3ea9646315
The short preamble mode was not correctly detected during TX, rt2x00 used the rate->hw_value_short field but mac80211 is not using this field that way. Instead the flag IEEE80211_TX_RC_USE_SHORT_PREAMBLE should be used to determine if the frame should be send out using short preamble or not. Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1312 lines
32 KiB
C
1312 lines
32 KiB
C
/*
|
|
Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the
|
|
Free Software Foundation, Inc.,
|
|
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2x00lib
|
|
Abstract: rt2x00 generic device routines.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00lib.h"
|
|
|
|
/*
|
|
* Link tuning handlers
|
|
*/
|
|
void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Reset link information.
|
|
* Both the currently active vgc level as well as
|
|
* the link tuner counter should be reset. Resetting
|
|
* the counter is important for devices where the
|
|
* device should only perform link tuning during the
|
|
* first minute after being enabled.
|
|
*/
|
|
rt2x00dev->link.count = 0;
|
|
rt2x00dev->link.vgc_level = 0;
|
|
|
|
/*
|
|
* Reset the link tuner.
|
|
*/
|
|
rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
|
|
}
|
|
|
|
static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/*
|
|
* Clear all (possibly) pre-existing quality statistics.
|
|
*/
|
|
memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
|
|
|
|
/*
|
|
* The RX and TX percentage should start at 50%
|
|
* this will assure we will get at least get some
|
|
* decent value when the link tuner starts.
|
|
* The value will be dropped and overwritten with
|
|
* the correct (measured )value anyway during the
|
|
* first run of the link tuner.
|
|
*/
|
|
rt2x00dev->link.qual.rx_percentage = 50;
|
|
rt2x00dev->link.qual.tx_percentage = 50;
|
|
|
|
rt2x00lib_reset_link_tuner(rt2x00dev);
|
|
|
|
queue_delayed_work(rt2x00dev->hw->workqueue,
|
|
&rt2x00dev->link.work, LINK_TUNE_INTERVAL);
|
|
}
|
|
|
|
static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
cancel_delayed_work_sync(&rt2x00dev->link.work);
|
|
}
|
|
|
|
/*
|
|
* Radio control handlers.
|
|
*/
|
|
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int status;
|
|
|
|
/*
|
|
* Don't enable the radio twice.
|
|
* And check if the hardware button has been disabled.
|
|
*/
|
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
|
|
test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Initialize all data queues.
|
|
*/
|
|
rt2x00queue_init_queues(rt2x00dev);
|
|
|
|
/*
|
|
* Enable radio.
|
|
*/
|
|
status =
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
|
|
if (status)
|
|
return status;
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
|
|
|
|
rt2x00leds_led_radio(rt2x00dev, true);
|
|
rt2x00led_led_activity(rt2x00dev, true);
|
|
|
|
set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Enable RX.
|
|
*/
|
|
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
|
|
|
|
/*
|
|
* Start the TX queues.
|
|
*/
|
|
ieee80211_wake_queues(rt2x00dev->hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Stop the TX queues.
|
|
*/
|
|
ieee80211_stop_queues(rt2x00dev->hw);
|
|
|
|
/*
|
|
* Disable RX.
|
|
*/
|
|
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
|
|
rt2x00led_led_activity(rt2x00dev, false);
|
|
rt2x00leds_led_radio(rt2x00dev, false);
|
|
}
|
|
|
|
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
|
|
{
|
|
/*
|
|
* When we are disabling the RX, we should also stop the link tuner.
|
|
*/
|
|
if (state == STATE_RADIO_RX_OFF)
|
|
rt2x00lib_stop_link_tuner(rt2x00dev);
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
|
|
|
/*
|
|
* When we are enabling the RX, we should also start the link tuner.
|
|
*/
|
|
if (state == STATE_RADIO_RX_ON &&
|
|
(rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
|
|
rt2x00lib_start_link_tuner(rt2x00dev);
|
|
}
|
|
|
|
static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct antenna_setup ant;
|
|
int sample_a =
|
|
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
|
|
int sample_b =
|
|
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
|
|
|
|
memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
|
|
|
|
/*
|
|
* We are done sampling. Now we should evaluate the results.
|
|
*/
|
|
rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
|
|
|
|
/*
|
|
* During the last period we have sampled the RSSI
|
|
* from both antenna's. It now is time to determine
|
|
* which antenna demonstrated the best performance.
|
|
* When we are already on the antenna with the best
|
|
* performance, then there really is nothing for us
|
|
* left to do.
|
|
*/
|
|
if (sample_a == sample_b)
|
|
return;
|
|
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
|
|
ant.rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
|
|
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
|
|
ant.tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
|
|
|
|
rt2x00lib_config_antenna(rt2x00dev, &ant);
|
|
}
|
|
|
|
static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct antenna_setup ant;
|
|
int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
|
|
int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
|
|
|
|
memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
|
|
|
|
/*
|
|
* Legacy driver indicates that we should swap antenna's
|
|
* when the difference in RSSI is greater that 5. This
|
|
* also should be done when the RSSI was actually better
|
|
* then the previous sample.
|
|
* When the difference exceeds the threshold we should
|
|
* sample the rssi from the other antenna to make a valid
|
|
* comparison between the 2 antennas.
|
|
*/
|
|
if (abs(rssi_curr - rssi_old) < 5)
|
|
return;
|
|
|
|
rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
|
|
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
|
|
ant.rx = (ant.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
|
|
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
|
|
ant.tx = (ant.tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
|
|
|
|
rt2x00lib_config_antenna(rt2x00dev, &ant);
|
|
}
|
|
|
|
static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/*
|
|
* Determine if software diversity is enabled for
|
|
* either the TX or RX antenna (or both).
|
|
* Always perform this check since within the link
|
|
* tuner interval the configuration might have changed.
|
|
*/
|
|
rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
|
|
rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
|
|
|
|
if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
|
|
rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
|
|
if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
|
|
rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
|
|
|
|
if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
|
|
!(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
|
|
rt2x00dev->link.ant.flags = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we have only sampled the data over the last period
|
|
* we should now harvest the data. Otherwise just evaluate
|
|
* the data. The latter should only be performed once
|
|
* every 2 seconds.
|
|
*/
|
|
if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
|
|
rt2x00lib_evaluate_antenna_sample(rt2x00dev);
|
|
else if (rt2x00dev->link.count & 1)
|
|
rt2x00lib_evaluate_antenna_eval(rt2x00dev);
|
|
}
|
|
|
|
static void rt2x00lib_update_link_stats(struct link *link, int rssi)
|
|
{
|
|
int avg_rssi = rssi;
|
|
|
|
/*
|
|
* Update global RSSI
|
|
*/
|
|
if (link->qual.avg_rssi)
|
|
avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
|
|
link->qual.avg_rssi = avg_rssi;
|
|
|
|
/*
|
|
* Update antenna RSSI
|
|
*/
|
|
if (link->ant.rssi_ant)
|
|
rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
|
|
link->ant.rssi_ant = rssi;
|
|
}
|
|
|
|
static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
|
|
{
|
|
if (qual->rx_failed || qual->rx_success)
|
|
qual->rx_percentage =
|
|
(qual->rx_success * 100) /
|
|
(qual->rx_failed + qual->rx_success);
|
|
else
|
|
qual->rx_percentage = 50;
|
|
|
|
if (qual->tx_failed || qual->tx_success)
|
|
qual->tx_percentage =
|
|
(qual->tx_success * 100) /
|
|
(qual->tx_failed + qual->tx_success);
|
|
else
|
|
qual->tx_percentage = 50;
|
|
|
|
qual->rx_success = 0;
|
|
qual->rx_failed = 0;
|
|
qual->tx_success = 0;
|
|
qual->tx_failed = 0;
|
|
}
|
|
|
|
static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
|
|
int rssi)
|
|
{
|
|
int rssi_percentage = 0;
|
|
int signal;
|
|
|
|
/*
|
|
* We need a positive value for the RSSI.
|
|
*/
|
|
if (rssi < 0)
|
|
rssi += rt2x00dev->rssi_offset;
|
|
|
|
/*
|
|
* Calculate the different percentages,
|
|
* which will be used for the signal.
|
|
*/
|
|
if (rt2x00dev->rssi_offset)
|
|
rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
|
|
|
|
/*
|
|
* Add the individual percentages and use the WEIGHT
|
|
* defines to calculate the current link signal.
|
|
*/
|
|
signal = ((WEIGHT_RSSI * rssi_percentage) +
|
|
(WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
|
|
(WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
|
|
|
|
return (signal > 100) ? 100 : signal;
|
|
}
|
|
|
|
static void rt2x00lib_link_tuner(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, link.work.work);
|
|
|
|
/*
|
|
* When the radio is shutting down we should
|
|
* immediately cease all link tuning.
|
|
*/
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Update statistics.
|
|
*/
|
|
rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
|
|
rt2x00dev->low_level_stats.dot11FCSErrorCount +=
|
|
rt2x00dev->link.qual.rx_failed;
|
|
|
|
/*
|
|
* Only perform the link tuning when Link tuning
|
|
* has been enabled (This could have been disabled from the EEPROM).
|
|
*/
|
|
if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
|
|
rt2x00dev->ops->lib->link_tuner(rt2x00dev);
|
|
|
|
/*
|
|
* Precalculate a portion of the link signal which is
|
|
* in based on the tx/rx success/failure counters.
|
|
*/
|
|
rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
|
|
|
|
/*
|
|
* Send a signal to the led to update the led signal strength.
|
|
*/
|
|
rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
|
|
|
|
/*
|
|
* Evaluate antenna setup, make this the last step since this could
|
|
* possibly reset some statistics.
|
|
*/
|
|
rt2x00lib_evaluate_antenna(rt2x00dev);
|
|
|
|
/*
|
|
* Increase tuner counter, and reschedule the next link tuner run.
|
|
*/
|
|
rt2x00dev->link.count++;
|
|
queue_delayed_work(rt2x00dev->hw->workqueue,
|
|
&rt2x00dev->link.work, LINK_TUNE_INTERVAL);
|
|
}
|
|
|
|
static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, filter_work);
|
|
|
|
rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
|
|
}
|
|
|
|
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
|
struct ieee80211_bss_conf conf;
|
|
int delayed_flags;
|
|
|
|
/*
|
|
* Copy all data we need during this action under the protection
|
|
* of a spinlock. Otherwise race conditions might occur which results
|
|
* into an invalid configuration.
|
|
*/
|
|
spin_lock(&intf->lock);
|
|
|
|
memcpy(&conf, &vif->bss_conf, sizeof(conf));
|
|
delayed_flags = intf->delayed_flags;
|
|
intf->delayed_flags = 0;
|
|
|
|
spin_unlock(&intf->lock);
|
|
|
|
/*
|
|
* It is possible the radio was disabled while the work had been
|
|
* scheduled. If that happens we should return here immediately,
|
|
* note that in the spinlock protected area above the delayed_flags
|
|
* have been cleared correctly.
|
|
*/
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
if (delayed_flags & DELAYED_UPDATE_BEACON)
|
|
rt2x00queue_update_beacon(rt2x00dev, vif);
|
|
|
|
if (delayed_flags & DELAYED_CONFIG_ERP)
|
|
rt2x00lib_config_erp(rt2x00dev, intf, &conf);
|
|
|
|
if (delayed_flags & DELAYED_LED_ASSOC)
|
|
rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
|
|
}
|
|
|
|
static void rt2x00lib_intf_scheduled(struct work_struct *work)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev =
|
|
container_of(work, struct rt2x00_dev, intf_work);
|
|
|
|
/*
|
|
* Iterate over each interface and perform the
|
|
* requested configurations.
|
|
*/
|
|
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
|
|
rt2x00lib_intf_scheduled_iter,
|
|
rt2x00dev);
|
|
}
|
|
|
|
/*
|
|
* Interrupt context handlers.
|
|
*/
|
|
static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
|
|
|
if (vif->type != NL80211_IFTYPE_AP &&
|
|
vif->type != NL80211_IFTYPE_ADHOC)
|
|
return;
|
|
|
|
/*
|
|
* Clean up the beacon skb.
|
|
*/
|
|
rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
|
|
intf->beacon->skb = NULL;
|
|
|
|
spin_lock(&intf->lock);
|
|
intf->delayed_flags |= DELAYED_UPDATE_BEACON;
|
|
spin_unlock(&intf->lock);
|
|
}
|
|
|
|
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return;
|
|
|
|
ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
|
|
rt2x00lib_beacondone_iter,
|
|
rt2x00dev);
|
|
|
|
schedule_work(&rt2x00dev->intf_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
|
|
|
|
void rt2x00lib_txdone(struct queue_entry *entry,
|
|
struct txdone_entry_desc *txdesc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
|
|
u8 rate_idx, rate_flags;
|
|
|
|
/*
|
|
* Unmap the skb.
|
|
*/
|
|
rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
|
|
|
|
/*
|
|
* If the IV/EIV data was stripped from the frame before it was
|
|
* passed to the hardware, we should now reinsert it again because
|
|
* mac80211 will expect the the same data to be present it the
|
|
* frame as it was passed to us.
|
|
*/
|
|
if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
|
|
rt2x00crypto_tx_insert_iv(entry->skb);
|
|
|
|
/*
|
|
* Send frame to debugfs immediately, after this call is completed
|
|
* we are going to overwrite the skb->cb array.
|
|
*/
|
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
|
|
|
|
/*
|
|
* Update TX statistics.
|
|
*/
|
|
rt2x00dev->link.qual.tx_success +=
|
|
test_bit(TXDONE_SUCCESS, &txdesc->flags);
|
|
rt2x00dev->link.qual.tx_failed +=
|
|
test_bit(TXDONE_FAILURE, &txdesc->flags);
|
|
|
|
rate_idx = skbdesc->tx_rate_idx;
|
|
rate_flags = skbdesc->tx_rate_flags;
|
|
|
|
/*
|
|
* Initialize TX status
|
|
*/
|
|
memset(&tx_info->status, 0, sizeof(tx_info->status));
|
|
tx_info->status.ack_signal = 0;
|
|
tx_info->status.rates[0].idx = rate_idx;
|
|
tx_info->status.rates[0].flags = rate_flags;
|
|
tx_info->status.rates[0].count = txdesc->retry + 1;
|
|
tx_info->status.rates[1].idx = -1; /* terminate */
|
|
|
|
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
|
|
if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
|
|
tx_info->flags |= IEEE80211_TX_STAT_ACK;
|
|
else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
|
|
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
|
|
}
|
|
|
|
if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
|
|
if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
|
|
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
|
|
else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
|
|
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
|
|
}
|
|
|
|
/*
|
|
* Only send the status report to mac80211 when TX status was
|
|
* requested by it. If this was a extra frame coming through
|
|
* a mac80211 library call (RTS/CTS) then we should not send the
|
|
* status report back.
|
|
*/
|
|
if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
|
|
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
|
|
else
|
|
dev_kfree_skb_irq(entry->skb);
|
|
|
|
/*
|
|
* Make this entry available for reuse.
|
|
*/
|
|
entry->skb = NULL;
|
|
entry->flags = 0;
|
|
|
|
rt2x00dev->ops->lib->clear_entry(entry);
|
|
|
|
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
|
|
rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
|
|
|
|
/*
|
|
* If the data queue was below the threshold before the txdone
|
|
* handler we must make sure the packet queue in the mac80211 stack
|
|
* is reenabled when the txdone handler has finished.
|
|
*/
|
|
if (!rt2x00queue_threshold(entry->queue))
|
|
ieee80211_wake_queue(rt2x00dev->hw, qid);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
|
|
|
|
void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
|
|
struct queue_entry *entry)
|
|
{
|
|
struct rxdone_entry_desc rxdesc;
|
|
struct sk_buff *skb;
|
|
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_hdr *hdr;
|
|
const struct rt2x00_rate *rate;
|
|
unsigned int header_length;
|
|
unsigned int align;
|
|
unsigned int i;
|
|
int idx = -1;
|
|
|
|
/*
|
|
* Allocate a new sk_buffer. If no new buffer available, drop the
|
|
* received frame and reuse the existing buffer.
|
|
*/
|
|
skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
|
|
if (!skb)
|
|
return;
|
|
|
|
/*
|
|
* Unmap the skb.
|
|
*/
|
|
rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
|
|
|
|
/*
|
|
* Extract the RXD details.
|
|
*/
|
|
memset(&rxdesc, 0, sizeof(rxdesc));
|
|
rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
|
|
|
|
/*
|
|
* The data behind the ieee80211 header must be
|
|
* aligned on a 4 byte boundary.
|
|
*/
|
|
header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
|
|
align = ((unsigned long)(entry->skb->data + header_length)) & 3;
|
|
|
|
/*
|
|
* Hardware might have stripped the IV/EIV/ICV data,
|
|
* in that case it is possible that the data was
|
|
* provided seperately (through hardware descriptor)
|
|
* in which case we should reinsert the data into the frame.
|
|
*/
|
|
if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
|
|
(rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
|
|
rt2x00crypto_rx_insert_iv(entry->skb, align,
|
|
header_length, &rxdesc);
|
|
} else if (align) {
|
|
skb_push(entry->skb, align);
|
|
/* Move entire frame in 1 command */
|
|
memmove(entry->skb->data, entry->skb->data + align,
|
|
rxdesc.size);
|
|
}
|
|
|
|
/* Update data pointers, trim buffer to correct size */
|
|
skb_trim(entry->skb, rxdesc.size);
|
|
|
|
/*
|
|
* Update RX statistics.
|
|
*/
|
|
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
|
|
|
|
if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
|
|
(rate->plcp == rxdesc.signal)) ||
|
|
((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
|
|
(rate->bitrate == rxdesc.signal))) {
|
|
idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (idx < 0) {
|
|
WARNING(rt2x00dev, "Frame received with unrecognized signal,"
|
|
"signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
|
|
!!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
|
|
idx = 0;
|
|
}
|
|
|
|
/*
|
|
* Only update link status if this is a beacon frame carrying our bssid.
|
|
*/
|
|
hdr = (struct ieee80211_hdr *)entry->skb->data;
|
|
if (ieee80211_is_beacon(hdr->frame_control) &&
|
|
(rxdesc.dev_flags & RXDONE_MY_BSS))
|
|
rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
|
|
|
|
rt2x00debug_update_crypto(rt2x00dev,
|
|
rxdesc.cipher,
|
|
rxdesc.cipher_status);
|
|
|
|
rt2x00dev->link.qual.rx_success++;
|
|
|
|
rx_status->mactime = rxdesc.timestamp;
|
|
rx_status->rate_idx = idx;
|
|
rx_status->qual =
|
|
rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
|
|
rx_status->signal = rxdesc.rssi;
|
|
rx_status->flag = rxdesc.flags;
|
|
rx_status->antenna = rt2x00dev->link.ant.active.rx;
|
|
|
|
/*
|
|
* Send frame to mac80211 & debugfs.
|
|
* mac80211 will clean up the skb structure.
|
|
*/
|
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
|
|
ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
|
|
|
|
/*
|
|
* Replace the skb with the freshly allocated one.
|
|
*/
|
|
entry->skb = skb;
|
|
entry->flags = 0;
|
|
|
|
rt2x00dev->ops->lib->clear_entry(entry);
|
|
|
|
rt2x00queue_index_inc(entry->queue, Q_INDEX);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
|
|
|
|
/*
|
|
* Driver initialization handlers.
|
|
*/
|
|
const struct rt2x00_rate rt2x00_supported_rates[12] = {
|
|
{
|
|
.flags = DEV_RATE_CCK,
|
|
.bitrate = 10,
|
|
.ratemask = BIT(0),
|
|
.plcp = 0x00,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 20,
|
|
.ratemask = BIT(1),
|
|
.plcp = 0x01,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 55,
|
|
.ratemask = BIT(2),
|
|
.plcp = 0x02,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
|
|
.bitrate = 110,
|
|
.ratemask = BIT(3),
|
|
.plcp = 0x03,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 60,
|
|
.ratemask = BIT(4),
|
|
.plcp = 0x0b,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 90,
|
|
.ratemask = BIT(5),
|
|
.plcp = 0x0f,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 120,
|
|
.ratemask = BIT(6),
|
|
.plcp = 0x0a,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 180,
|
|
.ratemask = BIT(7),
|
|
.plcp = 0x0e,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 240,
|
|
.ratemask = BIT(8),
|
|
.plcp = 0x09,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 360,
|
|
.ratemask = BIT(9),
|
|
.plcp = 0x0d,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 480,
|
|
.ratemask = BIT(10),
|
|
.plcp = 0x08,
|
|
},
|
|
{
|
|
.flags = DEV_RATE_OFDM,
|
|
.bitrate = 540,
|
|
.ratemask = BIT(11),
|
|
.plcp = 0x0c,
|
|
},
|
|
};
|
|
|
|
static void rt2x00lib_channel(struct ieee80211_channel *entry,
|
|
const int channel, const int tx_power,
|
|
const int value)
|
|
{
|
|
entry->center_freq = ieee80211_channel_to_frequency(channel);
|
|
entry->hw_value = value;
|
|
entry->max_power = tx_power;
|
|
entry->max_antenna_gain = 0xff;
|
|
}
|
|
|
|
static void rt2x00lib_rate(struct ieee80211_rate *entry,
|
|
const u16 index, const struct rt2x00_rate *rate)
|
|
{
|
|
entry->flags = 0;
|
|
entry->bitrate = rate->bitrate;
|
|
entry->hw_value =index;
|
|
entry->hw_value_short = index;
|
|
|
|
if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
|
|
entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
|
|
}
|
|
|
|
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
|
|
struct hw_mode_spec *spec)
|
|
{
|
|
struct ieee80211_hw *hw = rt2x00dev->hw;
|
|
struct ieee80211_channel *channels;
|
|
struct ieee80211_rate *rates;
|
|
unsigned int num_rates;
|
|
unsigned int i;
|
|
|
|
num_rates = 0;
|
|
if (spec->supported_rates & SUPPORT_RATE_CCK)
|
|
num_rates += 4;
|
|
if (spec->supported_rates & SUPPORT_RATE_OFDM)
|
|
num_rates += 8;
|
|
|
|
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
|
|
if (!channels)
|
|
return -ENOMEM;
|
|
|
|
rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
|
|
if (!rates)
|
|
goto exit_free_channels;
|
|
|
|
/*
|
|
* Initialize Rate list.
|
|
*/
|
|
for (i = 0; i < num_rates; i++)
|
|
rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
|
|
|
|
/*
|
|
* Initialize Channel list.
|
|
*/
|
|
for (i = 0; i < spec->num_channels; i++) {
|
|
rt2x00lib_channel(&channels[i],
|
|
spec->channels[i].channel,
|
|
spec->channels_info[i].tx_power1, i);
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11b, 802.11g
|
|
* Rates: CCK, OFDM.
|
|
* Channels: 2.4 GHz
|
|
*/
|
|
if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
|
|
rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
|
|
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
|
|
&rt2x00dev->bands[IEEE80211_BAND_2GHZ];
|
|
}
|
|
|
|
/*
|
|
* Intitialize 802.11a
|
|
* Rates: OFDM.
|
|
* Channels: OFDM, UNII, HiperLAN2.
|
|
*/
|
|
if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
|
|
spec->num_channels - 14;
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
|
|
num_rates - 4;
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
|
|
rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
|
|
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
|
|
&rt2x00dev->bands[IEEE80211_BAND_5GHZ];
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit_free_channels:
|
|
kfree(channels);
|
|
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
|
|
ieee80211_unregister_hw(rt2x00dev->hw);
|
|
|
|
if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
|
|
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
|
|
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
|
|
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
|
|
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
|
|
}
|
|
|
|
kfree(rt2x00dev->spec.channels_info);
|
|
}
|
|
|
|
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
int status;
|
|
|
|
if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Initialize HW modes.
|
|
*/
|
|
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Initialize HW fields.
|
|
*/
|
|
rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
|
|
|
|
/*
|
|
* Register HW.
|
|
*/
|
|
status = ieee80211_register_hw(rt2x00dev->hw);
|
|
if (status) {
|
|
rt2x00lib_remove_hw(rt2x00dev);
|
|
return status;
|
|
}
|
|
|
|
set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialization/uninitialization handlers.
|
|
*/
|
|
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Unregister extra components.
|
|
*/
|
|
rt2x00rfkill_unregister(rt2x00dev);
|
|
|
|
/*
|
|
* Allow the HW to uninitialize.
|
|
*/
|
|
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Free allocated queue entries.
|
|
*/
|
|
rt2x00queue_uninitialize(rt2x00dev);
|
|
}
|
|
|
|
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int status;
|
|
|
|
if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Allocate all queue entries.
|
|
*/
|
|
status = rt2x00queue_initialize(rt2x00dev);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Initialize the device.
|
|
*/
|
|
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
|
|
if (status) {
|
|
rt2x00queue_uninitialize(rt2x00dev);
|
|
return status;
|
|
}
|
|
|
|
set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Register the extra components.
|
|
*/
|
|
rt2x00rfkill_register(rt2x00dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
|
|
if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* If this is the first interface which is added,
|
|
* we should load the firmware now.
|
|
*/
|
|
retval = rt2x00lib_load_firmware(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Initialize the device.
|
|
*/
|
|
retval = rt2x00lib_initialize(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
rt2x00dev->intf_ap_count = 0;
|
|
rt2x00dev->intf_sta_count = 0;
|
|
rt2x00dev->intf_associated = 0;
|
|
|
|
set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
|
return;
|
|
|
|
/*
|
|
* Perhaps we can add something smarter here,
|
|
* but for now just disabling the radio should do.
|
|
*/
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
rt2x00dev->intf_ap_count = 0;
|
|
rt2x00dev->intf_sta_count = 0;
|
|
rt2x00dev->intf_associated = 0;
|
|
}
|
|
|
|
/*
|
|
* driver allocation handlers.
|
|
*/
|
|
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval = -ENOMEM;
|
|
|
|
mutex_init(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Make room for rt2x00_intf inside the per-interface
|
|
* structure ieee80211_vif.
|
|
*/
|
|
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
|
|
|
|
/*
|
|
* Determine which operating modes are supported, all modes
|
|
* which require beaconing, depend on the availability of
|
|
* beacon entries.
|
|
*/
|
|
rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
|
|
if (rt2x00dev->ops->bcn->entry_num > 0)
|
|
rt2x00dev->hw->wiphy->interface_modes |=
|
|
BIT(NL80211_IFTYPE_ADHOC) |
|
|
BIT(NL80211_IFTYPE_AP);
|
|
|
|
/*
|
|
* Let the driver probe the device to detect the capabilities.
|
|
*/
|
|
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
|
|
if (retval) {
|
|
ERROR(rt2x00dev, "Failed to allocate device.\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* Initialize configuration work.
|
|
*/
|
|
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
|
|
INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
|
|
INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
|
|
|
|
/*
|
|
* Allocate queue array.
|
|
*/
|
|
retval = rt2x00queue_allocate(rt2x00dev);
|
|
if (retval)
|
|
goto exit;
|
|
|
|
/*
|
|
* Initialize ieee80211 structure.
|
|
*/
|
|
retval = rt2x00lib_probe_hw(rt2x00dev);
|
|
if (retval) {
|
|
ERROR(rt2x00dev, "Failed to initialize hw.\n");
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* Register extra components.
|
|
*/
|
|
rt2x00leds_register(rt2x00dev);
|
|
rt2x00rfkill_allocate(rt2x00dev);
|
|
rt2x00debug_register(rt2x00dev);
|
|
|
|
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
rt2x00lib_remove_dev(rt2x00dev);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
|
|
|
|
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00lib_disable_radio(rt2x00dev);
|
|
|
|
/*
|
|
* Uninitialize device.
|
|
*/
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Free extra components
|
|
*/
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
rt2x00rfkill_free(rt2x00dev);
|
|
rt2x00leds_unregister(rt2x00dev);
|
|
|
|
/*
|
|
* Free ieee80211_hw memory.
|
|
*/
|
|
rt2x00lib_remove_hw(rt2x00dev);
|
|
|
|
/*
|
|
* Free firmware image.
|
|
*/
|
|
rt2x00lib_free_firmware(rt2x00dev);
|
|
|
|
/*
|
|
* Free queue structures.
|
|
*/
|
|
rt2x00queue_free(rt2x00dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
|
|
|
|
/*
|
|
* Device state handlers
|
|
*/
|
|
#ifdef CONFIG_PM
|
|
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
|
|
{
|
|
int retval;
|
|
|
|
NOTICE(rt2x00dev, "Going to sleep.\n");
|
|
|
|
/*
|
|
* Only continue if mac80211 has open interfaces.
|
|
*/
|
|
if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
|
|
!test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
|
|
goto exit;
|
|
|
|
set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* Disable radio.
|
|
*/
|
|
rt2x00lib_stop(rt2x00dev);
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
|
|
/*
|
|
* Suspend/disable extra components.
|
|
*/
|
|
rt2x00leds_suspend(rt2x00dev);
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
|
|
exit:
|
|
/*
|
|
* Set device mode to sleep for power management,
|
|
* on some hardware this call seems to consistently fail.
|
|
* From the specifications it is hard to tell why it fails,
|
|
* and if this is a "bad thing".
|
|
* Overall it is safe to just ignore the failure and
|
|
* continue suspending. The only downside is that the
|
|
* device will not be in optimal power save mode, but with
|
|
* the radio and the other components already disabled the
|
|
* device is as good as disabled.
|
|
*/
|
|
retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
|
|
if (retval)
|
|
WARNING(rt2x00dev, "Device failed to enter sleep state, "
|
|
"continue suspending.\n");
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
|
|
|
|
static void rt2x00lib_resume_intf(void *data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = data;
|
|
struct rt2x00_intf *intf = vif_to_intf(vif);
|
|
|
|
spin_lock(&intf->lock);
|
|
|
|
rt2x00lib_config_intf(rt2x00dev, intf,
|
|
vif->type, intf->mac, intf->bssid);
|
|
|
|
|
|
/*
|
|
* Master or Ad-hoc mode require a new beacon update.
|
|
*/
|
|
if (vif->type == NL80211_IFTYPE_AP ||
|
|
vif->type == NL80211_IFTYPE_ADHOC)
|
|
intf->delayed_flags |= DELAYED_UPDATE_BEACON;
|
|
|
|
spin_unlock(&intf->lock);
|
|
}
|
|
|
|
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
|
|
NOTICE(rt2x00dev, "Waking up.\n");
|
|
|
|
/*
|
|
* Restore/enable extra components.
|
|
*/
|
|
rt2x00debug_register(rt2x00dev);
|
|
rt2x00leds_resume(rt2x00dev);
|
|
|
|
/*
|
|
* Only continue if mac80211 had open interfaces.
|
|
*/
|
|
if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Reinitialize device and all active interfaces.
|
|
*/
|
|
retval = rt2x00lib_start(rt2x00dev);
|
|
if (retval)
|
|
goto exit;
|
|
|
|
/*
|
|
* Reconfigure device.
|
|
*/
|
|
retval = rt2x00mac_config(rt2x00dev->hw, ~0);
|
|
if (retval)
|
|
goto exit;
|
|
|
|
/*
|
|
* Iterator over each active interface to
|
|
* reconfigure the hardware.
|
|
*/
|
|
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
|
|
rt2x00lib_resume_intf, rt2x00dev);
|
|
|
|
/*
|
|
* We are ready again to receive requests from mac80211.
|
|
*/
|
|
set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
|
|
|
|
/*
|
|
* It is possible that during that mac80211 has attempted
|
|
* to send frames while we were suspending or resuming.
|
|
* In that case we have disabled the TX queue and should
|
|
* now enable it again
|
|
*/
|
|
ieee80211_wake_queues(rt2x00dev->hw);
|
|
|
|
/*
|
|
* During interface iteration we might have changed the
|
|
* delayed_flags, time to handles the event by calling
|
|
* the work handler directly.
|
|
*/
|
|
rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
|
|
|
|
return 0;
|
|
|
|
exit:
|
|
rt2x00lib_stop(rt2x00dev);
|
|
rt2x00lib_uninitialize(rt2x00dev);
|
|
rt2x00debug_deregister(rt2x00dev);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*
|
|
* rt2x00lib module information.
|
|
*/
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("rt2x00 library");
|
|
MODULE_LICENSE("GPL");
|