android_kernel_xiaomi_sm8350/arch/x86/mm/init_64.c
Jeremy Fitzhardinge 27ec161f93 x86: kill mk_pte_huge
It only has a single use, which can be trivially replaced.

Signed-off-by: Jeremy Fitzhardinge <Jeremy.Fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:31:09 +01:00

757 lines
18 KiB
C

/*
* linux/arch/x86_64/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/pfn.h>
#include <linux/poison.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <linux/nmi.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/sections.h>
#include <asm/kdebug.h>
#include <asm/numa.h>
#ifndef Dprintk
#define Dprintk(x...)
#endif
const struct dma_mapping_ops* dma_ops;
EXPORT_SYMBOL(dma_ops);
static unsigned long dma_reserve __initdata;
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
/*
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
* physical space so we can cache the place of the first one and move
* around without checking the pgd every time.
*/
void show_mem(void)
{
long i, total = 0, reserved = 0;
long shared = 0, cached = 0;
pg_data_t *pgdat;
struct page *page;
printk(KERN_INFO "Mem-info:\n");
show_free_areas();
printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_online_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; ++i) {
/* this loop can take a while with 256 GB and 4k pages
so update the NMI watchdog */
if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) {
touch_nmi_watchdog();
}
if (!pfn_valid(pgdat->node_start_pfn + i))
continue;
page = pfn_to_page(pgdat->node_start_pfn + i);
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
}
}
printk(KERN_INFO "%lu pages of RAM\n", total);
printk(KERN_INFO "%lu reserved pages\n",reserved);
printk(KERN_INFO "%lu pages shared\n",shared);
printk(KERN_INFO "%lu pages swap cached\n",cached);
}
int after_bootmem;
static __init void *spp_getpage(void)
{
void *ptr;
if (after_bootmem)
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
else
ptr = alloc_bootmem_pages(PAGE_SIZE);
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
Dprintk("spp_getpage %p\n", ptr);
return ptr;
}
static __init void set_pte_phys(unsigned long vaddr,
unsigned long phys, pgprot_t prot)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte, new_pte;
Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
pgd = pgd_offset_k(vaddr);
if (pgd_none(*pgd)) {
printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
return;
}
pud = pud_offset(pgd, vaddr);
if (pud_none(*pud)) {
pmd = (pmd_t *) spp_getpage();
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
if (pmd != pmd_offset(pud, 0)) {
printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
return;
}
}
pmd = pmd_offset(pud, vaddr);
if (pmd_none(*pmd)) {
pte = (pte_t *) spp_getpage();
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
if (pte != pte_offset_kernel(pmd, 0)) {
printk("PAGETABLE BUG #02!\n");
return;
}
}
new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
pte = pte_offset_kernel(pmd, vaddr);
if (!pte_none(*pte) &&
pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
pte_ERROR(*pte);
set_pte(pte, new_pte);
/*
* It's enough to flush this one mapping.
* (PGE mappings get flushed as well)
*/
__flush_tlb_one(vaddr);
}
/* NOTE: this is meant to be run only at boot */
void __init
__set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
{
unsigned long address = __fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
printk("Invalid __set_fixmap\n");
return;
}
set_pte_phys(address, phys, prot);
}
unsigned long __meminitdata table_start, table_end;
static __meminit void *alloc_low_page(unsigned long *phys)
{
unsigned long pfn = table_end++;
void *adr;
if (after_bootmem) {
adr = (void *)get_zeroed_page(GFP_ATOMIC);
*phys = __pa(adr);
return adr;
}
if (pfn >= end_pfn)
panic("alloc_low_page: ran out of memory");
adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
memset(adr, 0, PAGE_SIZE);
*phys = pfn * PAGE_SIZE;
return adr;
}
static __meminit void unmap_low_page(void *adr)
{
if (after_bootmem)
return;
early_iounmap(adr, PAGE_SIZE);
}
/* Must run before zap_low_mappings */
__meminit void *early_ioremap(unsigned long addr, unsigned long size)
{
unsigned long vaddr;
pmd_t *pmd, *last_pmd;
int i, pmds;
pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
vaddr = __START_KERNEL_map;
pmd = level2_kernel_pgt;
last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
for (i = 0; i < pmds; i++) {
if (pmd_present(pmd[i]))
goto next;
}
vaddr += addr & ~PMD_MASK;
addr &= PMD_MASK;
for (i = 0; i < pmds; i++, addr += PMD_SIZE)
set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
__flush_tlb();
return (void *)vaddr;
next:
;
}
printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
return NULL;
}
/* To avoid virtual aliases later */
__meminit void early_iounmap(void *addr, unsigned long size)
{
unsigned long vaddr;
pmd_t *pmd;
int i, pmds;
vaddr = (unsigned long)addr;
pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
pmd = level2_kernel_pgt + pmd_index(vaddr);
for (i = 0; i < pmds; i++)
pmd_clear(pmd + i);
__flush_tlb();
}
static void __meminit
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
{
int i = pmd_index(address);
for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
unsigned long entry;
pmd_t *pmd = pmd_page + pmd_index(address);
if (address >= end) {
if (!after_bootmem)
for (; i < PTRS_PER_PMD; i++, pmd++)
set_pmd(pmd, __pmd(0));
break;
}
if (pmd_val(*pmd))
continue;
entry = __PAGE_KERNEL_LARGE|_PAGE_GLOBAL|address;
entry &= __supported_pte_mask;
set_pmd(pmd, __pmd(entry));
}
}
static void __meminit
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
{
pmd_t *pmd = pmd_offset(pud,0);
spin_lock(&init_mm.page_table_lock);
phys_pmd_init(pmd, address, end);
spin_unlock(&init_mm.page_table_lock);
__flush_tlb_all();
}
static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
{
int i = pud_index(addr);
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) {
unsigned long pmd_phys;
pud_t *pud = pud_page + pud_index(addr);
pmd_t *pmd;
if (addr >= end)
break;
if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) {
set_pud(pud, __pud(0));
continue;
}
if (pud_val(*pud)) {
phys_pmd_update(pud, addr, end);
continue;
}
pmd = alloc_low_page(&pmd_phys);
spin_lock(&init_mm.page_table_lock);
set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
phys_pmd_init(pmd, addr, end);
spin_unlock(&init_mm.page_table_lock);
unmap_low_page(pmd);
}
__flush_tlb();
}
static void __init find_early_table_space(unsigned long end)
{
unsigned long puds, pmds, tables, start;
puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
/* RED-PEN putting page tables only on node 0 could
cause a hotspot and fill up ZONE_DMA. The page tables
need roughly 0.5KB per GB. */
start = 0x8000;
table_start = find_e820_area(start, end, tables);
if (table_start == -1UL)
panic("Cannot find space for the kernel page tables");
table_start >>= PAGE_SHIFT;
table_end = table_start;
early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
end, table_start << PAGE_SHIFT,
(table_start << PAGE_SHIFT) + tables);
}
/* Setup the direct mapping of the physical memory at PAGE_OFFSET.
This runs before bootmem is initialized and gets pages directly from the
physical memory. To access them they are temporarily mapped. */
void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
{
unsigned long next;
Dprintk("init_memory_mapping\n");
/*
* Find space for the kernel direct mapping tables.
* Later we should allocate these tables in the local node of the memory
* mapped. Unfortunately this is done currently before the nodes are
* discovered.
*/
if (!after_bootmem)
find_early_table_space(end);
start = (unsigned long)__va(start);
end = (unsigned long)__va(end);
for (; start < end; start = next) {
unsigned long pud_phys;
pgd_t *pgd = pgd_offset_k(start);
pud_t *pud;
if (after_bootmem)
pud = pud_offset(pgd, start & PGDIR_MASK);
else
pud = alloc_low_page(&pud_phys);
next = start + PGDIR_SIZE;
if (next > end)
next = end;
phys_pud_init(pud, __pa(start), __pa(next));
if (!after_bootmem)
set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
unmap_low_page(pud);
}
if (!after_bootmem)
mmu_cr4_features = read_cr4();
__flush_tlb_all();
}
#ifndef CONFIG_NUMA
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = end_pfn;
memory_present(0, 0, end_pfn);
sparse_init();
free_area_init_nodes(max_zone_pfns);
}
#endif
/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
from the CPU leading to inconsistent cache lines. address and size
must be aligned to 2MB boundaries.
Does nothing when the mapping doesn't exist. */
void __init clear_kernel_mapping(unsigned long address, unsigned long size)
{
unsigned long end = address + size;
BUG_ON(address & ~LARGE_PAGE_MASK);
BUG_ON(size & ~LARGE_PAGE_MASK);
for (; address < end; address += LARGE_PAGE_SIZE) {
pgd_t *pgd = pgd_offset_k(address);
pud_t *pud;
pmd_t *pmd;
if (pgd_none(*pgd))
continue;
pud = pud_offset(pgd, address);
if (pud_none(*pud))
continue;
pmd = pmd_offset(pud, address);
if (!pmd || pmd_none(*pmd))
continue;
if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
/* Could handle this, but it should not happen currently. */
printk(KERN_ERR
"clear_kernel_mapping: mapping has been split. will leak memory\n");
pmd_ERROR(*pmd);
}
set_pmd(pmd, __pmd(0));
}
__flush_tlb_all();
}
/*
* Memory hotplug specific functions
*/
void online_page(struct page *page)
{
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
totalram_pages++;
num_physpages++;
}
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Memory is added always to NORMAL zone. This means you will never get
* additional DMA/DMA32 memory.
*/
int arch_add_memory(int nid, u64 start, u64 size)
{
struct pglist_data *pgdat = NODE_DATA(nid);
struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
int ret;
init_memory_mapping(start, (start + size -1));
ret = __add_pages(zone, start_pfn, nr_pages);
if (ret)
goto error;
return ret;
error:
printk("%s: Problem encountered in __add_pages!\n", __func__);
return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);
#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
int memory_add_physaddr_to_nid(u64 start)
{
return 0;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
kcore_vsyscall;
void __init mem_init(void)
{
long codesize, reservedpages, datasize, initsize;
pci_iommu_alloc();
/* clear the zero-page */
memset(empty_zero_page, 0, PAGE_SIZE);
reservedpages = 0;
/* this will put all low memory onto the freelists */
#ifdef CONFIG_NUMA
totalram_pages = numa_free_all_bootmem();
#else
totalram_pages = free_all_bootmem();
#endif
reservedpages = end_pfn - totalram_pages -
absent_pages_in_range(0, end_pfn);
after_bootmem = 1;
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
/* Register memory areas for /proc/kcore */
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
VMALLOC_END-VMALLOC_START);
kclist_add(&kcore_kernel, &_stext, _end - _stext);
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
VSYSCALL_END - VSYSCALL_START);
printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
end_pfn << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10);
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
if (begin >= end)
return;
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)(addr & ~(PAGE_SIZE-1)),
POISON_FREE_INITMEM, PAGE_SIZE);
if (addr >= __START_KERNEL_map)
change_page_attr_addr(addr, 1, __pgprot(0));
free_page(addr);
totalram_pages++;
}
if (addr > __START_KERNEL_map)
global_flush_tlb();
}
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_DEBUG_RODATA
void mark_rodata_ro(void)
{
unsigned long start = (unsigned long)_stext, end;
#ifdef CONFIG_HOTPLUG_CPU
/* It must still be possible to apply SMP alternatives. */
if (num_possible_cpus() > 1)
start = (unsigned long)_etext;
#endif
#ifdef CONFIG_KPROBES
start = (unsigned long)__start_rodata;
#endif
end = (unsigned long)__end_rodata;
start = (start + PAGE_SIZE - 1) & PAGE_MASK;
end &= PAGE_MASK;
if (end <= start)
return;
change_page_attr_addr(start, (end - start) >> PAGE_SHIFT, PAGE_KERNEL_RO);
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
(end - start) >> 10);
/*
* change_page_attr_addr() requires a global_flush_tlb() call after it.
* We do this after the printk so that if something went wrong in the
* change, the printk gets out at least to give a better debug hint
* of who is the culprit.
*/
global_flush_tlb();
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
free_init_pages("initrd memory", start, end);
}
#endif
void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
{
#ifdef CONFIG_NUMA
int nid = phys_to_nid(phys);
#endif
unsigned long pfn = phys >> PAGE_SHIFT;
if (pfn >= end_pfn) {
/* This can happen with kdump kernels when accessing firmware
tables. */
if (pfn < end_pfn_map)
return;
printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
phys, len);
return;
}
/* Should check here against the e820 map to avoid double free */
#ifdef CONFIG_NUMA
reserve_bootmem_node(NODE_DATA(nid), phys, len);
#else
reserve_bootmem(phys, len);
#endif
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
dma_reserve += len / PAGE_SIZE;
set_dma_reserve(dma_reserve);
}
}
int kern_addr_valid(unsigned long addr)
{
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (above != 0 && above != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
/* A pseudo VMA to allow ptrace access for the vsyscall page. This only
covers the 64bit vsyscall page now. 32bit has a real VMA now and does
not need special handling anymore. */
static struct vm_area_struct gate_vma = {
.vm_start = VSYSCALL_START,
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT),
.vm_page_prot = PAGE_READONLY_EXEC,
.vm_flags = VM_READ | VM_EXEC
};
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef CONFIG_IA32_EMULATION
if (test_tsk_thread_flag(tsk, TIF_IA32))
return NULL;
#endif
return &gate_vma;
}
int in_gate_area(struct task_struct *task, unsigned long addr)
{
struct vm_area_struct *vma = get_gate_vma(task);
if (!vma)
return 0;
return (addr >= vma->vm_start) && (addr < vma->vm_end);
}
/* Use this when you have no reliable task/vma, typically from interrupt
* context. It is less reliable than using the task's vma and may give
* false positives.
*/
int in_gate_area_no_task(unsigned long addr)
{
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
}
const char *arch_vma_name(struct vm_area_struct *vma)
{
if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
return "[vdso]";
if (vma == &gate_vma)
return "[vsyscall]";
return NULL;
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/
int __meminit vmemmap_populate(struct page *start_page,
unsigned long size, int node)
{
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size);
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
for (; addr < end; addr = next) {
next = pmd_addr_end(addr, end);
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
pte_t entry;
void *p = vmemmap_alloc_block(PMD_SIZE, node);
if (!p)
return -ENOMEM;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL_LARGE);
set_pmd(pmd, __pmd(pte_val(entry)));
printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
addr, addr + PMD_SIZE - 1, p, node);
} else
vmemmap_verify((pte_t *)pmd, node, addr, next);
}
return 0;
}
#endif