl, db_scale_rec_gain);
snd_ac97_write_cache(ac97, AC97_REC_SEL, 0x0000);
snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x0000);
}
/* build MIC Capture controls */
if (snd_ac97_try_volume_mix(ac97, AC97_REC_GAIN_MIC)) {
for (idx = 0; idx < 2; idx++)
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_mic_capture[idx], ac97))) < 0)
return err;
set_tlv_db_scale(kctl, db_scale_rec_gain);
snd_ac97_write_cache(ac97, AC97_REC_GAIN_MIC, 0x0000);
}
/* build PCM out path & mute control */
if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 15)) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_PCM_OUT], ac97))) < 0)
return err;
}
/* build Simulated Stereo Enhancement control */
if (ac97->caps & 0x0008) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_STEREO_ENHANCEMENT], ac97))) < 0)
return err;
}
/* build 3D Stereo Enhancement control */
if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 13)) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_3D], ac97))) < 0)
return err;
}
/* build Loudness control */
if (ac97->caps & 0x0020) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_LOUDNESS], ac97))) < 0)
return err;
}
/* build Mono output select control */
if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 9)) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_MONO], ac97))) < 0)
return err;
}
/* build Mic select control */
if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 8)) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_MIC], ac97))) < 0)
return err;
}
/* build ADC/DAC loopback control */
if (enable_loopback && snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 7)) {
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_LOOPBACK], ac97))) < 0)
return err;
}
snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, ~AC97_GP_DRSS_MASK, 0x0000);
/* build 3D controls */
if (ac97->build_ops->build_3d) {
ac97->build_ops->build_3d(ac97);
} else {
if (snd_ac97_try_volume_mix(ac97, AC97_3D_CONTROL)) {
unsigned short val;
val = 0x0707;
snd_ac97_write(ac97, AC97_3D_CONTROL, val);
val = snd_ac97_read(ac97, AC97_3D_CONTROL);
val = val == 0x0606;
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_3d[0], ac97))) < 0)
return err;
if (val)
kctl->private_value = AC97_3D_CONTROL | (9 << 8) | (7 << 16);
if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_3d[1], ac97))) < 0)
return err;
if (val)
kctl->private_value = AC97_3D_CONTROL | (1 << 8) | (7 << 16);
snd_ac97_write_cache(ac97, AC97_3D_CONTROL, 0x0000);
}
}
/* build S/PDIF controls */
/* Hack for ASUS P5P800-VM, which does not indicate S/PDIF capability */
if (ac97->subsystem_vendor == 0x1043 &&
ac97->subsystem_device == 0x810f)
ac97->ext_id |= AC97_EI_SPDIF;
if ((ac97->ext_id & AC97_EI_SPDIF) && !(ac97->scaps & AC97_SCAP_NO_SPDIF)) {
if (ac97->build_ops->build_spdif) {
if ((err = ac97->build_ops->build_spdif(ac97)) < 0)
return err;
} else {
for (idx = 0; idx < 5; idx++)
if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_spdif[idx], ac97))) < 0)
return err;
if (ac97->build_ops->build_post_spdif) {
if ((err = ac97->build_ops->build_post_spdif(ac97)) < 0)
return err;
}
/* set default PCM S/PDIF params */
/* consumer,PCM audio,no copyright,no preemphasis,PCM coder,original,48000Hz */
snd_ac97_write_cache(ac97, AC97_SPDIF, 0x2a20);
ac97->rates[AC97_RATES_SPDIF] = snd_ac97_determine_spdif_rates(ac97);
}
ac97->spdif_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
}
/* build chip specific controls */
if (ac97->build_ops->build_specific)
if ((err = ac97->build_ops->build_specific(ac97)) < 0)
return err;
if (snd_ac97_try_bit(ac97, AC97_POWERDOWN, 15)) {
kctl = snd_ac97_cnew(&snd_ac97_control_eapd, ac97);
if (! kctl)
return -ENOMEM;
if (ac97->scaps & AC97_SCAP_INV_EAPD)
set_inv_eapd(ac97, kctl);
if ((err = snd_ctl_add(card, kctl)) < 0)
return err;
}
return 0;
}
static int snd_ac97_modem_build(struct snd_card *card, struct snd_ac97 * ac97)
{
int err, idx;
//printk("AC97_GPIO_CFG = %x\n",snd_ac97_read(ac97,AC97_GPIO_CFG));
snd_ac97_write(ac97, AC97_GPIO_CFG, 0xffff & ~(AC97_GPIO_LINE1_OH));
snd_ac97_write(ac97, AC97_GPIO_POLARITY, 0xffff & ~(AC97_GPIO_LINE1_OH));
snd_ac97_write(ac97, AC97_GPIO_STICKY, 0xffff);
snd_ac97_write(ac97, AC97_GPIO_WAKEUP, 0x0);
snd_ac97_write(ac97, AC97_MISC_AFE, 0x0);
/* build modem switches */
for (idx = 0; idx < ARRAY_SIZE(snd_ac97_controls_modem_switches); idx++)
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_ac97_controls_modem_switches[idx], ac97))) < 0)
return err;
/* build chip specific controls */
if (ac97->build_ops->build_specific)
if ((err = ac97->build_ops->build_specific(ac97)) < 0)
return err;
return 0;
}
static int snd_ac97_test_rate(struct snd_ac97 *ac97, int reg, int shadow_reg, int rate)
{
unsigned short val;
unsigned int tmp;
tmp = ((unsigned int)rate * ac97->bus->clock) / 48000;
snd_ac97_write_cache(ac97, reg, tmp & 0xffff);
if (shadow_reg)
snd_ac97_write_cache(ac97, shadow_reg, tmp & 0xffff);
val = snd_ac97_read(ac97, reg);
return val == (tmp & 0xffff);
}
static void snd_ac97_determine_rates(struct snd_ac97 *ac97, int reg, int shadow_reg, unsigned int *r_result)
{
unsigned int result = 0;
unsigned short saved;
if (ac97->bus->no_vra) {
*r_result = SNDRV_PCM_RATE_48000;
if ((ac97->flags & AC97_DOUBLE_RATE) &&
reg == AC97_PCM_FRONT_DAC_RATE)
*r_result |= SNDRV_PCM_RATE_96000;
return;
}
saved = snd_ac97_read(ac97, reg);
if ((ac97->ext_id & AC97_EI_DRA) && reg == AC97_PCM_FRONT_DAC_RATE)
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
AC97_EA_DRA, 0);
/* test a non-standard rate */
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 11000))
result |= SNDRV_PCM_RATE_CONTINUOUS;
/* let's try to obtain standard rates */
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 8000))
result |= SNDRV_PCM_RATE_8000;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 11025))
result |= SNDRV_PCM_RATE_11025;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 16000))
result |= SNDRV_PCM_RATE_16000;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 22050))
result |= SNDRV_PCM_RATE_22050;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 32000))
result |= SNDRV_PCM_RATE_32000;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 44100))
result |= SNDRV_PCM_RATE_44100;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 48000))
result |= SNDRV_PCM_RATE_48000;
if ((ac97->flags & AC97_DOUBLE_RATE) &&
reg == AC97_PCM_FRONT_DAC_RATE) {
/* test standard double rates */
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
AC97_EA_DRA, AC97_EA_DRA);
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 64000 / 2))
result |= SNDRV_PCM_RATE_64000;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 88200 / 2))
result |= SNDRV_PCM_RATE_88200;
if (snd_ac97_test_rate(ac97, reg, shadow_reg, 96000 / 2))
result |= SNDRV_PCM_RATE_96000;
/* some codecs don't support variable double rates */
if (!snd_ac97_test_rate(ac97, reg, shadow_reg, 76100 / 2))
result &= ~SNDRV_PCM_RATE_CONTINUOUS;
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
AC97_EA_DRA, 0);
}
/* restore the default value */
snd_ac97_write_cache(ac97, reg, saved);
if (shadow_reg)
snd_ac97_write_cache(ac97, shadow_reg, saved);
*r_result = result;
}
/* check AC97_SPDIF register to accept which sample rates */
static unsigned int snd_ac97_determine_spdif_rates(struct snd_ac97 *ac97)
{
unsigned int result = 0;
int i;
static unsigned short ctl_bits[] = {
AC97_SC_SPSR_44K, AC97_SC_SPSR_32K, AC97_SC_SPSR_48K
};
static unsigned int rate_bits[] = {
SNDRV_PCM_RATE_44100, SNDRV_PCM_RATE_32000, SNDRV_PCM_RATE_48000
};
for (i = 0; i < (int)ARRAY_SIZE(ctl_bits); i++) {
snd_ac97_update_bits(ac97, AC97_SPDIF, AC97_SC_SPSR_MASK, ctl_bits[i]);
if ((snd_ac97_read(ac97, AC97_SPDIF) & AC97_SC_SPSR_MASK) == ctl_bits[i])
result |= rate_bits[i];
}
return result;
}
/* look for the codec id table matching with the given id */
static const struct ac97_codec_id *look_for_codec_id(const struct ac97_codec_id *table,
unsigned int id)
{
const struct ac97_codec_id *pid;
for (pid = table; pid->id; pid++)
if (pid->id == (id & pid->mask))
return pid;
return NULL;
}
void snd_ac97_get_name(struct snd_ac97 *ac97, unsigned int id, char *name, int modem)
{
const struct ac97_codec_id *pid;
sprintf(name, "0x%x %c%c%c", id,
printable(id >> 24),
printable(id >> 16),
printable(id >> 8));
pid = look_for_codec_id(snd_ac97_codec_id_vendors, id);
if (! pid)
return;
strcpy(name, pid->name);
if (ac97 && pid->patch) {
if ((modem && (pid->flags & AC97_MODEM_PATCH)) ||
(! modem && ! (pid->flags & AC97_MODEM_PATCH)))
pid->patch(ac97);
}
pid = look_for_codec_id(snd_ac97_codec_ids, id);
if (pid) {
strcat(name, " ");
strcat(name, pid->name);
if (pid->mask != 0xffffffff)
sprintf(name + strlen(name), " rev %d", id & ~pid->mask);
if (ac97 && pid->patch) {
if ((modem && (pid->flags & AC97_MODEM_PATCH)) ||
(! modem && ! (pid->flags & AC97_MODEM_PATCH)))
pid->patch(ac97);
}
} else
sprintf(name + strlen(name), " id %x", id & 0xff);
}
/**
* snd_ac97_get_short_name - retrieve codec name
* @ac97: the codec instance
*
* Returns the short identifying name of the codec.
*/
const char *snd_ac97_get_short_name(struct snd_ac97 *ac97)
{
const struct ac97_codec_id *pid;
for (pid = snd_ac97_codec_ids; pid->id; pid++)
if (pid->id == (ac97->id & pid->mask))
return pid->name;
return "unknown codec";
}
EXPORT_SYMBOL(snd_ac97_get_short_name);
/* wait for a while until registers are accessible after RESET
* return 0 if ok, negative not ready
*/
static int ac97_reset_wait(struct snd_ac97 *ac97, int timeout, int with_modem)
{
unsigned long end_time;
unsigned short val;
end_time = jiffies + timeout;
do {
/* use preliminary reads to settle the communication */
snd_ac97_read(ac97, AC97_RESET);
snd_ac97_read(ac97, AC97_VENDOR_ID1);
snd_ac97_read(ac97, AC97_VENDOR_ID2);
/* modem? */
if (with_modem) {
val = snd_ac97_read(ac97, AC97_EXTENDED_MID);
if (val != 0xffff && (val & 1) != 0)
return 0;
}
if (ac97->scaps & AC97_SCAP_DETECT_BY_VENDOR) {
/* probably only Xbox issue - all registers are read as zero */
val = snd_ac97_read(ac97, AC97_VENDOR_ID1);
if (val != 0 && val != 0xffff)
return 0;
} else {
/* because the PCM or MASTER volume registers can be modified,
* the REC_GAIN register is used for tests
*/
/* test if we can write to the record gain volume register */
snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x8a05);
if ((snd_ac97_read(ac97, AC97_REC_GAIN) & 0x7fff) == 0x0a05)
return 0;
}
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
return -ENODEV;
}
/**
* snd_ac97_bus - create an AC97 bus component
* @card: the card instance
* @num: the bus number
* @ops: the bus callbacks table
* @private_data: private data pointer for the new instance
* @rbus: the pointer to store the new AC97 bus instance.
*
* Creates an AC97 bus component. An struct snd_ac97_bus instance is newly
* allocated and initialized.
*
* The ops table must include valid callbacks (at least read and
* write). The other callbacks, wait and reset, are not mandatory.
*
* The clock is set to 48000. If another clock is needed, set
* (*rbus)->clock manually.
*
* The AC97 bus instance is registered as a low-level device, so you don't
* have to release it manually.
*
* Returns zero if successful, or a negative error code on failure.
*/
int snd_ac97_bus(struct snd_card *card, int num, struct snd_ac97_bus_ops *ops,
void *private_data, struct snd_ac97_bus **rbus)
{
int err;
struct snd_ac97_bus *bus;
static struct snd_device_ops dev_ops = {
.dev_free = snd_ac97_bus_dev_free,
};
snd_assert(card != NULL, return -EINVAL);
snd_assert(rbus != NULL, return -EINVAL);
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
if (bus == NULL)
return -ENOMEM;
bus->card = card;
bus->num = num;
bus->ops = ops;
bus->private_data = private_data;
bus->clock = 48000;
spin_lock_init(&bus->bus_lock);
snd_ac97_bus_proc_init(bus);
if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
snd_ac97_bus_free(bus);
return err;
}
*rbus = bus;
return 0;
}
EXPORT_SYMBOL(snd_ac97_bus);
/* stop no dev release warning */
static void ac97_device_release(struct device * dev)
{
}
/* register ac97 codec to bus */
static int snd_ac97_dev_register(struct snd_device *device)
{
struct snd_ac97 *ac97 = device->device_data;
int err;
ac97->dev.bus = &ac97_bus_type;
ac97->dev.parent = ac97->bus->card->dev;
ac97->dev.release = ac97_device_release;
snprintf(ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
ac97->bus->card->number, ac97->num,
snd_ac97_get_short_name(ac97));
if ((err = device_register(&ac97->dev)) < 0) {
snd_printk(KERN_ERR "Can't register ac97 bus\n");
ac97->dev.bus = NULL;
return err;
}
return 0;
}
/* disconnect ac97 codec */
static int snd_ac97_dev_disconnect(struct snd_device *device)
{
struct snd_ac97 *ac97 = device->device_data;
if (ac97->dev.bus)
device_unregister(&ac97->dev);
return 0;
}
/* build_ops to do nothing */
static struct snd_ac97_build_ops null_build_ops;
#ifdef CONFIG_SND_AC97_POWER_SAVE
static void do_update_power(struct work_struct *work)
{
update_power_regs(
container_of(work, struct snd_ac97, power_work.work));
}
#endif
/**
* snd_ac97_mixer - create an Codec97 component
* @bus: the AC97 bus which codec is attached to
* @template: the template of ac97, including index, callbacks and
* the private data.
* @rac97: the pointer to store the new ac97 instance.
*
* Creates an Codec97 component. An struct snd_ac97 instance is newly
* allocated and initialized from the template. The codec
* is then initialized by the standard procedure.
*
* The template must include the codec number (num) and address (addr),
* and the private data (private_data).
*
* The ac97 instance is registered as a low-level device, so you don't
* have to release it manually.
*
* Returns zero if successful, or a negative error code on failure.
*/
int snd_ac97_mixer(struct snd_ac97_bus *bus, struct snd_ac97_template *template, struct snd_ac97 **rac97)
{
int err;
struct snd_ac97 *ac97;
struct snd_card *card;
char name[64];
unsigned long end_time;
unsigned int reg;
const struct ac97_codec_id *pid;
static struct snd_device_ops ops = {
.dev_free = snd_ac97_dev_free,
.dev_register = snd_ac97_dev_register,
.dev_disconnect = snd_ac97_dev_disconnect,
};
snd_assert(rac97 != NULL, return -EINVAL);
*rac97 = NULL;
snd_assert(bus != NULL && template != NULL, return -EINVAL);
snd_assert(template->num < 4 && bus->codec[template->num] == NULL, return -EINVAL);
card = bus->card;
ac97 = kzalloc(sizeof(*ac97), GFP_KERNEL);
if (ac97 == NULL)
return -ENOMEM;
ac97->private_data = template->private_data;
ac97->private_free = template->private_free;
ac97->bus = bus;
ac97->pci = template->pci;
ac97->num = template->num;
ac97->addr = template->addr;
ac97->scaps = template->scaps;
ac97->res_table = template->res_table;
bus->codec[ac97->num] = ac97;
mutex_init(&ac97->reg_mutex);
mutex_init(&ac97->page_mutex);
#ifdef CONFIG_SND_AC97_POWER_SAVE
ac97->power_workq = create_workqueue("ac97");
INIT_DELAYED_WORK(&ac97->power_work, do_update_power);
#endif
#ifdef CONFIG_PCI
if (ac97->pci) {
pci_read_config_word(ac97->pci, PCI_SUBSYSTEM_VENDOR_ID, &ac97->subsystem_vendor);
pci_read_config_word(ac97->pci, PCI_SUBSYSTEM_ID, &ac97->subsystem_device);
}
#endif
if (bus->ops->reset) {
bus->ops->reset(ac97);
goto __access_ok;
}
ac97->id = snd_ac97_read(ac97, AC97_VENDOR_ID1) << 16;
ac97->id |= snd_ac97_read(ac97, AC97_VENDOR_ID2);
if (ac97->id && ac97->id != (unsigned int)-1) {
pid = look_for_codec_id(snd_ac97_codec_ids, ac97->id);
if (pid && (pid->flags & AC97_DEFAULT_POWER_OFF))
goto __access_ok;
}
/* reset to defaults */
if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO))
snd_ac97_write(ac97, AC97_RESET, 0);
if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM))
snd_ac97_write(ac97, AC97_EXTENDED_MID, 0);
if (bus->ops->wait)
bus->ops->wait(ac97);
else {
udelay(50);
if (ac97->scaps & AC97_SCAP_SKIP_AUDIO)
err = ac97_reset_wait(ac97, HZ/2, 1);
else {
err = ac97_reset_wait(ac97, HZ/2, 0);
if (err < 0)
err = ac97_reset_wait(ac97, HZ/2, 1);
}
if (err < 0) {
snd_printk(KERN_WARNING "AC'97 %d does not respond - RESET\n", ac97->num);
/* proceed anyway - it's often non-critical */
}
}
__access_ok:
ac97->id = snd_ac97_read(ac97, AC97_VENDOR_ID1) << 16;
ac97->id |= snd_ac97_read(ac97, AC97_VENDOR_ID2);
if (! (ac97->scaps & AC97_SCAP_DETECT_BY_VENDOR) &&
(ac97->id == 0x00000000 || ac97->id == 0xffffffff)) {
snd_printk(KERN_ERR "AC'97 %d access is not valid [0x%x], removing mixer.\n", ac97->num, ac97->id);
snd_ac97_free(ac97);
return -EIO;
}
pid = look_for_codec_id(snd_ac97_codec_ids, ac97->id);
if (pid)
ac97->flags |= pid->flags;
/* test for AC'97 */
if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO) && !(ac97->scaps & AC97_SCAP_AUDIO)) {
/* test if we can write to the record gain volume register */
snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x8a06);
if (((err = snd_ac97_read(ac97, AC97_REC_GAIN)) & 0x7fff) == 0x0a06)
ac97->scaps |= AC97_SCAP_AUDIO;
}
if (ac97->scaps & AC97_SCAP_AUDIO) {
ac97->caps = snd_ac97_read(ac97, AC97_RESET);
ac97->ext_id = snd_ac97_read(ac97, AC97_EXTENDED_ID);
if (ac97->ext_id == 0xffff) /* invalid combination */
ac97->ext_id = 0;
}
/* test for MC'97 */
if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM) && !(ac97->scaps & AC97_SCAP_MODEM)) {
ac97->ext_mid = snd_ac97_read(ac97, AC97_EXTENDED_MID);
if (ac97->ext_mid == 0xffff) /* invalid combination */
ac97->ext_mid = 0;
if (ac97->ext_mid & 1)
ac97->scaps |= AC97_SCAP_MODEM;
}
if (!ac97_is_audio(ac97) && !ac97_is_modem(ac97)) {
if (!(ac97->scaps & (AC97_SCAP_SKIP_AUDIO|AC97_SCAP_SKIP_MODEM)))
snd_printk(KERN_ERR "AC'97 %d access error (not audio or modem codec)\n", ac97->num);
snd_ac97_free(ac97);
return -EACCES;
}
if (bus->ops->reset) // FIXME: always skipping?
goto __ready_ok;
/* FIXME: add powerdown control */
if (ac97_is_audio(ac97)) {
/* nothing should be in powerdown mode */
snd_ac97_write_cache(ac97, AC97_POWERDOWN, 0);
if (! (ac97->flags & AC97_DEFAULT_POWER_OFF)) {
snd_ac97_write_cache(ac97, AC97_RESET, 0); /* reset to defaults */
udelay(100);
snd_ac97_write_cache(ac97, AC97_POWERDOWN, 0);
}
/* nothing should be in powerdown mode */
snd_ac97_write_cache(ac97, AC97_GENERAL_PURPOSE, 0);
end_time = jiffies + (HZ / 10);
do {
if ((snd_ac97_read(ac97, AC97_POWERDOWN) & 0x0f) == 0x0f)
goto __ready_ok;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_WARNING "AC'97 %d analog subsections not ready\n", ac97->num);
}
/* FIXME: add powerdown control */
if (ac97_is_modem(ac97)) {
unsigned char tmp;
/* nothing should be in powerdown mode */
/* note: it's important to set the rate at first */
tmp = AC97_MEA_GPIO;
if (ac97->ext_mid & AC97_MEI_LINE1) {
snd_ac97_write_cache(ac97, AC97_LINE1_RATE, 8000);
tmp |= AC97_MEA_ADC1 | AC97_MEA_DAC1;
}
if (ac97->ext_mid & AC97_MEI_LINE2) {
snd_ac97_write_cache(ac97, AC97_LINE2_RATE, 8000);
tmp |= AC97_MEA_ADC2 | AC97_MEA_DAC2;
}
if (ac97->ext_mid & AC97_MEI_HANDSET) {
snd_ac97_write_cache(ac97, AC97_HANDSET_RATE, 8000);
tmp |= AC97_MEA_HADC | AC97_MEA_HDAC;
}
snd_ac97_write_cache(ac97, AC97_EXTENDED_MSTATUS, 0);
udelay(100);
/* nothing should be in powerdown mode */
snd_ac97_write_cache(ac97, AC97_EXTENDED_MSTATUS, 0);
end_time = jiffies + (HZ / 10);
do {
if ((snd_ac97_read(ac97, AC97_EXTENDED_MSTATUS) & tmp) == tmp)
goto __ready_ok;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
snd_printk(KERN_WARNING "MC'97 %d converters and GPIO not ready (0x%x)\n", ac97->num, snd_ac97_read(ac97, AC97_EXTENDED_MSTATUS));
}
__ready_ok:
if (ac97_is_audio(ac97))
ac97->addr = (ac97->ext_id & AC97_EI_ADDR_MASK) >> AC97_EI_ADDR_SHIFT;
else
ac97->addr = (ac97->ext_mid & AC97_MEI_ADDR_MASK) >> AC97_MEI_ADDR_SHIFT;
if (ac97->ext_id & 0x01c9) { /* L/R, MIC, SDAC, LDAC VRA support */
reg = snd_ac97_read(ac97, AC97_EXTENDED_STATUS);
reg |= ac97->ext_id & 0x01c0; /* LDAC/SDAC/CDAC */
if (! bus->no_vra)
reg |= ac97->ext_id & 0x0009; /* VRA/VRM */
snd_ac97_write_cache(ac97, AC97_EXTENDED_STATUS, reg);
}
if ((ac97->ext_id & AC97_EI_DRA) && bus->dra) {
/* Intel controllers require double rate data to be put in
* slots 7+8, so let's hope the codec supports it. */
snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, AC97_GP_DRSS_MASK, AC97_GP_DRSS_78);
if ((snd_ac97_read(ac97, AC97_GENERAL_PURPOSE) & AC97_GP_DRSS_MASK) == AC97_GP_DRSS_78)
ac97->flags |= AC97_DOUBLE_RATE;
/* restore to slots 10/11 to avoid the confliction with surrounds */
snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, AC97_GP_DRSS_MASK, 0);
}
if (ac97->ext_id & AC97_EI_VRA) { /* VRA support */
snd_ac97_determine_rates(ac97, AC97_PCM_FRONT_DAC_RATE, 0, &ac97->rates[AC97_RATES_FRONT_DAC]);
snd_ac97_determine_rates(ac97, AC97_PCM_LR_ADC_RATE, 0, &ac97->rates[AC97_RATES_ADC]);
} else {
ac97->rates[AC97_RATES_FRONT_DAC] = SNDRV_PCM_RATE_48000;
if (ac97->flags & AC97_DOUBLE_RATE)
ac97->rates[AC97_RATES_FRONT_DAC] |= SNDRV_PCM_RATE_96000;
ac97->rates[AC97_RATES_ADC] = SNDRV_PCM_RATE_48000;
}
if (ac97->ext_id & AC97_EI_SPDIF) {
/* codec specific code (patch) should override these values */
ac97->rates[AC97_RATES_SPDIF] = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_32000;
}
if (ac97->ext_id & AC97_EI_VRM) { /* MIC VRA support */
snd_ac97_determine_rates(ac97, AC97_PCM_MIC_ADC_RATE, 0, &ac97->rates[AC97_RATES_MIC_ADC]);
} else {
ac97->rates[AC97_RATES_MIC_ADC] = SNDRV_PCM_RATE_48000;
}
if (ac97->ext_id & AC97_EI_SDAC) { /* SDAC support */
snd_ac97_determine_rates(ac97, AC97_PCM_SURR_DAC_RATE, AC97_PCM_FRONT_DAC_RATE, &ac97->rates[AC97_RATES_SURR_DAC]);
ac97->scaps |= AC97_SCAP_SURROUND_DAC;
}
if (ac97->ext_id & AC97_EI_LDAC) { /* LDAC support */
snd_ac97_determine_rates(ac97, AC97_PCM_LFE_DAC_RATE, AC97_PCM_FRONT_DAC_RATE, &ac97->rates[AC97_RATES_LFE_DAC]);
ac97->scaps |= AC97_SCAP_CENTER_LFE_DAC;
}
/* additional initializations */
if (bus->ops->init)
bus->ops->init(ac97);
snd_ac97_get_name(ac97, ac97->id, name, !ac97_is_audio(ac97));
snd_ac97_get_name(NULL, ac97->id, name, !ac97_is_audio(ac97)); // ac97->id might be changed in the special setup code
if (! ac97->build_ops)
ac97->build_ops = &null_build_ops;
if (ac97_is_audio(ac97)) {
char comp[16];
if (card->mixername[0] == '\0') {
strcpy(card->mixername, name);
} else {
if (strlen(card->mixername) + 1 + strlen(name) + 1 <= sizeof(card->mixername)) {
strcat(card->mixername, ",");
strcat(card->mixername, name);
}
}
sprintf(comp, "AC97a:%08x", ac97->id);
if ((err = snd_component_add(card, comp)) < 0) {
snd_ac97_free(ac97);
return err;
}
if (snd_ac97_mixer_build(ac97) < 0) {
snd_ac97_free(ac97);
return -ENOMEM;
}
}
if (ac97_is_modem(ac97)) {
char comp[16];
if (card->mixername[0] == '\0') {
strcpy(card->mixername, name);
} else {
if (strlen(card->mixername) + 1 + strlen(name) + 1 <= sizeof(card->mixername)) {
strcat(card->mixername, ",");
strcat(card->mixername, name);
}
}
sprintf(comp, "AC97m:%08x", ac97->id);
if ((err = snd_component_add(card, comp)) < 0) {
snd_ac97_free(ac97);
return err;
}
if (snd_ac97_modem_build(card, ac97) < 0) {
snd_ac97_free(ac97);
return -ENOMEM;
}
}
if (ac97_is_audio(ac97))
update_power_regs(ac97);
snd_ac97_proc_init(ac97);
if ((err = snd_device_new(card, SNDRV_DEV_CODEC, ac97, &ops)) < 0) {
snd_ac97_free(ac97);
return err;
}
*rac97 = ac97;
return 0;
}
EXPORT_SYMBOL(snd_ac97_mixer);
/*
* Power down the chip.
*
* MASTER and HEADPHONE registers are muted but the register cache values
* are not changed, so that the values can be restored in snd_ac97_resume().
*/
static void snd_ac97_powerdown(struct snd_ac97 *ac97)
{
unsigned short power;
if (ac97_is_audio(ac97)) {
/* some codecs have stereo mute bits */
snd_ac97_write(ac97, AC97_MASTER, 0x9f9f);
snd_ac97_write(ac97, AC97_HEADPHONE, 0x9f9f);
}
/* surround, CLFE, mic powerdown */
power = ac97->regs[AC97_EXTENDED_STATUS];
if (ac97->scaps & AC97_SCAP_SURROUND_DAC)
power |= AC97_EA_PRJ;
if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC)
power |= AC97_EA_PRI | AC97_EA_PRK;
power |= AC97_EA_PRL;
snd_ac97_write(ac97, AC97_EXTENDED_STATUS, power);
/* powerdown external amplifier */
if (ac97->scaps & AC97_SCAP_INV_EAPD)
power = ac97->regs[AC97_POWERDOWN] & ~AC97_PD_EAPD;
else if (! (ac97->scaps & AC97_SCAP_EAPD_LED))
power = ac97->regs[AC97_POWERDOWN] | AC97_PD_EAPD;
power |= AC97_PD_PR6; /* Headphone amplifier powerdown */
power |= AC97_PD_PR0 | AC97_PD_PR1; /* ADC & DAC powerdown */
snd_ac97_write(ac97, AC97_POWERDOWN, power);
udelay(100);
power |= AC97_PD_PR2 | AC97_PD_PR3; /* Analog Mixer powerdown */
snd_ac97_write(ac97, AC97_POWERDOWN, power);
#ifdef CONFIG_SND_AC97_POWER_SAVE
if (power_save) {
udelay(100);
/* AC-link powerdown, internal Clk disable */
/* FIXME: this may cause click noises on some boards */
power |= AC97_PD_PR4 | AC97_PD_PR5;
snd_ac97_write(ac97, AC97_POWERDOWN, power);
}
#endif
}
struct ac97_power_reg {
unsigned short reg;
unsigned short power_reg;
unsigned short mask;
};
enum { PWIDX_ADC, PWIDX_FRONT, PWIDX_CLFE, PWIDX_SURR, PWIDX_MIC, PWIDX_SIZE };
static struct ac97_power_reg power_regs[PWIDX_SIZE] = {
[PWIDX_ADC] = { AC97_PCM_LR_ADC_RATE, AC97_POWERDOWN, AC97_PD_PR0},
[PWIDX_FRONT] = { AC97_PCM_FRONT_DAC_RATE, AC97_POWERDOWN, AC97_PD_PR1},
[PWIDX_CLFE] = { AC97_PCM_LFE_DAC_RATE, AC97_EXTENDED_STATUS,
AC97_EA_PRI | AC97_EA_PRK},
[PWIDX_SURR] = { AC97_PCM_SURR_DAC_RATE, AC97_EXTENDED_STATUS,
AC97_EA_PRJ},
[PWIDX_MIC] = { AC97_PCM_MIC_ADC_RATE, AC97_EXTENDED_STATUS,
AC97_EA_PRL},
};
#ifdef CONFIG_SND_AC97_POWER_SAVE
/**
* snd_ac97_update_power - update the powerdown register
* @ac97: the codec instance
* @reg: the rate register, e.g. AC97_PCM_FRONT_DAC_RATE
* @powerup: non-zero when power up the part
*
* Update the AC97 powerdown register bits of the given part.
*/
int snd_ac97_update_power(struct snd_ac97 *ac97, int reg, int powerup)
{
int i;
if (! ac97)
return 0;
if (reg) {
/* SPDIF requires DAC power, too */
if (reg == AC97_SPDIF)
reg = AC97_PCM_FRONT_DAC_RATE;
for (i = 0; i < PWIDX_SIZE; i++) {
if (power_regs[i].reg == reg) {
if (powerup)
ac97->power_up |= (1 << i);
else
ac97->power_up &= ~(1 << i);
break;
}
}
}
if (power_save && !powerup && ac97->power_workq)
/* adjust power-down bits after two seconds delay
* (for avoiding loud click noises for many (OSS) apps
* that open/close frequently)
*/
queue_delayed_work(ac97->power_workq, &ac97->power_work, HZ*2);
else
update_power_regs(ac97);
return 0;
}
EXPORT_SYMBOL(snd_ac97_update_power);
#endif /* CONFIG_SND_AC97_POWER_SAVE */
static void update_power_regs(struct snd_ac97 *ac97)
{
unsigned int power_up, bits;
int i;
#ifdef CONFIG_SND_AC97_POWER_SAVE
if (power_save)
power_up = ac97->power_up;
else {
#endif
power_up = (1 << PWIDX_FRONT) | (1 << PWIDX_ADC);
power_up |= (1 << PWIDX_MIC);
if (ac97->scaps & AC97_SCAP_SURROUND_DAC)
power_up |= (1 << PWIDX_SURR);
if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC)
power_up |= (1 << PWIDX_CLFE);
#ifdef CONFIG_SND_AC97_POWER_SAVE
}
#endif
if (power_up) {
if (ac97->regs[AC97_POWERDOWN] & AC97_PD_PR2) {
/* needs power-up analog mix and vref */
snd_ac97_update_bits(ac97, AC97_POWERDOWN,
AC97_PD_PR3, 0);
msleep(1);
snd_ac97_update_bits(ac97, AC97_POWERDOWN,
AC97_PD_PR2, 0);
}
}
for (i = 0; i < PWIDX_SIZE; i++) {
if (power_up & (1 << i))
bits = 0;
else
bits = power_regs[i].mask;
snd_ac97_update_bits(ac97, power_regs[i].power_reg,
power_regs[i].mask, bits);
}
if (! power_up) {
if (! (ac97->regs[AC97_POWERDOWN] & AC97_PD_PR2)) {
/* power down analog mix and vref */
snd_ac97_update_bits(ac97, AC97_POWERDOWN,
AC97_PD_PR2, AC97_PD_PR2);
snd_ac97_update_bits(ac97, AC97_POWERDOWN,
AC97_PD_PR3, AC97_PD_PR3);
}
}
}
#ifdef CONFIG_PM
/**
* snd_ac97_suspend - General suspend function for AC97 codec
* @ac97: the ac97 instance
*
* Suspends the codec, power down the chip.
*/
void snd_ac97_suspend(struct snd_ac97 *ac97)
{
if (! ac97)
return;
if (ac97->build_ops->suspend)
ac97->build_ops->suspend(ac97);
snd_ac97_powerdown(ac97);
}
EXPORT_SYMBOL(snd_ac97_suspend);
/*
* restore ac97 status
*/
void snd_ac97_restore_status(struct snd_ac97 *ac97)
{
int i;
for (i = 2; i < 0x7c ; i += 2) {
if (i == AC97_POWERDOWN || i == AC97_EXTENDED_ID)
continue;
/* restore only accessible registers
* some chip (e.g. nm256) may hang up when unsupported registers
* are accessed..!
*/
if (test_bit(i, ac97->reg_accessed)) {
snd_ac97_write(ac97, i, ac97->regs[i]);
snd_ac97_read(ac97, i);
}
}
}
/*
* restore IEC958 status
*/
void snd_ac97_restore_iec958(struct snd_ac97 *ac97)
{
if (ac97->ext_id & AC97_EI_SPDIF) {
if (ac97->regs[AC97_EXTENDED_STATUS] & AC97_EA_SPDIF) {
/* reset spdif status */
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0);
snd_ac97_write(ac97, AC97_EXTENDED_STATUS, ac97->regs[AC97_EXTENDED_STATUS]);
if (ac97->flags & AC97_CS_SPDIF)
snd_ac97_write(ac97, AC97_CSR_SPDIF, ac97->regs[AC97_CSR_SPDIF]);
else
snd_ac97_write(ac97, AC97_SPDIF, ac97->regs[AC97_SPDIF]);
snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
}
}
}
/**
* snd_ac97_resume - General resume function for AC97 codec
* @ac97: the ac97 instance
*
* Do the standard resume procedure, power up and restoring the
* old register values.
*/
void snd_ac97_resume(struct snd_ac97 *ac97)
{
unsigned long end_time;
if (! ac97)
return;
if (ac97->bus->ops->reset) {
ac97->bus->ops->reset(ac97);
goto __reset_ready;
}
snd_ac97_write(ac97, AC97_POWERDOWN, 0);
if (! (ac97->flags & AC97_DEFAULT_POWER_OFF)) {
snd_ac97_write(ac97, AC97_RESET, 0);
udelay(100);
snd_ac97_write(ac97, AC97_POWERDOWN, 0);
}
snd_ac97_write(ac97, AC97_GENERAL_PURPOSE, 0);
snd_ac97_write(ac97, AC97_POWERDOWN, ac97->regs[AC97_POWERDOWN]);
if (ac97_is_audio(ac97)) {
ac97->bus->ops->write(ac97, AC97_MASTER, 0x8101);
end_time = jiffies + msecs_to_jiffies(100);
do {
if (snd_ac97_read(ac97, AC97_MASTER) == 0x8101)
break;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
/* FIXME: extra delay */
ac97->bus->ops->write(ac97, AC97_MASTER, 0x8000);
if (snd_ac97_read(ac97, AC97_MASTER) != 0x8000)
msleep(250);
} else {
end_time = jiffies + msecs_to_jiffies(100);
do {
unsigned short val = snd_ac97_read(ac97, AC97_EXTENDED_MID);
if (val != 0xffff && (val & 1) != 0)
break;
schedule_timeout_uninterruptible(1);
} while (time_after_eq(end_time, jiffies));
}
__reset_ready:
if (ac97->bus->ops->init)
ac97->bus->ops->init(ac97);
if (ac97->build_ops->resume)
ac97->build_ops->resume(ac97);
else {
snd_ac97_restore_status(ac97);
snd_ac97_restore_iec958(ac97);
}
}
EXPORT_SYMBOL(snd_ac97_resume);
#endif
/*
* Hardware tuning
*/
static void set_ctl_name(char *dst, const char *src, const char *suffix)
{
if (suffix)
sprintf(dst, "%s %s", src, suffix);
else
strcpy(dst, src);
}
/* remove the control with the given name and optional suffix */
int snd_ac97_remove_ctl(struct snd_ac97 *ac97, const char *name, const char *suffix)
{
struct snd_ctl_elem_id id;
memset(&id, 0, sizeof(id));
set_ctl_name(id.name, name, suffix);
id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
return snd_ctl_remove_id(ac97->bus->card, &id);
}
static struct snd_kcontrol *ctl_find(struct snd_ac97 *ac97, const char *name, const char *suffix)
{
struct snd_ctl_elem_id sid;
memset(&sid, 0, sizeof(sid));
set_ctl_name(sid.name, name, suffix);
sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
return snd_ctl_find_id(ac97->bus->card, &sid);
}
/* rename the control with the given name and optional suffix */
int snd_ac97_rename_ctl(struct snd_ac97 *ac97, const char *src, const char *dst, const char *suffix)
{
struct snd_kcontrol *kctl = ctl_find(ac97, src, suffix);
if (kctl) {
set_ctl_name(kctl->id.name, dst, suffix);
return 0;
}
return -ENOENT;
}
/* rename both Volume and Switch controls - don't check the return value */
void snd_ac97_rename_vol_ctl(struct snd_ac97 *ac97, const char *src, const char *dst)
{
snd_ac97_rename_ctl(ac97, src, dst, "Switch");
snd_ac97_rename_ctl(ac97, src, dst, "Volume");
}
/* swap controls */
int snd_ac97_swap_ctl(struct snd_ac97 *ac97, const char *s1, const char *s2, const char *suffix)
{
struct snd_kcontrol *kctl1, *kctl2;
kctl1 = ctl_find(ac97, s1, suffix);
kctl2 = ctl_find(ac97, s2, suffix);
if (kctl1 && kctl2) {
set_ctl_name(kctl1->id.name, s2, suffix);
set_ctl_name(kctl2->id.name, s1, suffix);
return 0;
}
return -ENOENT;
}
#if 1
/* bind hp and master controls instead of using only hp control */
static int bind_hp_volsw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
int err = snd_ac97_put_volsw(kcontrol, ucontrol);
if (err > 0) {
unsigned long priv_saved = kcontrol->private_value;
kcontrol->private_value = (kcontrol->private_value & ~0xff) | AC97_HEADPHONE;
snd_ac97_put_volsw(kcontrol, ucontrol);
kcontrol->private_value = priv_saved;
}
return err;
}
/* ac97 tune: bind Master and Headphone controls */
static int tune_hp_only(struct snd_ac97 *ac97)
{
struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
struct snd_kcontrol *mvol = ctl_find(ac97, "Master Playback Volume", NULL);
if (! msw || ! mvol)
return -ENOENT;
msw->put = bind_hp_volsw_put;
mvol->put = bind_hp_volsw_put;
snd_ac97_remove_ctl(ac97, "Headphone Playback", "Switch");
snd_ac97_remove_ctl(ac97, "Headphone Playback", "Volume");
return 0;
}
#else
/* ac97 tune: use Headphone control as master */
static int tune_hp_only(struct snd_ac97 *ac97)
{
if (ctl_find(ac97, "Headphone Playback Switch", NULL) == NULL)
return -ENOENT;
snd_ac97_remove_ctl(ac97, "Master Playback", "Switch");
snd_ac97_remove_ctl(ac97, "Master Playback", "Volume");
snd_ac97_rename_vol_ctl(ac97, "Headphone Playback", "Master Playback");
return 0;
}
#endif
/* ac97 tune: swap Headphone and Master controls */
static int tune_swap_hp(struct snd_ac97 *ac97)
{
if (ctl_find(ac97, "Headphone Playback Switch", NULL) == NULL)
return -ENOENT;
snd_ac97_rename_vol_ctl(ac97, "Master Playback", "Line-Out Playback");
snd_ac97_rename_vol_ctl(ac97, "Headphone Playback", "Master Playback");
return 0;
}
/* ac97 tune: swap Surround and Master controls */
static int tune_swap_surround(struct snd_ac97 *ac97)
{
if (snd_ac97_swap_ctl(ac97, "Master Playback", "Surround Playback", "Switch") ||
snd_ac97_swap_ctl(ac97, "Master Playback", "Surround Playback", "Volume"))
return -ENOENT;
return 0;
}
/* ac97 tune: set up mic sharing for AD codecs */
static int tune_ad_sharing(struct snd_ac97 *ac97)
{
unsigned short scfg;
if ((ac97->id & 0xffffff00) != 0x41445300) {
snd_printk(KERN_ERR "ac97_quirk AD_SHARING is only for AD codecs\n");
return -EINVAL;
}
/* Turn on OMS bit to route microphone to back panel */
scfg = snd_ac97_read(ac97, AC97_AD_SERIAL_CFG);
snd_ac97_write_cache(ac97, AC97_AD_SERIAL_CFG, scfg | 0x0200);
return 0;
}
static const struct snd_kcontrol_new snd_ac97_alc_jack_detect =
AC97_SINGLE("Jack Detect", AC97_ALC650_CLOCK, 5, 1, 0);
/* ac97 tune: set up ALC jack-select */
static int tune_alc_jack(struct snd_ac97 *ac97)
{
if ((ac97->id & 0xffffff00) != 0x414c4700) {
snd_printk(KERN_ERR "ac97_quirk ALC_JACK is only for Realtek codecs\n");
return -EINVAL;
}
snd_ac97_update_bits(ac97, 0x7a, 0x20, 0x20); /* select jack detect function */
snd_ac97_update_bits(ac97, 0x7a, 0x01, 0x01); /* Line-out auto mute */
if (ac97->id == AC97_ID_ALC658D)
snd_ac97_update_bits(ac97, 0x74, 0x0800, 0x0800);
return snd_ctl_add(ac97->bus->card, snd_ac97_cnew(&snd_ac97_alc_jack_detect, ac97));
}
/* ac97 tune: inversed EAPD bit */
static int tune_inv_eapd(struct snd_ac97 *ac97)
{
struct snd_kcontrol *kctl = ctl_find(ac97, "External Amplifier", NULL);
if (! kctl)
return -ENOENT;
set_inv_eapd(ac97, kctl);
return 0;
}
static int master_mute_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
int err = snd_ac97_put_volsw(kcontrol, ucontrol);
if (err > 0) {
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
unsigned short mask;
if (shift != rshift)
mask = 0x8080;
else
mask = 0x8000;
snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000,
(ac97->regs[AC97_MASTER] & mask) == mask ?
0x8000 : 0);
}
return err;
}
/* ac97 tune: EAPD controls mute LED bound with the master mute */
static int tune_mute_led(struct snd_ac97 *ac97)
{
struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
if (! msw)
return -ENOENT;
msw->put = master_mute_sw_put;
snd_ac97_remove_ctl(ac97, "External Amplifier", NULL);
snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000, 0x8000); /* mute LED on */
ac97->scaps |= AC97_SCAP_EAPD_LED;
return 0;
}
static int hp_master_mute_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int err = bind_hp_volsw_put(kcontrol, ucontrol);
if (err > 0) {
struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
int shift = (kcontrol->private_value >> 8) & 0x0f;
int rshift = (kcontrol->private_value >> 12) & 0x0f;
unsigned short mask;
if (shift != rshift)
mask = 0x8080;
else
mask = 0x8000;
snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000,
(ac97->regs[AC97_MASTER] & mask) == mask ?
0x8000 : 0);
}
return err;
}
static int tune_hp_mute_led(struct snd_ac97 *ac97)
{
struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
struct snd_kcontrol *mvol = ctl_find(ac97, "Master Playback Volume", NULL);
if (! msw || ! mvol)
return -ENOENT;
msw->put = hp_master_mute_sw_put;
mvol->put = bind_hp_volsw_put;
snd_ac97_remove_ctl(ac97, "External Amplifier", NULL);
snd_ac97_remove_ctl(ac97, "Headphone Playback", "Switch");
snd_ac97_remove_ctl(ac97, "Headphone Playback", "Volume");
snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000, 0x8000); /* mute LED on */
return 0;
}
struct quirk_table {
const char *name;
int (*func)(struct snd_ac97 *);
};
static struct quirk_table applicable_quirks[] = {
{ "none", NULL },
{ "hp_only", tune_hp_only },
{ "swap_hp", tune_swap_hp },
{ "swap_surround", tune_swap_surround },
{ "ad_sharing", tune_ad_sharing },
{ "alc_jack", tune_alc_jack },
{ "inv_eapd", tune_inv_eapd },
{ "mute_led", tune_mute_led },
{ "hp_mute_led", tune_hp_mute_led },
};
/* apply the quirk with the given type */
static int apply_quirk(struct snd_ac97 *ac97, int type)
{
if (type <= 0)
return 0;
else if (type >= ARRAY_SIZE(applicable_quirks))
return -EINVAL;
if (applicable_quirks[type].func)
return applicable_quirks[type].func(ac97);
return 0;
}
/* apply the quirk with the given name */
static int apply_quirk_str(struct snd_ac97 *ac97, const char *typestr)
{
int i;
struct quirk_table *q;
for (i = 0; i < ARRAY_SIZE(applicable_quirks); i++) {
q = &applicable_quirks[i];
if (q->name && ! strcmp(typestr, q->name))
return apply_quirk(ac97, i);
}
/* for compatibility, accept the numbers, too */
if (*typestr >= '0' && *typestr <= '9')
return apply_quirk(ac97, (int)simple_strtoul(typestr, NULL, 10));
return -EINVAL;
}
/**
* snd_ac97_tune_hardware - tune up the hardware
* @ac97: the ac97 instance
* @quirk: quirk list
* @override: explicit quirk value (overrides the list if non-NULL)
*
* Do some workaround for each pci device, such as renaming of the
* headphone (true line-out) control as "Master".
* The quirk-list must be terminated with a zero-filled entry.
*
* Returns zero if successful, or a negative error code on failure.
*/
int snd_ac97_tune_hardware(struct snd_ac97 *ac97, struct ac97_quirk *quirk, const char *override)
{
int result;
/* quirk overriden? */
if (override && strcmp(override, "-1") && strcmp(override, "default")) {
result = apply_quirk_str(ac97, override);
if (result < 0)
snd_printk(KERN_ERR "applying quirk type %s failed (%d)\n", override, result);
return result;
}
if (! quirk)
return -EINVAL;
for (; quirk->subvendor; quirk++) {
if (quirk->subvendor != ac97->subsystem_vendor)
continue;
if ((! quirk->mask && quirk->subdevice == ac97->subsystem_device) ||
quirk->subdevice == (quirk->mask & ac97->subsystem_device)) {
if (quirk->codec_id && quirk->codec_id != ac97->id)
continue;
snd_printdd("ac97 quirk for %s (%04x:%04x)\n", quirk->name, ac97->subsystem_vendor, ac97->subsystem_device);
result = apply_quirk(ac97, quirk->type);
if (result < 0)
snd_printk(KERN_ERR "applying quirk type %d for %s failed (%d)\n", quirk->type, quirk->name, result);
return result;
}
}
return 0;
}
EXPORT_SYMBOL(snd_ac97_tune_hardware);
/*
* INIT part
*/
static int __init alsa_ac97_init(void)
{
return 0;
}
static void __exit alsa_ac97_exit(void)
{
}
module_init(alsa_ac97_init)
module_exit(alsa_ac97_exit)