android_kernel_xiaomi_sm8350/Documentation/x86/x86_64/mm.txt
Jiri Slaby a4c52791fa x86, 64-bit: update address space documentation
Impact: documentation update

Commit a6523748bd
(paravirt/x86, 64-bit: move __PAGE_OFFSET to leave a space for hypervisor)
changed address space without changing the documentation.

Change it according to the code change -- direct mapping start:
ffff810000000000 => ffff880000000000 which gives 57 TiB, something
between 45 and 46 bits.

Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-11 19:30:28 +01:00

29 lines
1.1 KiB
Plaintext

<previous description obsolete, deleted>
Virtual memory map with 4 level page tables:
0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm
hole caused by [48:63] sign extension
ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole
ffff880000000000 - ffffc0ffffffffff (=57 TB) direct mapping of all phys. memory
ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole
ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space
ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB)
... unused hole ...
ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - fffffffffff00000 (=1536 MB) module mapping space
The direct mapping covers all memory in the system up to the highest
memory address (this means in some cases it can also include PCI memory
holes).
vmalloc space is lazily synchronized into the different PML4 pages of
the processes using the page fault handler, with init_level4_pgt as
reference.
Current X86-64 implementations only support 40 bits of address space,
but we support up to 46 bits. This expands into MBZ space in the page tables.
-Andi Kleen, Jul 2004