android_kernel_xiaomi_sm8350/net/mac80211/mlme.c
Johannes Berg 3e122be089 mac80211: make master netdev handling sane
Currently, almost every interface type has a 'bss' pointer
pointing to BSS information. This BSS information, however,
is for a _local_ BSS, not for the BSS we joined, so having
it on a STA mode interface makes little sense, but now they
have it pointing to the master device, which is an AP mode
virtual interface. However, except for some bitrate control
data, this pointer is only used in AP/VLAN modes (for power
saving stations.)

Overall, it is not necessary to even have the master netdev
be a valid virtual interface, and it doesn't have to be on
the list of interfaces either.

This patch changes the master netdev to be special, it now
 - no longer is on the list of virtual interfaces, which
   lets me remove a lot of tests for that
 - no longer has sub_if_data attached, since that isn't used

Additionally, this patch changes some vlan/ap mode handling
that is related to these 'bss' pointers described above (but
in the VLAN case they actually make sense because there they
point to the AP they belong to); it also adds some debugging
code to IEEE80211_DEV_TO_SUB_IF to validate it is not called
on the master netdev any more.

Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-07-14 14:30:06 -04:00

4470 lines
124 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* BSS client mode implementation
* Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
* Copyright 2004, Instant802 Networks, Inc.
* Copyright 2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007, Michael Wu <flamingice@sourmilk.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* TODO:
* order BSS list by RSSI(?) ("quality of AP")
* scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
* SSID)
*/
#include <linux/delay.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/wireless.h>
#include <linux/random.h>
#include <linux/etherdevice.h>
#include <linux/rtnetlink.h>
#include <net/iw_handler.h>
#include <asm/types.h>
#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "rate.h"
#include "led.h"
#include "mesh.h"
#define IEEE80211_AUTH_TIMEOUT (HZ / 5)
#define IEEE80211_AUTH_MAX_TRIES 3
#define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
#define IEEE80211_ASSOC_MAX_TRIES 3
#define IEEE80211_MONITORING_INTERVAL (2 * HZ)
#define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
#define IEEE80211_PROBE_INTERVAL (60 * HZ)
#define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
#define IEEE80211_SCAN_INTERVAL (2 * HZ)
#define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
#define IEEE80211_IBSS_JOIN_TIMEOUT (7 * HZ)
#define IEEE80211_PROBE_DELAY (HZ / 33)
#define IEEE80211_CHANNEL_TIME (HZ / 33)
#define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
#define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
#define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
#define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
#define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
#define IEEE80211_IBSS_MAX_STA_ENTRIES 128
#define ERP_INFO_USE_PROTECTION BIT(1)
/* mgmt header + 1 byte action code */
#define IEEE80211_MIN_ACTION_SIZE (24 + 1)
#define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
#define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
#define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
#define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
#define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
/* next values represent the buffer size for A-MPDU frame.
* According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
#define IEEE80211_MIN_AMPDU_BUF 0x8
#define IEEE80211_MAX_AMPDU_BUF 0x40
static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
u8 *ssid, size_t ssid_len);
static struct ieee80211_sta_bss *
ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
u8 *ssid, u8 ssid_len);
static void ieee80211_rx_bss_put(struct ieee80211_local *local,
struct ieee80211_sta_bss *bss);
static int ieee80211_sta_find_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta);
static int ieee80211_sta_wep_configured(struct net_device *dev);
static int ieee80211_sta_start_scan(struct net_device *dev,
u8 *ssid, size_t ssid_len);
static int ieee80211_sta_config_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta);
static void sta_rx_agg_session_timer_expired(unsigned long data);
void ieee802_11_parse_elems(u8 *start, size_t len,
struct ieee802_11_elems *elems)
{
size_t left = len;
u8 *pos = start;
memset(elems, 0, sizeof(*elems));
while (left >= 2) {
u8 id, elen;
id = *pos++;
elen = *pos++;
left -= 2;
if (elen > left)
return;
switch (id) {
case WLAN_EID_SSID:
elems->ssid = pos;
elems->ssid_len = elen;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = pos;
elems->supp_rates_len = elen;
break;
case WLAN_EID_FH_PARAMS:
elems->fh_params = pos;
elems->fh_params_len = elen;
break;
case WLAN_EID_DS_PARAMS:
elems->ds_params = pos;
elems->ds_params_len = elen;
break;
case WLAN_EID_CF_PARAMS:
elems->cf_params = pos;
elems->cf_params_len = elen;
break;
case WLAN_EID_TIM:
elems->tim = pos;
elems->tim_len = elen;
break;
case WLAN_EID_IBSS_PARAMS:
elems->ibss_params = pos;
elems->ibss_params_len = elen;
break;
case WLAN_EID_CHALLENGE:
elems->challenge = pos;
elems->challenge_len = elen;
break;
case WLAN_EID_WPA:
if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
pos[2] == 0xf2) {
/* Microsoft OUI (00:50:F2) */
if (pos[3] == 1) {
/* OUI Type 1 - WPA IE */
elems->wpa = pos;
elems->wpa_len = elen;
} else if (elen >= 5 && pos[3] == 2) {
if (pos[4] == 0) {
elems->wmm_info = pos;
elems->wmm_info_len = elen;
} else if (pos[4] == 1) {
elems->wmm_param = pos;
elems->wmm_param_len = elen;
}
}
}
break;
case WLAN_EID_RSN:
elems->rsn = pos;
elems->rsn_len = elen;
break;
case WLAN_EID_ERP_INFO:
elems->erp_info = pos;
elems->erp_info_len = elen;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = pos;
elems->ext_supp_rates_len = elen;
break;
case WLAN_EID_HT_CAPABILITY:
elems->ht_cap_elem = pos;
elems->ht_cap_elem_len = elen;
break;
case WLAN_EID_HT_EXTRA_INFO:
elems->ht_info_elem = pos;
elems->ht_info_elem_len = elen;
break;
case WLAN_EID_MESH_ID:
elems->mesh_id = pos;
elems->mesh_id_len = elen;
break;
case WLAN_EID_MESH_CONFIG:
elems->mesh_config = pos;
elems->mesh_config_len = elen;
break;
case WLAN_EID_PEER_LINK:
elems->peer_link = pos;
elems->peer_link_len = elen;
break;
case WLAN_EID_PREQ:
elems->preq = pos;
elems->preq_len = elen;
break;
case WLAN_EID_PREP:
elems->prep = pos;
elems->prep_len = elen;
break;
case WLAN_EID_PERR:
elems->perr = pos;
elems->perr_len = elen;
break;
case WLAN_EID_CHANNEL_SWITCH:
elems->ch_switch_elem = pos;
elems->ch_switch_elem_len = elen;
break;
case WLAN_EID_QUIET:
if (!elems->quiet_elem) {
elems->quiet_elem = pos;
elems->quiet_elem_len = elen;
}
elems->num_of_quiet_elem++;
break;
case WLAN_EID_COUNTRY:
elems->country_elem = pos;
elems->country_elem_len = elen;
break;
case WLAN_EID_PWR_CONSTRAINT:
elems->pwr_constr_elem = pos;
elems->pwr_constr_elem_len = elen;
break;
default:
break;
}
left -= elen;
pos += elen;
}
}
static int ecw2cw(int ecw)
{
return (1 << ecw) - 1;
}
static void ieee80211_sta_def_wmm_params(struct net_device *dev,
struct ieee80211_sta_bss *bss,
int ibss)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
int i, have_higher_than_11mbit = 0;
/* cf. IEEE 802.11 9.2.12 */
for (i = 0; i < bss->supp_rates_len; i++)
if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
have_higher_than_11mbit = 1;
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
have_higher_than_11mbit)
sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
else
sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
if (local->ops->conf_tx) {
struct ieee80211_tx_queue_params qparam;
memset(&qparam, 0, sizeof(qparam));
qparam.aifs = 2;
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
!(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
qparam.cw_min = 31;
else
qparam.cw_min = 15;
qparam.cw_max = 1023;
qparam.txop = 0;
for (i = 0; i < local_to_hw(local)->queues; i++)
local->ops->conf_tx(local_to_hw(local), i, &qparam);
}
}
static void ieee80211_sta_wmm_params(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
u8 *wmm_param, size_t wmm_param_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_tx_queue_params params;
size_t left;
int count;
u8 *pos;
if (!(ifsta->flags & IEEE80211_STA_WMM_ENABLED))
return;
if (!wmm_param)
return;
if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
return;
count = wmm_param[6] & 0x0f;
if (count == ifsta->wmm_last_param_set)
return;
ifsta->wmm_last_param_set = count;
pos = wmm_param + 8;
left = wmm_param_len - 8;
memset(&params, 0, sizeof(params));
if (!local->ops->conf_tx)
return;
local->wmm_acm = 0;
for (; left >= 4; left -= 4, pos += 4) {
int aci = (pos[0] >> 5) & 0x03;
int acm = (pos[0] >> 4) & 0x01;
int queue;
switch (aci) {
case 1:
queue = 3;
if (acm)
local->wmm_acm |= BIT(0) | BIT(3);
break;
case 2:
queue = 1;
if (acm)
local->wmm_acm |= BIT(4) | BIT(5);
break;
case 3:
queue = 0;
if (acm)
local->wmm_acm |= BIT(6) | BIT(7);
break;
case 0:
default:
queue = 2;
if (acm)
local->wmm_acm |= BIT(1) | BIT(2);
break;
}
params.aifs = pos[0] & 0x0f;
params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
params.cw_min = ecw2cw(pos[1] & 0x0f);
params.txop = pos[2] | (pos[3] << 8);
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
"cWmin=%d cWmax=%d txop=%d\n",
dev->name, queue, aci, acm, params.aifs, params.cw_min,
params.cw_max, params.txop);
#endif
/* TODO: handle ACM (block TX, fallback to next lowest allowed
* AC for now) */
if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
printk(KERN_DEBUG "%s: failed to set TX queue "
"parameters for queue %d\n", dev->name, queue);
}
}
}
static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata,
bool use_protection,
bool use_short_preamble)
{
struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
DECLARE_MAC_BUF(mac);
#endif
u32 changed = 0;
if (use_protection != bss_conf->use_cts_prot) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
"%s)\n",
sdata->dev->name,
use_protection ? "enabled" : "disabled",
print_mac(mac, ifsta->bssid));
}
#endif
bss_conf->use_cts_prot = use_protection;
changed |= BSS_CHANGED_ERP_CTS_PROT;
}
if (use_short_preamble != bss_conf->use_short_preamble) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: switched to %s barker preamble"
" (BSSID=%s)\n",
sdata->dev->name,
use_short_preamble ? "short" : "long",
print_mac(mac, ifsta->bssid));
}
#endif
bss_conf->use_short_preamble = use_short_preamble;
changed |= BSS_CHANGED_ERP_PREAMBLE;
}
return changed;
}
static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
u8 erp_value)
{
bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
return ieee80211_handle_protect_preamb(sdata,
use_protection, use_short_preamble);
}
static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata,
struct ieee80211_sta_bss *bss)
{
u32 changed = 0;
if (bss->has_erp_value)
changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value);
else {
u16 capab = bss->capability;
changed |= ieee80211_handle_protect_preamb(sdata, false,
(capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
}
return changed;
}
int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
struct ieee80211_ht_info *ht_info)
{
if (ht_info == NULL)
return -EINVAL;
memset(ht_info, 0, sizeof(*ht_info));
if (ht_cap_ie) {
u8 ampdu_info = ht_cap_ie->ampdu_params_info;
ht_info->ht_supported = 1;
ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
ht_info->ampdu_factor =
ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
ht_info->ampdu_density =
(ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
} else
ht_info->ht_supported = 0;
return 0;
}
int ieee80211_ht_addt_info_ie_to_ht_bss_info(
struct ieee80211_ht_addt_info *ht_add_info_ie,
struct ieee80211_ht_bss_info *bss_info)
{
if (bss_info == NULL)
return -EINVAL;
memset(bss_info, 0, sizeof(*bss_info));
if (ht_add_info_ie) {
u16 op_mode;
op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
bss_info->primary_channel = ht_add_info_ie->control_chan;
bss_info->bss_cap = ht_add_info_ie->ht_param;
bss_info->bss_op_mode = (u8)(op_mode & 0xff);
}
return 0;
}
static void ieee80211_sta_send_associnfo(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
char *buf;
size_t len;
int i;
union iwreq_data wrqu;
if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
return;
buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
ifsta->assocresp_ies_len), GFP_KERNEL);
if (!buf)
return;
len = sprintf(buf, "ASSOCINFO(");
if (ifsta->assocreq_ies) {
len += sprintf(buf + len, "ReqIEs=");
for (i = 0; i < ifsta->assocreq_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocreq_ies[i]);
}
}
if (ifsta->assocresp_ies) {
if (ifsta->assocreq_ies)
len += sprintf(buf + len, " ");
len += sprintf(buf + len, "RespIEs=");
for (i = 0; i < ifsta->assocresp_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocresp_ies[i]);
}
}
len += sprintf(buf + len, ")");
if (len > IW_CUSTOM_MAX) {
len = sprintf(buf, "ASSOCRESPIE=");
for (i = 0; i < ifsta->assocresp_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocresp_ies[i]);
}
}
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = len;
wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
kfree(buf);
}
static void ieee80211_set_associated(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
bool assoc)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = sdata->local;
struct ieee80211_conf *conf = &local_to_hw(local)->conf;
union iwreq_data wrqu;
u32 changed = BSS_CHANGED_ASSOC;
if (assoc) {
struct ieee80211_sta_bss *bss;
ifsta->flags |= IEEE80211_STA_ASSOCIATED;
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return;
bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
conf->channel->center_freq,
ifsta->ssid, ifsta->ssid_len);
if (bss) {
/* set timing information */
sdata->bss_conf.beacon_int = bss->beacon_int;
sdata->bss_conf.timestamp = bss->timestamp;
changed |= ieee80211_handle_bss_capability(sdata, bss);
ieee80211_rx_bss_put(local, bss);
}
if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
changed |= BSS_CHANGED_HT;
sdata->bss_conf.assoc_ht = 1;
sdata->bss_conf.ht_conf = &conf->ht_conf;
sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
}
ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
ieee80211_sta_send_associnfo(dev, ifsta);
} else {
netif_carrier_off(dev);
ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
changed |= ieee80211_reset_erp_info(dev);
sdata->bss_conf.assoc_ht = 0;
sdata->bss_conf.ht_conf = NULL;
sdata->bss_conf.ht_bss_conf = NULL;
memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
}
ifsta->last_probe = jiffies;
ieee80211_led_assoc(local, assoc);
sdata->bss_conf.assoc = assoc;
ieee80211_bss_info_change_notify(sdata, changed);
if (assoc)
netif_carrier_on(dev);
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
}
static void ieee80211_set_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta, int deauth)
{
if (deauth)
ifsta->auth_tries = 0;
ifsta->assoc_tries = 0;
ieee80211_set_associated(dev, ifsta, 0);
}
void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
int encrypt)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_tx_info *info;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
skb->dev = sdata->local->mdev;
skb_set_mac_header(skb, 0);
skb_set_network_header(skb, 0);
skb_set_transport_header(skb, 0);
info = IEEE80211_SKB_CB(skb);
memset(info, 0, sizeof(struct ieee80211_tx_info));
info->control.ifindex = sdata->dev->ifindex;
if (!encrypt)
info->flags |= IEEE80211_TX_CTL_DO_NOT_ENCRYPT;
dev_queue_xmit(skb);
}
static void ieee80211_send_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
int transaction, u8 *extra, size_t extra_len,
int encrypt)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(*mgmt) + 6 + extra_len);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
memset(mgmt, 0, 24 + 6);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_AUTH);
if (encrypt)
mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
ifsta->auth_transaction = transaction + 1;
mgmt->u.auth.status_code = cpu_to_le16(0);
if (extra)
memcpy(skb_put(skb, extra_len), extra, extra_len);
ieee80211_sta_tx(dev, skb, encrypt);
}
static void ieee80211_authenticate(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
DECLARE_MAC_BUF(mac);
ifsta->auth_tries++;
if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
printk(KERN_DEBUG "%s: authentication with AP %s"
" timed out\n",
dev->name, print_mac(mac, ifsta->bssid));
ifsta->state = IEEE80211_DISABLED;
return;
}
ifsta->state = IEEE80211_AUTHENTICATE;
printk(KERN_DEBUG "%s: authenticate with AP %s\n",
dev->name, print_mac(mac, ifsta->bssid));
ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
}
static int ieee80211_compatible_rates(struct ieee80211_sta_bss *bss,
struct ieee80211_supported_band *sband,
u64 *rates)
{
int i, j, count;
*rates = 0;
count = 0;
for (i = 0; i < bss->supp_rates_len; i++) {
int rate = (bss->supp_rates[i] & 0x7F) * 5;
for (j = 0; j < sband->n_bitrates; j++)
if (sband->bitrates[j].bitrate == rate) {
*rates |= BIT(j);
count++;
break;
}
}
return count;
}
static void ieee80211_send_assoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u8 *pos, *ies;
int i, len, count, rates_len, supp_rates_len;
u16 capab;
struct ieee80211_sta_bss *bss;
int wmm = 0;
struct ieee80211_supported_band *sband;
u64 rates = 0;
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
ifsta->ssid_len);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
capab = ifsta->capab;
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
}
bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
local->hw.conf.channel->center_freq,
ifsta->ssid, ifsta->ssid_len);
if (bss) {
if (bss->capability & WLAN_CAPABILITY_PRIVACY)
capab |= WLAN_CAPABILITY_PRIVACY;
if (bss->wmm_ie)
wmm = 1;
/* get all rates supported by the device and the AP as
* some APs don't like getting a superset of their rates
* in the association request (e.g. D-Link DAP 1353 in
* b-only mode) */
rates_len = ieee80211_compatible_rates(bss, sband, &rates);
if ((bss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) &&
(local->hw.flags & IEEE80211_HW_SPECTRUM_MGMT))
capab |= WLAN_CAPABILITY_SPECTRUM_MGMT;
ieee80211_rx_bss_put(local, bss);
} else {
rates = ~0;
rates_len = sband->n_bitrates;
}
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
skb_put(skb, 10);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_REASSOC_REQ);
mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
ETH_ALEN);
} else {
skb_put(skb, 4);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ASSOC_REQ);
mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
}
/* SSID */
ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ifsta->ssid_len;
memcpy(pos, ifsta->ssid, ifsta->ssid_len);
/* add all rates which were marked to be used above */
supp_rates_len = rates_len;
if (supp_rates_len > 8)
supp_rates_len = 8;
len = sband->n_bitrates;
pos = skb_put(skb, supp_rates_len + 2);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = supp_rates_len;
count = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if (BIT(i) & rates) {
int rate = sband->bitrates[i].bitrate;
*pos++ = (u8) (rate / 5);
if (++count == 8)
break;
}
}
if (count == 8) {
pos = skb_put(skb, rates_len - count + 2);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = rates_len - count;
for (i++; i < sband->n_bitrates; i++) {
if (BIT(i) & rates) {
int rate = sband->bitrates[i].bitrate;
*pos++ = (u8) (rate / 5);
}
}
}
if (capab & WLAN_CAPABILITY_SPECTRUM_MGMT) {
/* 1. power capabilities */
pos = skb_put(skb, 4);
*pos++ = WLAN_EID_PWR_CAPABILITY;
*pos++ = 2;
*pos++ = 0; /* min tx power */
*pos++ = local->hw.conf.channel->max_power; /* max tx power */
/* 2. supported channels */
/* TODO: get this in reg domain format */
pos = skb_put(skb, 2 * sband->n_channels + 2);
*pos++ = WLAN_EID_SUPPORTED_CHANNELS;
*pos++ = 2 * sband->n_channels;
for (i = 0; i < sband->n_channels; i++) {
*pos++ = ieee80211_frequency_to_channel(
sband->channels[i].center_freq);
*pos++ = 1; /* one channel in the subband*/
}
}
if (ifsta->extra_ie) {
pos = skb_put(skb, ifsta->extra_ie_len);
memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
}
if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
pos = skb_put(skb, 9);
*pos++ = WLAN_EID_VENDOR_SPECIFIC;
*pos++ = 7; /* len */
*pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
*pos++ = 0x50;
*pos++ = 0xf2;
*pos++ = 2; /* WME */
*pos++ = 0; /* WME info */
*pos++ = 1; /* WME ver */
*pos++ = 0;
}
/* wmm support is a must to HT */
if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED) &&
sband->ht_info.ht_supported && bss->ht_add_ie) {
struct ieee80211_ht_addt_info *ht_add_info =
(struct ieee80211_ht_addt_info *)bss->ht_add_ie;
u16 cap = sband->ht_info.cap;
__le16 tmp;
u32 flags = local->hw.conf.channel->flags;
switch (ht_add_info->ht_param & IEEE80211_HT_IE_CHA_SEC_OFFSET) {
case IEEE80211_HT_IE_CHA_SEC_ABOVE:
if (flags & IEEE80211_CHAN_NO_FAT_ABOVE) {
cap &= ~IEEE80211_HT_CAP_SUP_WIDTH;
cap &= ~IEEE80211_HT_CAP_SGI_40;
}
break;
case IEEE80211_HT_IE_CHA_SEC_BELOW:
if (flags & IEEE80211_CHAN_NO_FAT_BELOW) {
cap &= ~IEEE80211_HT_CAP_SUP_WIDTH;
cap &= ~IEEE80211_HT_CAP_SGI_40;
}
break;
}
tmp = cpu_to_le16(cap);
pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
*pos++ = WLAN_EID_HT_CAPABILITY;
*pos++ = sizeof(struct ieee80211_ht_cap);
memset(pos, 0, sizeof(struct ieee80211_ht_cap));
memcpy(pos, &tmp, sizeof(u16));
pos += sizeof(u16);
/* TODO: needs a define here for << 2 */
*pos++ = sband->ht_info.ampdu_factor |
(sband->ht_info.ampdu_density << 2);
memcpy(pos, sband->ht_info.supp_mcs_set, 16);
}
kfree(ifsta->assocreq_ies);
ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
if (ifsta->assocreq_ies)
memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_send_deauth(struct net_device *dev,
struct ieee80211_if_sta *ifsta, u16 reason)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_DEAUTH);
skb_put(skb, 2);
mgmt->u.deauth.reason_code = cpu_to_le16(reason);
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_send_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta, u16 reason)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_DISASSOC);
skb_put(skb, 2);
mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
ieee80211_sta_tx(dev, skb, 0);
}
static int ieee80211_privacy_mismatch(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
int bss_privacy;
int wep_privacy;
int privacy_invoked;
if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
return 0;
bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
local->hw.conf.channel->center_freq,
ifsta->ssid, ifsta->ssid_len);
if (!bss)
return 0;
bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
wep_privacy = !!ieee80211_sta_wep_configured(dev);
privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
ieee80211_rx_bss_put(local, bss);
if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
return 0;
return 1;
}
static void ieee80211_associate(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
DECLARE_MAC_BUF(mac);
ifsta->assoc_tries++;
if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
printk(KERN_DEBUG "%s: association with AP %s"
" timed out\n",
dev->name, print_mac(mac, ifsta->bssid));
ifsta->state = IEEE80211_DISABLED;
return;
}
ifsta->state = IEEE80211_ASSOCIATE;
printk(KERN_DEBUG "%s: associate with AP %s\n",
dev->name, print_mac(mac, ifsta->bssid));
if (ieee80211_privacy_mismatch(dev, ifsta)) {
printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
"mixed-cell disabled - abort association\n", dev->name);
ifsta->state = IEEE80211_DISABLED;
return;
}
ieee80211_send_assoc(dev, ifsta);
mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
}
static void ieee80211_associated(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
int disassoc;
DECLARE_MAC_BUF(mac);
/* TODO: start monitoring current AP signal quality and number of
* missed beacons. Scan other channels every now and then and search
* for better APs. */
/* TODO: remove expired BSSes */
ifsta->state = IEEE80211_ASSOCIATED;
rcu_read_lock();
sta = sta_info_get(local, ifsta->bssid);
if (!sta) {
printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
dev->name, print_mac(mac, ifsta->bssid));
disassoc = 1;
} else {
disassoc = 0;
if (time_after(jiffies,
sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
printk(KERN_DEBUG "%s: No ProbeResp from "
"current AP %s - assume out of "
"range\n",
dev->name, print_mac(mac, ifsta->bssid));
disassoc = 1;
sta_info_unlink(&sta);
} else
ieee80211_send_probe_req(dev, ifsta->bssid,
local->scan_ssid,
local->scan_ssid_len);
ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
} else {
ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
if (time_after(jiffies, ifsta->last_probe +
IEEE80211_PROBE_INTERVAL)) {
ifsta->last_probe = jiffies;
ieee80211_send_probe_req(dev, ifsta->bssid,
ifsta->ssid,
ifsta->ssid_len);
}
}
}
rcu_read_unlock();
if (disassoc && sta)
sta_info_destroy(sta);
if (disassoc) {
ifsta->state = IEEE80211_DISABLED;
ieee80211_set_associated(dev, ifsta, 0);
} else {
mod_timer(&ifsta->timer, jiffies +
IEEE80211_MONITORING_INTERVAL);
}
}
static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
u8 *ssid, size_t ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_supported_band *sband;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u8 *pos, *supp_rates, *esupp_rates = NULL;
int i;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
"request\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_PROBE_REQ);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (dst) {
memcpy(mgmt->da, dst, ETH_ALEN);
memcpy(mgmt->bssid, dst, ETH_ALEN);
} else {
memset(mgmt->da, 0xff, ETH_ALEN);
memset(mgmt->bssid, 0xff, ETH_ALEN);
}
pos = skb_put(skb, 2 + ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ssid_len;
memcpy(pos, ssid, ssid_len);
supp_rates = skb_put(skb, 2);
supp_rates[0] = WLAN_EID_SUPP_RATES;
supp_rates[1] = 0;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
for (i = 0; i < sband->n_bitrates; i++) {
struct ieee80211_rate *rate = &sband->bitrates[i];
if (esupp_rates) {
pos = skb_put(skb, 1);
esupp_rates[1]++;
} else if (supp_rates[1] == 8) {
esupp_rates = skb_put(skb, 3);
esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
esupp_rates[1] = 1;
pos = &esupp_rates[2];
} else {
pos = skb_put(skb, 1);
supp_rates[1]++;
}
*pos = rate->bitrate / 5;
}
ieee80211_sta_tx(dev, skb, 0);
}
static int ieee80211_sta_wep_configured(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata || !sdata->default_key ||
sdata->default_key->conf.alg != ALG_WEP)
return 0;
return 1;
}
static void ieee80211_auth_completed(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
printk(KERN_DEBUG "%s: authenticated\n", dev->name);
ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
ieee80211_associate(dev, ifsta);
}
static void ieee80211_auth_challenge(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u8 *pos;
struct ieee802_11_elems elems;
pos = mgmt->u.auth.variable;
ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
if (!elems.challenge)
return;
ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
elems.challenge_len + 2, 1);
}
static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
u8 dialog_token, u16 status, u16 policy,
u16 buf_size, u16 timeout)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u16 capab;
skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer "
"for addba resp frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
else
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
mgmt->u.action.category = WLAN_CATEGORY_BACK;
mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
capab = (u16)(policy << 1); /* bit 1 aggregation policy */
capab |= (u16)(tid << 2); /* bit 5:2 TID number */
capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
ieee80211_sta_tx(dev, skb, 0);
return;
}
void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
u16 tid, u8 dialog_token, u16 start_seq_num,
u16 agg_size, u16 timeout)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u16 capab;
skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
if (!skb) {
printk(KERN_ERR "%s: failed to allocate buffer "
"for addba request frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
else
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
mgmt->u.action.category = WLAN_CATEGORY_BACK;
mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
mgmt->u.action.u.addba_req.dialog_token = dialog_token;
capab = (u16)(1 << 1); /* bit 1 aggregation policy */
capab |= (u16)(tid << 2); /* bit 5:2 TID number */
capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
mgmt->u.action.u.addba_req.start_seq_num =
cpu_to_le16(start_seq_num << 4);
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_sta_process_addba_request(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw *hw = &local->hw;
struct ieee80211_conf *conf = &hw->conf;
struct sta_info *sta;
struct tid_ampdu_rx *tid_agg_rx;
u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
u8 dialog_token;
int ret = -EOPNOTSUPP;
DECLARE_MAC_BUF(mac);
rcu_read_lock();
sta = sta_info_get(local, mgmt->sa);
if (!sta) {
rcu_read_unlock();
return;
}
/* extract session parameters from addba request frame */
dialog_token = mgmt->u.action.u.addba_req.dialog_token;
timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
start_seq_num =
le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
status = WLAN_STATUS_REQUEST_DECLINED;
/* sanity check for incoming parameters:
* check if configuration can support the BA policy
* and if buffer size does not exceeds max value */
if (((ba_policy != 1)
&& (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
|| (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
status = WLAN_STATUS_INVALID_QOS_PARAM;
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "AddBA Req with bad params from "
"%s on tid %u. policy %d, buffer size %d\n",
print_mac(mac, mgmt->sa), tid, ba_policy,
buf_size);
#endif /* CONFIG_MAC80211_HT_DEBUG */
goto end_no_lock;
}
/* determine default buffer size */
if (buf_size == 0) {
struct ieee80211_supported_band *sband;
sband = local->hw.wiphy->bands[conf->channel->band];
buf_size = IEEE80211_MIN_AMPDU_BUF;
buf_size = buf_size << sband->ht_info.ampdu_factor;
}
/* examine state machine */
spin_lock_bh(&sta->lock);
if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "unexpected AddBA Req from "
"%s on tid %u\n",
print_mac(mac, mgmt->sa), tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
goto end;
}
/* prepare A-MPDU MLME for Rx aggregation */
sta->ampdu_mlme.tid_rx[tid] =
kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
if (!sta->ampdu_mlme.tid_rx[tid]) {
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
tid);
#endif
goto end;
}
/* rx timer */
sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
sta_rx_agg_session_timer_expired;
sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
(unsigned long)&sta->timer_to_tid[tid];
init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
/* prepare reordering buffer */
tid_agg_rx->reorder_buf =
kmalloc(buf_size * sizeof(struct sk_buff *), GFP_ATOMIC);
if (!tid_agg_rx->reorder_buf) {
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_ERR "can not allocate reordering buffer "
"to tid %d\n", tid);
#endif
kfree(sta->ampdu_mlme.tid_rx[tid]);
goto end;
}
memset(tid_agg_rx->reorder_buf, 0,
buf_size * sizeof(struct sk_buff *));
if (local->ops->ampdu_action)
ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
sta->addr, tid, &start_seq_num);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "Rx A-MPDU request on tid %d result %d\n", tid, ret);
#endif /* CONFIG_MAC80211_HT_DEBUG */
if (ret) {
kfree(tid_agg_rx->reorder_buf);
kfree(tid_agg_rx);
sta->ampdu_mlme.tid_rx[tid] = NULL;
goto end;
}
/* change state and send addba resp */
sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
tid_agg_rx->dialog_token = dialog_token;
tid_agg_rx->ssn = start_seq_num;
tid_agg_rx->head_seq_num = start_seq_num;
tid_agg_rx->buf_size = buf_size;
tid_agg_rx->timeout = timeout;
tid_agg_rx->stored_mpdu_num = 0;
status = WLAN_STATUS_SUCCESS;
end:
spin_unlock_bh(&sta->lock);
end_no_lock:
ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
dialog_token, status, 1, buf_size, timeout);
rcu_read_unlock();
}
static void ieee80211_sta_process_addba_resp(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw *hw = &local->hw;
struct sta_info *sta;
u16 capab;
u16 tid;
u8 *state;
rcu_read_lock();
sta = sta_info_get(local, mgmt->sa);
if (!sta) {
rcu_read_unlock();
return;
}
capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
state = &sta->ampdu_mlme.tid_state_tx[tid];
spin_lock_bh(&sta->lock);
if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
spin_unlock_bh(&sta->lock);
goto addba_resp_exit;
}
if (mgmt->u.action.u.addba_resp.dialog_token !=
sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
spin_unlock_bh(&sta->lock);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
goto addba_resp_exit;
}
del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
== WLAN_STATUS_SUCCESS) {
*state |= HT_ADDBA_RECEIVED_MSK;
sta->ampdu_mlme.addba_req_num[tid] = 0;
if (*state == HT_AGG_STATE_OPERATIONAL)
ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
spin_unlock_bh(&sta->lock);
} else {
sta->ampdu_mlme.addba_req_num[tid]++;
/* this will allow the state check in stop_BA_session */
*state = HT_AGG_STATE_OPERATIONAL;
spin_unlock_bh(&sta->lock);
ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
WLAN_BACK_INITIATOR);
}
addba_resp_exit:
rcu_read_unlock();
}
void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
u16 initiator, u16 reason_code)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u16 params;
skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom);
if (!skb) {
printk(KERN_ERR "%s: failed to allocate buffer "
"for delba frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, da, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
else
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
mgmt->u.action.category = WLAN_CATEGORY_BACK;
mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
params = (u16)(initiator << 11); /* bit 11 initiator */
params |= (u16)(tid << 12); /* bit 15:12 TID number */
mgmt->u.action.u.delba.params = cpu_to_le16(params);
mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
ieee80211_sta_tx(dev, skb, 0);
}
void ieee80211_send_bar(struct net_device *dev, u8 *ra, u16 tid, u16 ssn)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_bar *bar;
u16 bar_control = 0;
skb = dev_alloc_skb(sizeof(*bar) + local->hw.extra_tx_headroom);
if (!skb) {
printk(KERN_ERR "%s: failed to allocate buffer for "
"bar frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
bar = (struct ieee80211_bar *)skb_put(skb, sizeof(*bar));
memset(bar, 0, sizeof(*bar));
bar->frame_control = IEEE80211_FC(IEEE80211_FTYPE_CTL,
IEEE80211_STYPE_BACK_REQ);
memcpy(bar->ra, ra, ETH_ALEN);
memcpy(bar->ta, dev->dev_addr, ETH_ALEN);
bar_control |= (u16)IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL;
bar_control |= (u16)IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA;
bar_control |= (u16)(tid << 12);
bar->control = cpu_to_le16(bar_control);
bar->start_seq_num = cpu_to_le16(ssn);
ieee80211_sta_tx(dev, skb, 0);
}
void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
u16 initiator, u16 reason)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw *hw = &local->hw;
struct sta_info *sta;
int ret, i;
DECLARE_MAC_BUF(mac);
rcu_read_lock();
sta = sta_info_get(local, ra);
if (!sta) {
rcu_read_unlock();
return;
}
/* check if TID is in operational state */
spin_lock_bh(&sta->lock);
if (sta->ampdu_mlme.tid_state_rx[tid]
!= HT_AGG_STATE_OPERATIONAL) {
spin_unlock_bh(&sta->lock);
rcu_read_unlock();
return;
}
sta->ampdu_mlme.tid_state_rx[tid] =
HT_AGG_STATE_REQ_STOP_BA_MSK |
(initiator << HT_AGG_STATE_INITIATOR_SHIFT);
spin_unlock_bh(&sta->lock);
/* stop HW Rx aggregation. ampdu_action existence
* already verified in session init so we add the BUG_ON */
BUG_ON(!local->ops->ampdu_action);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "Rx BA session stop requested for %s tid %u\n",
print_mac(mac, ra), tid);
#endif /* CONFIG_MAC80211_HT_DEBUG */
ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
ra, tid, NULL);
if (ret)
printk(KERN_DEBUG "HW problem - can not stop rx "
"aggregation for tid %d\n", tid);
/* shutdown timer has not expired */
if (initiator != WLAN_BACK_TIMER)
del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
/* check if this is a self generated aggregation halt */
if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
ieee80211_send_delba(dev, ra, tid, 0, reason);
/* free the reordering buffer */
for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
/* release the reordered frames */
dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
}
}
/* free resources */
kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
kfree(sta->ampdu_mlme.tid_rx[tid]);
sta->ampdu_mlme.tid_rx[tid] = NULL;
sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
rcu_read_unlock();
}
static void ieee80211_sta_process_delba(struct net_device *dev,
struct ieee80211_mgmt *mgmt, size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
u16 tid, params;
u16 initiator;
DECLARE_MAC_BUF(mac);
rcu_read_lock();
sta = sta_info_get(local, mgmt->sa);
if (!sta) {
rcu_read_unlock();
return;
}
params = le16_to_cpu(mgmt->u.action.u.delba.params);
tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
print_mac(mac, mgmt->sa),
initiator ? "initiator" : "recipient", tid,
mgmt->u.action.u.delba.reason_code);
#endif /* CONFIG_MAC80211_HT_DEBUG */
if (initiator == WLAN_BACK_INITIATOR)
ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
WLAN_BACK_INITIATOR, 0);
else { /* WLAN_BACK_RECIPIENT */
spin_lock_bh(&sta->lock);
sta->ampdu_mlme.tid_state_tx[tid] =
HT_AGG_STATE_OPERATIONAL;
spin_unlock_bh(&sta->lock);
ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
WLAN_BACK_RECIPIENT);
}
rcu_read_unlock();
}
/*
* After sending add Block Ack request we activated a timer until
* add Block Ack response will arrive from the recipient.
* If this timer expires sta_addba_resp_timer_expired will be executed.
*/
void sta_addba_resp_timer_expired(unsigned long data)
{
/* not an elegant detour, but there is no choice as the timer passes
* only one argument, and both sta_info and TID are needed, so init
* flow in sta_info_create gives the TID as data, while the timer_to_id
* array gives the sta through container_of */
u16 tid = *(u8 *)data;
struct sta_info *temp_sta = container_of((void *)data,
struct sta_info, timer_to_tid[tid]);
struct ieee80211_local *local = temp_sta->local;
struct ieee80211_hw *hw = &local->hw;
struct sta_info *sta;
u8 *state;
rcu_read_lock();
sta = sta_info_get(local, temp_sta->addr);
if (!sta) {
rcu_read_unlock();
return;
}
state = &sta->ampdu_mlme.tid_state_tx[tid];
/* check if the TID waits for addBA response */
spin_lock_bh(&sta->lock);
if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
spin_unlock_bh(&sta->lock);
*state = HT_AGG_STATE_IDLE;
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "timer expired on tid %d but we are not "
"expecting addBA response there", tid);
#endif
goto timer_expired_exit;
}
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
#endif
/* go through the state check in stop_BA_session */
*state = HT_AGG_STATE_OPERATIONAL;
spin_unlock_bh(&sta->lock);
ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
WLAN_BACK_INITIATOR);
timer_expired_exit:
rcu_read_unlock();
}
/*
* After accepting the AddBA Request we activated a timer,
* resetting it after each frame that arrives from the originator.
* if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
*/
static void sta_rx_agg_session_timer_expired(unsigned long data)
{
/* not an elegant detour, but there is no choice as the timer passes
* only one argument, and various sta_info are needed here, so init
* flow in sta_info_create gives the TID as data, while the timer_to_id
* array gives the sta through container_of */
u8 *ptid = (u8 *)data;
u8 *timer_to_id = ptid - *ptid;
struct sta_info *sta = container_of(timer_to_id, struct sta_info,
timer_to_tid[0]);
#ifdef CONFIG_MAC80211_HT_DEBUG
printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
#endif
ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
(u16)*ptid, WLAN_BACK_TIMER,
WLAN_REASON_QSTA_TIMEOUT);
}
void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int i;
for (i = 0; i < STA_TID_NUM; i++) {
ieee80211_stop_tx_ba_session(&local->hw, addr, i,
WLAN_BACK_INITIATOR);
ieee80211_sta_stop_rx_ba_session(dev, addr, i,
WLAN_BACK_RECIPIENT,
WLAN_REASON_QSTA_LEAVE_QBSS);
}
}
static void ieee80211_send_refuse_measurement_request(struct net_device *dev,
struct ieee80211_msrment_ie *request_ie,
const u8 *da, const u8 *bssid,
u8 dialog_token)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *msr_report;
skb = dev_alloc_skb(sizeof(*msr_report) + local->hw.extra_tx_headroom +
sizeof(struct ieee80211_msrment_ie));
if (!skb) {
printk(KERN_ERR "%s: failed to allocate buffer for "
"measurement report frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
msr_report = (struct ieee80211_mgmt *)skb_put(skb, 24);
memset(msr_report, 0, 24);
memcpy(msr_report->da, da, ETH_ALEN);
memcpy(msr_report->sa, dev->dev_addr, ETH_ALEN);
memcpy(msr_report->bssid, bssid, ETH_ALEN);
msr_report->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(msr_report->u.action.u.measurement));
msr_report->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
msr_report->u.action.u.measurement.action_code =
WLAN_ACTION_SPCT_MSR_RPRT;
msr_report->u.action.u.measurement.dialog_token = dialog_token;
msr_report->u.action.u.measurement.element_id = WLAN_EID_MEASURE_REPORT;
msr_report->u.action.u.measurement.length =
sizeof(struct ieee80211_msrment_ie);
memset(&msr_report->u.action.u.measurement.msr_elem, 0,
sizeof(struct ieee80211_msrment_ie));
msr_report->u.action.u.measurement.msr_elem.token = request_ie->token;
msr_report->u.action.u.measurement.msr_elem.mode |=
IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED;
msr_report->u.action.u.measurement.msr_elem.type = request_ie->type;
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_sta_process_measurement_req(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len)
{
/*
* Ignoring measurement request is spec violation.
* Mandatory measurements must be reported optional
* measurements might be refused or reported incapable
* For now just refuse
* TODO: Answer basic measurement as unmeasured
*/
ieee80211_send_refuse_measurement_request(dev,
&mgmt->u.action.u.measurement.msr_elem,
mgmt->sa, mgmt->bssid,
mgmt->u.action.u.measurement.dialog_token);
}
static void ieee80211_rx_mgmt_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
u16 auth_alg, auth_transaction, status_code;
DECLARE_MAC_BUF(mac);
if (ifsta->state != IEEE80211_AUTHENTICATE &&
sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
return;
if (len < 24 + 6)
return;
if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0)
return;
if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
return;
auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
status_code = le16_to_cpu(mgmt->u.auth.status_code);
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
/*
* IEEE 802.11 standard does not require authentication in IBSS
* networks and most implementations do not seem to use it.
* However, try to reply to authentication attempts if someone
* has actually implemented this.
*/
if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1)
return;
ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
}
if (auth_alg != ifsta->auth_alg ||
auth_transaction != ifsta->auth_transaction)
return;
if (status_code != WLAN_STATUS_SUCCESS) {
if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
u8 algs[3];
const int num_algs = ARRAY_SIZE(algs);
int i, pos;
algs[0] = algs[1] = algs[2] = 0xff;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
algs[0] = WLAN_AUTH_OPEN;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
algs[1] = WLAN_AUTH_SHARED_KEY;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
algs[2] = WLAN_AUTH_LEAP;
if (ifsta->auth_alg == WLAN_AUTH_OPEN)
pos = 0;
else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
pos = 1;
else
pos = 2;
for (i = 0; i < num_algs; i++) {
pos++;
if (pos >= num_algs)
pos = 0;
if (algs[pos] == ifsta->auth_alg ||
algs[pos] == 0xff)
continue;
if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
!ieee80211_sta_wep_configured(dev))
continue;
ifsta->auth_alg = algs[pos];
break;
}
}
return;
}
switch (ifsta->auth_alg) {
case WLAN_AUTH_OPEN:
case WLAN_AUTH_LEAP:
ieee80211_auth_completed(dev, ifsta);
break;
case WLAN_AUTH_SHARED_KEY:
if (ifsta->auth_transaction == 4)
ieee80211_auth_completed(dev, ifsta);
else
ieee80211_auth_challenge(dev, ifsta, mgmt, len);
break;
}
}
static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u16 reason_code;
DECLARE_MAC_BUF(mac);
if (len < 24 + 2)
return;
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN))
return;
reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
if (ifsta->flags & IEEE80211_STA_AUTHENTICATED)
printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
if (ifsta->state == IEEE80211_AUTHENTICATE ||
ifsta->state == IEEE80211_ASSOCIATE ||
ifsta->state == IEEE80211_ASSOCIATED) {
ifsta->state = IEEE80211_AUTHENTICATE;
mod_timer(&ifsta->timer, jiffies +
IEEE80211_RETRY_AUTH_INTERVAL);
}
ieee80211_set_disassoc(dev, ifsta, 1);
ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
}
static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u16 reason_code;
DECLARE_MAC_BUF(mac);
if (len < 24 + 2)
return;
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN))
return;
reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
printk(KERN_DEBUG "%s: disassociated\n", dev->name);
if (ifsta->state == IEEE80211_ASSOCIATED) {
ifsta->state = IEEE80211_ASSOCIATE;
mod_timer(&ifsta->timer, jiffies +
IEEE80211_RETRY_AUTH_INTERVAL);
}
ieee80211_set_disassoc(dev, ifsta, 0);
}
static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len,
int reassoc)
{
struct ieee80211_local *local = sdata->local;
struct net_device *dev = sdata->dev;
struct ieee80211_supported_band *sband;
struct sta_info *sta;
u64 rates, basic_rates;
u16 capab_info, status_code, aid;
struct ieee802_11_elems elems;
struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
u8 *pos;
int i, j;
DECLARE_MAC_BUF(mac);
bool have_higher_than_11mbit = false;
/* AssocResp and ReassocResp have identical structure, so process both
* of them in this function. */
if (ifsta->state != IEEE80211_ASSOCIATE)
return;
if (len < 24 + 6)
return;
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0)
return;
capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
"status=%d aid=%d)\n",
dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
if (status_code != WLAN_STATUS_SUCCESS) {
printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
dev->name, status_code);
/* if this was a reassociation, ensure we try a "full"
* association next time. This works around some broken APs
* which do not correctly reject reassociation requests. */
ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
return;
}
if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
"set\n", dev->name, aid);
aid &= ~(BIT(15) | BIT(14));
pos = mgmt->u.assoc_resp.variable;
ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
if (!elems.supp_rates) {
printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
dev->name);
return;
}
printk(KERN_DEBUG "%s: associated\n", dev->name);
ifsta->aid = aid;
ifsta->ap_capab = capab_info;
kfree(ifsta->assocresp_ies);
ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
if (ifsta->assocresp_ies)
memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
rcu_read_lock();
/* Add STA entry for the AP */
sta = sta_info_get(local, ifsta->bssid);
if (!sta) {
struct ieee80211_sta_bss *bss;
int err;
sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
if (!sta) {
printk(KERN_DEBUG "%s: failed to alloc STA entry for"
" the AP\n", dev->name);
rcu_read_unlock();
return;
}
bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
local->hw.conf.channel->center_freq,
ifsta->ssid, ifsta->ssid_len);
if (bss) {
sta->last_signal = bss->signal;
sta->last_qual = bss->qual;
sta->last_noise = bss->noise;
ieee80211_rx_bss_put(local, bss);
}
err = sta_info_insert(sta);
if (err) {
printk(KERN_DEBUG "%s: failed to insert STA entry for"
" the AP (error %d)\n", dev->name, err);
rcu_read_unlock();
return;
}
}
/*
* FIXME: Do we really need to update the sta_info's information here?
* We already know about the AP (we found it in our list) so it
* should already be filled with the right info, no?
* As is stands, all this is racy because typically we assume
* the information that is filled in here (except flags) doesn't
* change while a STA structure is alive. As such, it should move
* to between the sta_info_alloc() and sta_info_insert() above.
*/
set_sta_flags(sta, WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
WLAN_STA_AUTHORIZED);
rates = 0;
basic_rates = 0;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
for (i = 0; i < elems.supp_rates_len; i++) {
int rate = (elems.supp_rates[i] & 0x7f) * 5;
if (rate > 110)
have_higher_than_11mbit = true;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate)
rates |= BIT(j);
if (elems.supp_rates[i] & 0x80)
basic_rates |= BIT(j);
}
}
for (i = 0; i < elems.ext_supp_rates_len; i++) {
int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
if (rate > 110)
have_higher_than_11mbit = true;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate)
rates |= BIT(j);
if (elems.ext_supp_rates[i] & 0x80)
basic_rates |= BIT(j);
}
}
sta->supp_rates[local->hw.conf.channel->band] = rates;
sdata->basic_rates = basic_rates;
/* cf. IEEE 802.11 9.2.12 */
if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
have_higher_than_11mbit)
sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
else
sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
(ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
struct ieee80211_ht_bss_info bss_info;
ieee80211_ht_cap_ie_to_ht_info(
(struct ieee80211_ht_cap *)
elems.ht_cap_elem, &sta->ht_info);
ieee80211_ht_addt_info_ie_to_ht_bss_info(
(struct ieee80211_ht_addt_info *)
elems.ht_info_elem, &bss_info);
ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info);
}
rate_control_rate_init(sta, local);
if (elems.wmm_param) {
set_sta_flags(sta, WLAN_STA_WME);
rcu_read_unlock();
ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
elems.wmm_param_len);
} else
rcu_read_unlock();
/* set AID and assoc capability,
* ieee80211_set_associated() will tell the driver */
bss_conf->aid = aid;
bss_conf->assoc_capability = capab_info;
ieee80211_set_associated(dev, ifsta, 1);
ieee80211_associated(dev, ifsta);
}
/* Caller must hold local->sta_bss_lock */
static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
u8 hash_idx;
if (bss_mesh_cfg(bss))
hash_idx = mesh_id_hash(bss_mesh_id(bss),
bss_mesh_id_len(bss));
else
hash_idx = STA_HASH(bss->bssid);
bss->hnext = local->sta_bss_hash[hash_idx];
local->sta_bss_hash[hash_idx] = bss;
}
/* Caller must hold local->sta_bss_lock */
static void __ieee80211_rx_bss_hash_del(struct ieee80211_local *local,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_sta_bss *b, *prev = NULL;
b = local->sta_bss_hash[STA_HASH(bss->bssid)];
while (b) {
if (b == bss) {
if (!prev)
local->sta_bss_hash[STA_HASH(bss->bssid)] =
bss->hnext;
else
prev->hnext = bss->hnext;
break;
}
prev = b;
b = b->hnext;
}
}
static struct ieee80211_sta_bss *
ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
u8 *ssid, u8 ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
if (!bss)
return NULL;
atomic_inc(&bss->users);
atomic_inc(&bss->users);
memcpy(bss->bssid, bssid, ETH_ALEN);
bss->freq = freq;
if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
memcpy(bss->ssid, ssid, ssid_len);
bss->ssid_len = ssid_len;
}
spin_lock_bh(&local->sta_bss_lock);
/* TODO: order by RSSI? */
list_add_tail(&bss->list, &local->sta_bss_list);
__ieee80211_rx_bss_hash_add(dev, bss);
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
static struct ieee80211_sta_bss *
ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
u8 *ssid, u8 ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
spin_lock_bh(&local->sta_bss_lock);
bss = local->sta_bss_hash[STA_HASH(bssid)];
while (bss) {
if (!bss_mesh_cfg(bss) &&
!memcmp(bss->bssid, bssid, ETH_ALEN) &&
bss->freq == freq &&
bss->ssid_len == ssid_len &&
(ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
atomic_inc(&bss->users);
break;
}
bss = bss->hnext;
}
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
#ifdef CONFIG_MAC80211_MESH
static struct ieee80211_sta_bss *
ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
u8 *mesh_cfg, int freq)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
spin_lock_bh(&local->sta_bss_lock);
bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
while (bss) {
if (bss_mesh_cfg(bss) &&
!memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
bss->freq == freq &&
mesh_id_len == bss->mesh_id_len &&
(mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
mesh_id_len))) {
atomic_inc(&bss->users);
break;
}
bss = bss->hnext;
}
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
static struct ieee80211_sta_bss *
ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
u8 *mesh_cfg, int mesh_config_len, int freq)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
if (mesh_config_len != MESH_CFG_LEN)
return NULL;
bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
if (!bss)
return NULL;
bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
if (!bss->mesh_cfg) {
kfree(bss);
return NULL;
}
if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
if (!bss->mesh_id) {
kfree(bss->mesh_cfg);
kfree(bss);
return NULL;
}
memcpy(bss->mesh_id, mesh_id, mesh_id_len);
}
atomic_inc(&bss->users);
atomic_inc(&bss->users);
memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
bss->mesh_id_len = mesh_id_len;
bss->freq = freq;
spin_lock_bh(&local->sta_bss_lock);
/* TODO: order by RSSI? */
list_add_tail(&bss->list, &local->sta_bss_list);
__ieee80211_rx_bss_hash_add(dev, bss);
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
#endif
static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
{
kfree(bss->wpa_ie);
kfree(bss->rsn_ie);
kfree(bss->wmm_ie);
kfree(bss->ht_ie);
kfree(bss->ht_add_ie);
kfree(bss_mesh_id(bss));
kfree(bss_mesh_cfg(bss));
kfree(bss);
}
static void ieee80211_rx_bss_put(struct ieee80211_local *local,
struct ieee80211_sta_bss *bss)
{
local_bh_disable();
if (!atomic_dec_and_lock(&bss->users, &local->sta_bss_lock)) {
local_bh_enable();
return;
}
__ieee80211_rx_bss_hash_del(local, bss);
list_del(&bss->list);
spin_unlock_bh(&local->sta_bss_lock);
ieee80211_rx_bss_free(bss);
}
void ieee80211_rx_bss_list_init(struct ieee80211_local *local)
{
spin_lock_init(&local->sta_bss_lock);
INIT_LIST_HEAD(&local->sta_bss_list);
}
void ieee80211_rx_bss_list_deinit(struct ieee80211_local *local)
{
struct ieee80211_sta_bss *bss, *tmp;
list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
ieee80211_rx_bss_put(local, bss);
}
static int ieee80211_sta_join_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int res, rates, i, j;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
struct ieee80211_tx_info *control;
struct rate_selection ratesel;
u8 *pos;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_supported_band *sband;
union iwreq_data wrqu;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
/* Remove possible STA entries from other IBSS networks. */
sta_info_flush_delayed(sdata);
if (local->ops->reset_tsf) {
/* Reset own TSF to allow time synchronization work. */
local->ops->reset_tsf(local_to_hw(local));
}
memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
res = ieee80211_if_config(dev);
if (res)
return res;
local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
sdata->drop_unencrypted = bss->capability &
WLAN_CAPABILITY_PRIVACY ? 1 : 0;
res = ieee80211_set_freq(dev, bss->freq);
if (res)
return res;
/* Set beacon template */
skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
do {
if (!skb)
break;
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *)
skb_put(skb, 24 + sizeof(mgmt->u.beacon));
memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_BEACON);
memset(mgmt->da, 0xff, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->u.beacon.beacon_int =
cpu_to_le16(local->hw.conf.beacon_int);
mgmt->u.beacon.timestamp = cpu_to_le64(bss->timestamp);
mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
pos = skb_put(skb, 2 + ifsta->ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ifsta->ssid_len;
memcpy(pos, ifsta->ssid, ifsta->ssid_len);
rates = bss->supp_rates_len;
if (rates > 8)
rates = 8;
pos = skb_put(skb, 2 + rates);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = rates;
memcpy(pos, bss->supp_rates, rates);
if (bss->band == IEEE80211_BAND_2GHZ) {
pos = skb_put(skb, 2 + 1);
*pos++ = WLAN_EID_DS_PARAMS;
*pos++ = 1;
*pos++ = ieee80211_frequency_to_channel(bss->freq);
}
pos = skb_put(skb, 2 + 2);
*pos++ = WLAN_EID_IBSS_PARAMS;
*pos++ = 2;
/* FIX: set ATIM window based on scan results */
*pos++ = 0;
*pos++ = 0;
if (bss->supp_rates_len > 8) {
rates = bss->supp_rates_len - 8;
pos = skb_put(skb, 2 + rates);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = rates;
memcpy(pos, &bss->supp_rates[8], rates);
}
control = IEEE80211_SKB_CB(skb);
rate_control_get_rate(dev, sband, skb, &ratesel);
if (ratesel.rate_idx < 0) {
printk(KERN_DEBUG "%s: Failed to determine TX rate "
"for IBSS beacon\n", dev->name);
break;
}
control->control.vif = &sdata->vif;
control->tx_rate_idx = ratesel.rate_idx;
if (sdata->bss_conf.use_short_preamble &&
sband->bitrates[ratesel.rate_idx].flags & IEEE80211_RATE_SHORT_PREAMBLE)
control->flags |= IEEE80211_TX_CTL_SHORT_PREAMBLE;
control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
control->flags |= IEEE80211_TX_CTL_NO_ACK;
control->flags |= IEEE80211_TX_CTL_DO_NOT_ENCRYPT;
control->control.retry_limit = 1;
ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
if (ifsta->probe_resp) {
mgmt = (struct ieee80211_mgmt *)
ifsta->probe_resp->data;
mgmt->frame_control =
IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_PROBE_RESP);
} else {
printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
"template for IBSS\n", dev->name);
}
if (local->ops->beacon_update &&
local->ops->beacon_update(local_to_hw(local), skb) == 0) {
printk(KERN_DEBUG "%s: Configured IBSS beacon "
"template\n", dev->name);
skb = NULL;
}
rates = 0;
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
for (i = 0; i < bss->supp_rates_len; i++) {
int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
for (j = 0; j < sband->n_bitrates; j++)
if (sband->bitrates[j].bitrate == bitrate)
rates |= BIT(j);
}
ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
ieee80211_sta_def_wmm_params(dev, bss, 1);
} while (0);
if (skb) {
printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
"template\n", dev->name);
dev_kfree_skb(skb);
}
ifsta->state = IEEE80211_IBSS_JOINED;
mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
memset(&wrqu, 0, sizeof(wrqu));
memcpy(wrqu.ap_addr.sa_data, bss->bssid, ETH_ALEN);
wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
return res;
}
u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
struct ieee802_11_elems *elems,
enum ieee80211_band band)
{
struct ieee80211_supported_band *sband;
struct ieee80211_rate *bitrates;
size_t num_rates;
u64 supp_rates;
int i, j;
sband = local->hw.wiphy->bands[band];
if (!sband) {
WARN_ON(1);
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
}
bitrates = sband->bitrates;
num_rates = sband->n_bitrates;
supp_rates = 0;
for (i = 0; i < elems->supp_rates_len +
elems->ext_supp_rates_len; i++) {
u8 rate = 0;
int own_rate;
if (i < elems->supp_rates_len)
rate = elems->supp_rates[i];
else if (elems->ext_supp_rates)
rate = elems->ext_supp_rates
[i - elems->supp_rates_len];
own_rate = 5 * (rate & 0x7f);
for (j = 0; j < num_rates; j++)
if (bitrates[j].bitrate == own_rate)
supp_rates |= BIT(j);
}
return supp_rates;
}
static void ieee80211_rx_bss_info(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status,
struct ieee802_11_elems *elems,
int beacon)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int freq, clen;
struct ieee80211_sta_bss *bss;
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
u64 beacon_timestamp, rx_timestamp;
struct ieee80211_channel *channel;
DECLARE_MAC_BUF(mac);
DECLARE_MAC_BUF(mac2);
if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
return; /* ignore ProbeResp to foreign address */
beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
if (ieee80211_vif_is_mesh(&sdata->vif) && elems->mesh_id &&
elems->mesh_config && mesh_matches_local(elems, dev)) {
u64 rates = ieee80211_sta_get_rates(local, elems,
rx_status->band);
mesh_neighbour_update(mgmt->sa, rates, dev,
mesh_peer_accepts_plinks(elems, dev));
}
rcu_read_lock();
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems->supp_rates &&
memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
(sta = sta_info_get(local, mgmt->sa))) {
u64 prev_rates;
u64 supp_rates = ieee80211_sta_get_rates(local, elems,
rx_status->band);
prev_rates = sta->supp_rates[rx_status->band];
sta->supp_rates[rx_status->band] &= supp_rates;
if (sta->supp_rates[rx_status->band] == 0) {
/* No matching rates - this should not really happen.
* Make sure that at least one rate is marked
* supported to avoid issues with TX rate ctrl. */
sta->supp_rates[rx_status->band] =
sdata->u.sta.supp_rates_bits[rx_status->band];
}
}
rcu_read_unlock();
if (elems->ds_params && elems->ds_params_len == 1)
freq = ieee80211_channel_to_frequency(elems->ds_params[0]);
else
freq = rx_status->freq;
channel = ieee80211_get_channel(local->hw.wiphy, freq);
if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
return;
#ifdef CONFIG_MAC80211_MESH
if (elems->mesh_config)
bss = ieee80211_rx_mesh_bss_get(dev, elems->mesh_id,
elems->mesh_id_len, elems->mesh_config, freq);
else
#endif
bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
elems->ssid, elems->ssid_len);
if (!bss) {
#ifdef CONFIG_MAC80211_MESH
if (elems->mesh_config)
bss = ieee80211_rx_mesh_bss_add(dev, elems->mesh_id,
elems->mesh_id_len, elems->mesh_config,
elems->mesh_config_len, freq);
else
#endif
bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
elems->ssid, elems->ssid_len);
if (!bss)
return;
} else {
#if 0
/* TODO: order by RSSI? */
spin_lock_bh(&local->sta_bss_lock);
list_move_tail(&bss->list, &local->sta_bss_list);
spin_unlock_bh(&local->sta_bss_lock);
#endif
}
/* save the ERP value so that it is available at association time */
if (elems->erp_info && elems->erp_info_len >= 1) {
bss->erp_value = elems->erp_info[0];
bss->has_erp_value = 1;
}
if (elems->ht_cap_elem &&
(!bss->ht_ie || bss->ht_ie_len != elems->ht_cap_elem_len ||
memcmp(bss->ht_ie, elems->ht_cap_elem, elems->ht_cap_elem_len))) {
kfree(bss->ht_ie);
bss->ht_ie = kmalloc(elems->ht_cap_elem_len + 2, GFP_ATOMIC);
if (bss->ht_ie) {
memcpy(bss->ht_ie, elems->ht_cap_elem - 2,
elems->ht_cap_elem_len + 2);
bss->ht_ie_len = elems->ht_cap_elem_len + 2;
} else
bss->ht_ie_len = 0;
} else if (!elems->ht_cap_elem && bss->ht_ie) {
kfree(bss->ht_ie);
bss->ht_ie = NULL;
bss->ht_ie_len = 0;
}
if (elems->ht_info_elem &&
(!bss->ht_add_ie ||
bss->ht_add_ie_len != elems->ht_info_elem_len ||
memcmp(bss->ht_add_ie, elems->ht_info_elem,
elems->ht_info_elem_len))) {
kfree(bss->ht_add_ie);
bss->ht_add_ie =
kmalloc(elems->ht_info_elem_len + 2, GFP_ATOMIC);
if (bss->ht_add_ie) {
memcpy(bss->ht_add_ie, elems->ht_info_elem - 2,
elems->ht_info_elem_len + 2);
bss->ht_add_ie_len = elems->ht_info_elem_len + 2;
} else
bss->ht_add_ie_len = 0;
} else if (!elems->ht_info_elem && bss->ht_add_ie) {
kfree(bss->ht_add_ie);
bss->ht_add_ie = NULL;
bss->ht_add_ie_len = 0;
}
bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
bss->supp_rates_len = 0;
if (elems->supp_rates) {
clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
if (clen > elems->supp_rates_len)
clen = elems->supp_rates_len;
memcpy(&bss->supp_rates[bss->supp_rates_len], elems->supp_rates,
clen);
bss->supp_rates_len += clen;
}
if (elems->ext_supp_rates) {
clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
if (clen > elems->ext_supp_rates_len)
clen = elems->ext_supp_rates_len;
memcpy(&bss->supp_rates[bss->supp_rates_len],
elems->ext_supp_rates, clen);
bss->supp_rates_len += clen;
}
bss->band = rx_status->band;
bss->timestamp = beacon_timestamp;
bss->last_update = jiffies;
bss->signal = rx_status->signal;
bss->noise = rx_status->noise;
bss->qual = rx_status->qual;
if (!beacon && !bss->probe_resp)
bss->probe_resp = true;
/*
* In STA mode, the remaining parameters should not be overridden
* by beacons because they're not necessarily accurate there.
*/
if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
bss->probe_resp && beacon) {
ieee80211_rx_bss_put(local, bss);
return;
}
if (elems->wpa &&
(!bss->wpa_ie || bss->wpa_ie_len != elems->wpa_len ||
memcmp(bss->wpa_ie, elems->wpa, elems->wpa_len))) {
kfree(bss->wpa_ie);
bss->wpa_ie = kmalloc(elems->wpa_len + 2, GFP_ATOMIC);
if (bss->wpa_ie) {
memcpy(bss->wpa_ie, elems->wpa - 2, elems->wpa_len + 2);
bss->wpa_ie_len = elems->wpa_len + 2;
} else
bss->wpa_ie_len = 0;
} else if (!elems->wpa && bss->wpa_ie) {
kfree(bss->wpa_ie);
bss->wpa_ie = NULL;
bss->wpa_ie_len = 0;
}
if (elems->rsn &&
(!bss->rsn_ie || bss->rsn_ie_len != elems->rsn_len ||
memcmp(bss->rsn_ie, elems->rsn, elems->rsn_len))) {
kfree(bss->rsn_ie);
bss->rsn_ie = kmalloc(elems->rsn_len + 2, GFP_ATOMIC);
if (bss->rsn_ie) {
memcpy(bss->rsn_ie, elems->rsn - 2, elems->rsn_len + 2);
bss->rsn_ie_len = elems->rsn_len + 2;
} else
bss->rsn_ie_len = 0;
} else if (!elems->rsn && bss->rsn_ie) {
kfree(bss->rsn_ie);
bss->rsn_ie = NULL;
bss->rsn_ie_len = 0;
}
/*
* Cf.
* http://www.wipo.int/pctdb/en/wo.jsp?wo=2007047181&IA=WO2007047181&DISPLAY=DESC
*
* quoting:
*
* In particular, "Wi-Fi CERTIFIED for WMM - Support for Multimedia
* Applications with Quality of Service in Wi-Fi Networks," Wi- Fi
* Alliance (September 1, 2004) is incorporated by reference herein.
* The inclusion of the WMM Parameters in probe responses and
* association responses is mandatory for WMM enabled networks. The
* inclusion of the WMM Parameters in beacons, however, is optional.
*/
if (elems->wmm_param &&
(!bss->wmm_ie || bss->wmm_ie_len != elems->wmm_param_len ||
memcmp(bss->wmm_ie, elems->wmm_param, elems->wmm_param_len))) {
kfree(bss->wmm_ie);
bss->wmm_ie = kmalloc(elems->wmm_param_len + 2, GFP_ATOMIC);
if (bss->wmm_ie) {
memcpy(bss->wmm_ie, elems->wmm_param - 2,
elems->wmm_param_len + 2);
bss->wmm_ie_len = elems->wmm_param_len + 2;
} else
bss->wmm_ie_len = 0;
} else if (elems->wmm_info &&
(!bss->wmm_ie || bss->wmm_ie_len != elems->wmm_info_len ||
memcmp(bss->wmm_ie, elems->wmm_info,
elems->wmm_info_len))) {
/* As for certain AP's Fifth bit is not set in WMM IE in
* beacon frames.So while parsing the beacon frame the
* wmm_info structure is used instead of wmm_param.
* wmm_info structure was never used to set bss->wmm_ie.
* This code fixes this problem by copying the WME
* information from wmm_info to bss->wmm_ie and enabling
* n-band association.
*/
kfree(bss->wmm_ie);
bss->wmm_ie = kmalloc(elems->wmm_info_len + 2, GFP_ATOMIC);
if (bss->wmm_ie) {
memcpy(bss->wmm_ie, elems->wmm_info - 2,
elems->wmm_info_len + 2);
bss->wmm_ie_len = elems->wmm_info_len + 2;
} else
bss->wmm_ie_len = 0;
} else if (!elems->wmm_param && !elems->wmm_info && bss->wmm_ie) {
kfree(bss->wmm_ie);
bss->wmm_ie = NULL;
bss->wmm_ie_len = 0;
}
/* check if we need to merge IBSS */
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
!local->sta_sw_scanning && !local->sta_hw_scanning &&
bss->capability & WLAN_CAPABILITY_IBSS &&
bss->freq == local->oper_channel->center_freq &&
elems->ssid_len == sdata->u.sta.ssid_len &&
memcmp(elems->ssid, sdata->u.sta.ssid,
sdata->u.sta.ssid_len) == 0) {
if (rx_status->flag & RX_FLAG_TSFT) {
/* in order for correct IBSS merging we need mactime
*
* since mactime is defined as the time the first data
* symbol of the frame hits the PHY, and the timestamp
* of the beacon is defined as "the time that the data
* symbol containing the first bit of the timestamp is
* transmitted to the PHY plus the transmitting STAs
* delays through its local PHY from the MAC-PHY
* interface to its interface with the WM"
* (802.11 11.1.2) - equals the time this bit arrives at
* the receiver - we have to take into account the
* offset between the two.
* e.g: at 1 MBit that means mactime is 192 usec earlier
* (=24 bytes * 8 usecs/byte) than the beacon timestamp.
*/
int rate = local->hw.wiphy->bands[rx_status->band]->
bitrates[rx_status->rate_idx].bitrate;
rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
} else if (local && local->ops && local->ops->get_tsf)
/* second best option: get current TSF */
rx_timestamp = local->ops->get_tsf(local_to_hw(local));
else
/* can't merge without knowing the TSF */
rx_timestamp = -1LLU;
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "RX beacon SA=%s BSSID="
"%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
print_mac(mac, mgmt->sa),
print_mac(mac2, mgmt->bssid),
(unsigned long long)rx_timestamp,
(unsigned long long)beacon_timestamp,
(unsigned long long)(rx_timestamp - beacon_timestamp),
jiffies);
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
if (beacon_timestamp > rx_timestamp) {
#ifndef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: beacon TSF higher than "
"local TSF - IBSS merge with BSSID %s\n",
dev->name, print_mac(mac, mgmt->bssid));
#endif
ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
ieee80211_ibss_add_sta(dev, NULL,
mgmt->bssid, mgmt->sa,
BIT(rx_status->rate_idx));
}
}
ieee80211_rx_bss_put(local, bss);
}
static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
size_t baselen;
struct ieee802_11_elems elems;
baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt;
if (baselen > len)
return;
ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen,
&elems);
ieee80211_rx_bss_info(dev, mgmt, len, rx_status, &elems, 0);
}
static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
size_t baselen;
struct ieee802_11_elems elems;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_conf *conf = &local->hw.conf;
u32 changed = 0;
/* Process beacon from the current BSS */
baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
if (baselen > len)
return;
ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
ieee80211_rx_bss_info(dev, mgmt, len, rx_status, &elems, 1);
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return;
ifsta = &sdata->u.sta;
if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
return;
ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
elems.wmm_param_len);
/* Do not send changes to driver if we are scanning. This removes
* requirement that driver's bss_info_changed function needs to be
* atomic. */
if (local->sta_sw_scanning || local->sta_hw_scanning)
return;
if (elems.erp_info && elems.erp_info_len >= 1)
changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
else {
u16 capab = le16_to_cpu(mgmt->u.beacon.capab_info);
changed |= ieee80211_handle_protect_preamb(sdata, false,
(capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
}
if (elems.ht_cap_elem && elems.ht_info_elem &&
elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
struct ieee80211_ht_bss_info bss_info;
ieee80211_ht_addt_info_ie_to_ht_bss_info(
(struct ieee80211_ht_addt_info *)
elems.ht_info_elem, &bss_info);
changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf,
&bss_info);
}
ieee80211_bss_info_change_notify(sdata, changed);
}
static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int tx_last_beacon;
struct sk_buff *skb;
struct ieee80211_mgmt *resp;
u8 *pos, *end;
DECLARE_MAC_BUF(mac);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
DECLARE_MAC_BUF(mac2);
DECLARE_MAC_BUF(mac3);
#endif
if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
ifsta->state != IEEE80211_IBSS_JOINED ||
len < 24 + 2 || !ifsta->probe_resp)
return;
if (local->ops->tx_last_beacon)
tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
else
tx_last_beacon = 1;
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
"%s (tx_last_beacon=%d)\n",
dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
print_mac(mac3, mgmt->bssid), tx_last_beacon);
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
if (!tx_last_beacon)
return;
if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
return;
end = ((u8 *) mgmt) + len;
pos = mgmt->u.probe_req.variable;
if (pos[0] != WLAN_EID_SSID ||
pos + 2 + pos[1] > end) {
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
"from %s\n",
dev->name, print_mac(mac, mgmt->sa));
#endif
return;
}
if (pos[1] != 0 &&
(pos[1] != ifsta->ssid_len ||
memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
/* Ignore ProbeReq for foreign SSID */
return;
}
/* Reply with ProbeResp */
skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
if (!skb)
return;
resp = (struct ieee80211_mgmt *) skb->data;
memcpy(resp->da, mgmt->sa, ETH_ALEN);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
dev->name, print_mac(mac, resp->da));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_rx_mgmt_action(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (len < IEEE80211_MIN_ACTION_SIZE)
return;
switch (mgmt->u.action.category) {
case WLAN_CATEGORY_SPECTRUM_MGMT:
if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
break;
switch (mgmt->u.action.u.chan_switch.action_code) {
case WLAN_ACTION_SPCT_MSR_REQ:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.measurement)))
break;
ieee80211_sta_process_measurement_req(dev, mgmt, len);
break;
}
break;
case WLAN_CATEGORY_BACK:
switch (mgmt->u.action.u.addba_req.action_code) {
case WLAN_ACTION_ADDBA_REQ:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_req)))
break;
ieee80211_sta_process_addba_request(dev, mgmt, len);
break;
case WLAN_ACTION_ADDBA_RESP:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_resp)))
break;
ieee80211_sta_process_addba_resp(dev, mgmt, len);
break;
case WLAN_ACTION_DELBA:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.delba)))
break;
ieee80211_sta_process_delba(dev, mgmt, len);
break;
}
break;
case PLINK_CATEGORY:
if (ieee80211_vif_is_mesh(&sdata->vif))
mesh_rx_plink_frame(dev, mgmt, len, rx_status);
break;
case MESH_PATH_SEL_CATEGORY:
if (ieee80211_vif_is_mesh(&sdata->vif))
mesh_rx_path_sel_frame(dev, mgmt, len);
break;
}
}
void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
struct ieee80211_mgmt *mgmt;
u16 fc;
if (skb->len < 24)
goto fail;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = le16_to_cpu(mgmt->frame_control);
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_PROBE_REQ:
case IEEE80211_STYPE_PROBE_RESP:
case IEEE80211_STYPE_BEACON:
case IEEE80211_STYPE_ACTION:
memcpy(skb->cb, rx_status, sizeof(*rx_status));
case IEEE80211_STYPE_AUTH:
case IEEE80211_STYPE_ASSOC_RESP:
case IEEE80211_STYPE_REASSOC_RESP:
case IEEE80211_STYPE_DEAUTH:
case IEEE80211_STYPE_DISASSOC:
skb_queue_tail(&ifsta->skb_queue, skb);
queue_work(local->hw.workqueue, &ifsta->work);
return;
}
fail:
kfree_skb(skb);
}
static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
struct sk_buff *skb)
{
struct ieee80211_rx_status *rx_status;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
struct ieee80211_mgmt *mgmt;
u16 fc;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
rx_status = (struct ieee80211_rx_status *) skb->cb;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = le16_to_cpu(mgmt->frame_control);
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_PROBE_REQ:
ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
rx_status);
break;
case IEEE80211_STYPE_PROBE_RESP:
ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
break;
case IEEE80211_STYPE_BEACON:
ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
break;
case IEEE80211_STYPE_AUTH:
ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
break;
case IEEE80211_STYPE_ASSOC_RESP:
ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
break;
case IEEE80211_STYPE_REASSOC_RESP:
ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
break;
case IEEE80211_STYPE_DEAUTH:
ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
break;
case IEEE80211_STYPE_DISASSOC:
ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
break;
case IEEE80211_STYPE_ACTION:
ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
break;
}
kfree_skb(skb);
}
ieee80211_rx_result
ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_mgmt *mgmt;
__le16 fc;
if (skb->len < 2)
return RX_DROP_UNUSABLE;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = mgmt->frame_control;
if (ieee80211_is_ctl(fc))
return RX_CONTINUE;
if (skb->len < 24)
return RX_DROP_MONITOR;
if (ieee80211_is_probe_resp(fc)) {
ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
dev_kfree_skb(skb);
return RX_QUEUED;
}
if (ieee80211_is_beacon(fc)) {
ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
dev_kfree_skb(skb);
return RX_QUEUED;
}
return RX_CONTINUE;
}
static int ieee80211_sta_active_ibss(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int active = 0;
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
rcu_read_lock();
list_for_each_entry_rcu(sta, &local->sta_list, list) {
if (sta->sdata == sdata &&
time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
jiffies)) {
active++;
break;
}
}
rcu_read_unlock();
return active;
}
static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta, *tmp;
LIST_HEAD(tmp_list);
DECLARE_MAC_BUF(mac);
unsigned long flags;
spin_lock_irqsave(&local->sta_lock, flags);
list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
if (time_after(jiffies, sta->last_rx + exp_time)) {
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
dev->name, print_mac(mac, sta->addr));
#endif
__sta_info_unlink(&sta);
if (sta)
list_add(&sta->list, &tmp_list);
}
spin_unlock_irqrestore(&local->sta_lock, flags);
list_for_each_entry_safe(sta, tmp, &tmp_list, list)
sta_info_destroy(sta);
}
static void ieee80211_sta_merge_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
if (ieee80211_sta_active_ibss(dev))
return;
printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
"IBSS networks with same SSID (merge)\n", dev->name);
ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
}
#ifdef CONFIG_MAC80211_MESH
static void ieee80211_mesh_housekeeping(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
bool free_plinks;
ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
mesh_path_expire(dev);
free_plinks = mesh_plink_availables(sdata);
if (free_plinks != sdata->u.sta.accepting_plinks)
ieee80211_if_config_beacon(dev);
mod_timer(&ifsta->timer, jiffies +
IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
}
void ieee80211_start_mesh(struct net_device *dev)
{
struct ieee80211_if_sta *ifsta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
ifsta->state = IEEE80211_MESH_UP;
ieee80211_sta_timer((unsigned long)sdata);
}
#endif
void ieee80211_sta_timer(unsigned long data)
{
struct ieee80211_sub_if_data *sdata =
(struct ieee80211_sub_if_data *) data;
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct ieee80211_local *local = wdev_priv(&sdata->wdev);
set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
}
void ieee80211_sta_work(struct work_struct *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data, u.sta.work);
struct net_device *dev = sdata->dev;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_if_sta *ifsta;
struct sk_buff *skb;
if (!netif_running(dev))
return;
if (local->sta_sw_scanning || local->sta_hw_scanning)
return;
if (WARN_ON(sdata->vif.type != IEEE80211_IF_TYPE_STA &&
sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT))
return;
ifsta = &sdata->u.sta;
while ((skb = skb_dequeue(&ifsta->skb_queue)))
ieee80211_sta_rx_queued_mgmt(dev, skb);
#ifdef CONFIG_MAC80211_MESH
if (ifsta->preq_queue_len &&
time_after(jiffies,
ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
mesh_path_start_discovery(dev);
#endif
if (ifsta->state != IEEE80211_AUTHENTICATE &&
ifsta->state != IEEE80211_ASSOCIATE &&
test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
if (ifsta->scan_ssid_len)
ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
else
ieee80211_sta_start_scan(dev, NULL, 0);
return;
}
if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
if (ieee80211_sta_config_auth(dev, ifsta))
return;
clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
} else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
return;
switch (ifsta->state) {
case IEEE80211_DISABLED:
break;
case IEEE80211_AUTHENTICATE:
ieee80211_authenticate(dev, ifsta);
break;
case IEEE80211_ASSOCIATE:
ieee80211_associate(dev, ifsta);
break;
case IEEE80211_ASSOCIATED:
ieee80211_associated(dev, ifsta);
break;
case IEEE80211_IBSS_SEARCH:
ieee80211_sta_find_ibss(dev, ifsta);
break;
case IEEE80211_IBSS_JOINED:
ieee80211_sta_merge_ibss(dev, ifsta);
break;
#ifdef CONFIG_MAC80211_MESH
case IEEE80211_MESH_UP:
ieee80211_mesh_housekeeping(dev, ifsta);
break;
#endif
default:
WARN_ON(1);
break;
}
if (ieee80211_privacy_mismatch(dev, ifsta)) {
printk(KERN_DEBUG "%s: privacy configuration mismatch and "
"mixed-cell disabled - disassociate\n", dev->name);
ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
ieee80211_set_disassoc(dev, ifsta, 0);
}
}
static void ieee80211_sta_reset_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (local->ops->reset_tsf) {
/* Reset own TSF to allow time synchronization work. */
local->ops->reset_tsf(local_to_hw(local));
}
ifsta->wmm_last_param_set = -1; /* allow any WMM update */
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
ifsta->auth_alg = WLAN_AUTH_OPEN;
else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
ifsta->auth_alg = WLAN_AUTH_LEAP;
else
ifsta->auth_alg = WLAN_AUTH_OPEN;
ifsta->auth_transaction = -1;
ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
ifsta->auth_tries = ifsta->assoc_tries = 0;
netif_carrier_off(dev);
}
void ieee80211_sta_req_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return;
if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
IEEE80211_STA_AUTO_BSSID_SEL)) &&
(ifsta->flags & (IEEE80211_STA_SSID_SET |
IEEE80211_STA_AUTO_SSID_SEL))) {
set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
}
}
static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
const char *ssid, int ssid_len)
{
int tmp, hidden_ssid;
if (ssid_len == ifsta->ssid_len &&
!memcmp(ifsta->ssid, ssid, ssid_len))
return 1;
if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
return 0;
hidden_ssid = 1;
tmp = ssid_len;
while (tmp--) {
if (ssid[tmp] != '\0') {
hidden_ssid = 0;
break;
}
}
if (hidden_ssid && ifsta->ssid_len == ssid_len)
return 1;
if (ssid_len == 1 && ssid[0] == ' ')
return 1;
return 0;
}
static int ieee80211_sta_config_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_sta_bss *bss, *selected = NULL;
int top_rssi = 0, freq;
spin_lock_bh(&local->sta_bss_lock);
freq = local->oper_channel->center_freq;
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (!(bss->capability & WLAN_CAPABILITY_ESS))
continue;
if ((ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
IEEE80211_STA_AUTO_BSSID_SEL |
IEEE80211_STA_AUTO_CHANNEL_SEL)) &&
(!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
!!sdata->default_key))
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
bss->freq != freq)
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
!ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
continue;
if (!selected || top_rssi < bss->signal) {
selected = bss;
top_rssi = bss->signal;
}
}
if (selected)
atomic_inc(&selected->users);
spin_unlock_bh(&local->sta_bss_lock);
if (selected) {
ieee80211_set_freq(dev, selected->freq);
if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
ieee80211_sta_set_ssid(dev, selected->ssid,
selected->ssid_len);
ieee80211_sta_set_bssid(dev, selected->bssid);
ieee80211_sta_def_wmm_params(dev, selected, 0);
ieee80211_rx_bss_put(local, selected);
ifsta->state = IEEE80211_AUTHENTICATE;
ieee80211_sta_reset_auth(dev, ifsta);
return 0;
} else {
if (ifsta->state != IEEE80211_AUTHENTICATE) {
if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
ieee80211_sta_start_scan(dev, NULL, 0);
else
ieee80211_sta_start_scan(dev, ifsta->ssid,
ifsta->ssid_len);
ifsta->state = IEEE80211_AUTHENTICATE;
set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
} else
ifsta->state = IEEE80211_DISABLED;
}
return -1;
}
static int ieee80211_sta_create_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_supported_band *sband;
u8 bssid[ETH_ALEN], *pos;
int i;
int ret;
DECLARE_MAC_BUF(mac);
#if 0
/* Easier testing, use fixed BSSID. */
memset(bssid, 0xfe, ETH_ALEN);
#else
/* Generate random, not broadcast, locally administered BSSID. Mix in
* own MAC address to make sure that devices that do not have proper
* random number generator get different BSSID. */
get_random_bytes(bssid, ETH_ALEN);
for (i = 0; i < ETH_ALEN; i++)
bssid[i] ^= dev->dev_addr[i];
bssid[0] &= ~0x01;
bssid[0] |= 0x02;
#endif
printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
dev->name, print_mac(mac, bssid));
bss = ieee80211_rx_bss_add(dev, bssid,
local->hw.conf.channel->center_freq,
sdata->u.sta.ssid, sdata->u.sta.ssid_len);
if (!bss)
return -ENOMEM;
bss->band = local->hw.conf.channel->band;
sband = local->hw.wiphy->bands[bss->band];
if (local->hw.conf.beacon_int == 0)
local->hw.conf.beacon_int = 100;
bss->beacon_int = local->hw.conf.beacon_int;
bss->last_update = jiffies;
bss->capability = WLAN_CAPABILITY_IBSS;
if (sdata->default_key)
bss->capability |= WLAN_CAPABILITY_PRIVACY;
else
sdata->drop_unencrypted = 0;
bss->supp_rates_len = sband->n_bitrates;
pos = bss->supp_rates;
for (i = 0; i < sband->n_bitrates; i++) {
int rate = sband->bitrates[i].bitrate;
*pos++ = (u8) (rate / 5);
}
ret = ieee80211_sta_join_ibss(dev, ifsta, bss);
ieee80211_rx_bss_put(local, bss);
return ret;
}
static int ieee80211_sta_find_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
int found = 0;
u8 bssid[ETH_ALEN];
int active_ibss;
DECLARE_MAC_BUF(mac);
DECLARE_MAC_BUF(mac2);
if (ifsta->ssid_len == 0)
return -EINVAL;
active_ibss = ieee80211_sta_active_ibss(dev);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
dev->name, active_ibss);
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
spin_lock_bh(&local->sta_bss_lock);
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (ifsta->ssid_len != bss->ssid_len ||
memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
|| !(bss->capability & WLAN_CAPABILITY_IBSS))
continue;
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG " bssid=%s found\n",
print_mac(mac, bss->bssid));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
memcpy(bssid, bss->bssid, ETH_ALEN);
found = 1;
if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
break;
}
spin_unlock_bh(&local->sta_bss_lock);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
if (found)
printk(KERN_DEBUG " sta_find_ibss: selected %s current "
"%s\n", print_mac(mac, bssid),
print_mac(mac2, ifsta->bssid));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
(bss = ieee80211_rx_bss_get(dev, bssid,
local->hw.conf.channel->center_freq,
ifsta->ssid, ifsta->ssid_len))) {
int ret;
printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
" based on configured SSID\n",
dev->name, print_mac(mac, bssid));
ret = ieee80211_sta_join_ibss(dev, ifsta, bss);
ieee80211_rx_bss_put(local, bss);
return ret;
}
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG " did not try to join ibss\n");
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
/* Selected IBSS not found in current scan results - try to scan */
if (ifsta->state == IEEE80211_IBSS_JOINED &&
!ieee80211_sta_active_ibss(dev)) {
mod_timer(&ifsta->timer, jiffies +
IEEE80211_IBSS_MERGE_INTERVAL);
} else if (time_after(jiffies, local->last_scan_completed +
IEEE80211_SCAN_INTERVAL)) {
printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
"join\n", dev->name);
return ieee80211_sta_req_scan(dev, ifsta->ssid,
ifsta->ssid_len);
} else if (ifsta->state != IEEE80211_IBSS_JOINED) {
int interval = IEEE80211_SCAN_INTERVAL;
if (time_after(jiffies, ifsta->ibss_join_req +
IEEE80211_IBSS_JOIN_TIMEOUT)) {
if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
(!(local->oper_channel->flags &
IEEE80211_CHAN_NO_IBSS)))
return ieee80211_sta_create_ibss(dev, ifsta);
if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
printk(KERN_DEBUG "%s: IBSS not allowed on"
" %d MHz\n", dev->name,
local->hw.conf.channel->center_freq);
}
/* No IBSS found - decrease scan interval and continue
* scanning. */
interval = IEEE80211_SCAN_INTERVAL_SLOW;
}
ifsta->state = IEEE80211_IBSS_SEARCH;
mod_timer(&ifsta->timer, jiffies + interval);
return 0;
}
return 0;
}
int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta;
if (len > IEEE80211_MAX_SSID_LEN)
return -EINVAL;
ifsta = &sdata->u.sta;
if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
memcpy(ifsta->ssid, ssid, len);
memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
ifsta->ssid_len = len;
if (len)
ifsta->flags |= IEEE80211_STA_SSID_SET;
else
ifsta->flags &= ~IEEE80211_STA_SSID_SET;
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
!(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
ifsta->ibss_join_req = jiffies;
ifsta->state = IEEE80211_IBSS_SEARCH;
return ieee80211_sta_find_ibss(dev, ifsta);
}
return 0;
}
int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
*len = ifsta->ssid_len;
return 0;
}
int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
int res;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
memcpy(ifsta->bssid, bssid, ETH_ALEN);
res = ieee80211_if_config(dev);
if (res) {
printk(KERN_DEBUG "%s: Failed to config new BSSID to "
"the low-level driver\n", dev->name);
return res;
}
}
if (is_valid_ether_addr(bssid))
ifsta->flags |= IEEE80211_STA_BSSID_SET;
else
ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
return 0;
}
static void ieee80211_send_nullfunc(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
int powersave)
{
struct sk_buff *skb;
struct ieee80211_hdr *nullfunc;
__le16 fc;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
"frame\n", sdata->dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
memset(nullfunc, 0, 24);
fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_TODS);
if (powersave)
fc |= cpu_to_le16(IEEE80211_FCTL_PM);
nullfunc->frame_control = fc;
memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
ieee80211_sta_tx(sdata->dev, skb, 0);
}
static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
{
if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
ieee80211_vif_is_mesh(&sdata->vif))
ieee80211_sta_timer((unsigned long)sdata);
}
void ieee80211_scan_completed(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
struct net_device *dev = local->scan_dev;
struct ieee80211_sub_if_data *sdata;
union iwreq_data wrqu;
local->last_scan_completed = jiffies;
memset(&wrqu, 0, sizeof(wrqu));
wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
if (local->sta_hw_scanning) {
local->sta_hw_scanning = 0;
if (ieee80211_hw_config(local))
printk(KERN_DEBUG "%s: failed to restore operational "
"channel after scan\n", dev->name);
/* Restart STA timer for HW scan case */
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list)
ieee80211_restart_sta_timer(sdata);
rcu_read_unlock();
goto done;
}
local->sta_sw_scanning = 0;
if (ieee80211_hw_config(local))
printk(KERN_DEBUG "%s: failed to restore operational "
"channel after scan\n", dev->name);
netif_tx_lock_bh(local->mdev);
local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
local->ops->configure_filter(local_to_hw(local),
FIF_BCN_PRBRESP_PROMISC,
&local->filter_flags,
local->mdev->mc_count,
local->mdev->mc_list);
netif_tx_unlock_bh(local->mdev);
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
/* Tell AP we're back */
if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
ieee80211_send_nullfunc(local, sdata, 0);
ieee80211_restart_sta_timer(sdata);
netif_wake_queue(sdata->dev);
}
rcu_read_unlock();
done:
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
(!ifsta->state == IEEE80211_IBSS_JOINED &&
!ieee80211_sta_active_ibss(dev)))
ieee80211_sta_find_ibss(dev, ifsta);
}
}
EXPORT_SYMBOL(ieee80211_scan_completed);
void ieee80211_sta_scan_work(struct work_struct *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local, scan_work.work);
struct net_device *dev = local->scan_dev;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_supported_band *sband;
struct ieee80211_channel *chan;
int skip;
unsigned long next_delay = 0;
if (!local->sta_sw_scanning)
return;
switch (local->scan_state) {
case SCAN_SET_CHANNEL:
/*
* Get current scan band. scan_band may be IEEE80211_NUM_BANDS
* after we successfully scanned the last channel of the last
* band (and the last band is supported by the hw)
*/
if (local->scan_band < IEEE80211_NUM_BANDS)
sband = local->hw.wiphy->bands[local->scan_band];
else
sband = NULL;
/*
* If we are at an unsupported band and have more bands
* left to scan, advance to the next supported one.
*/
while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
local->scan_band++;
sband = local->hw.wiphy->bands[local->scan_band];
local->scan_channel_idx = 0;
}
/* if no more bands/channels left, complete scan */
if (!sband || local->scan_channel_idx >= sband->n_channels) {
ieee80211_scan_completed(local_to_hw(local));
return;
}
skip = 0;
chan = &sband->channels[local->scan_channel_idx];
if (chan->flags & IEEE80211_CHAN_DISABLED ||
(sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
chan->flags & IEEE80211_CHAN_NO_IBSS))
skip = 1;
if (!skip) {
local->scan_channel = chan;
if (ieee80211_hw_config(local)) {
printk(KERN_DEBUG "%s: failed to set freq to "
"%d MHz for scan\n", dev->name,
chan->center_freq);
skip = 1;
}
}
/* advance state machine to next channel/band */
local->scan_channel_idx++;
if (local->scan_channel_idx >= sband->n_channels) {
/*
* scan_band may end up == IEEE80211_NUM_BANDS, but
* we'll catch that case above and complete the scan
* if that is the case.
*/
local->scan_band++;
local->scan_channel_idx = 0;
}
if (skip)
break;
next_delay = IEEE80211_PROBE_DELAY +
usecs_to_jiffies(local->hw.channel_change_time);
local->scan_state = SCAN_SEND_PROBE;
break;
case SCAN_SEND_PROBE:
next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
local->scan_state = SCAN_SET_CHANNEL;
if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
break;
ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
local->scan_ssid_len);
next_delay = IEEE80211_CHANNEL_TIME;
break;
}
if (local->sta_sw_scanning)
queue_delayed_work(local->hw.workqueue, &local->scan_work,
next_delay);
}
static int ieee80211_sta_start_scan(struct net_device *dev,
u8 *ssid, size_t ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
if (ssid_len > IEEE80211_MAX_SSID_LEN)
return -EINVAL;
/* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
* BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
* BSSID: MACAddress
* SSID
* ScanType: ACTIVE, PASSIVE
* ProbeDelay: delay (in microseconds) to be used prior to transmitting
* a Probe frame during active scanning
* ChannelList
* MinChannelTime (>= ProbeDelay), in TU
* MaxChannelTime: (>= MinChannelTime), in TU
*/
/* MLME-SCAN.confirm
* BSSDescriptionSet
* ResultCode: SUCCESS, INVALID_PARAMETERS
*/
if (local->sta_sw_scanning || local->sta_hw_scanning) {
if (local->scan_dev == dev)
return 0;
return -EBUSY;
}
if (local->ops->hw_scan) {
int rc = local->ops->hw_scan(local_to_hw(local),
ssid, ssid_len);
if (!rc) {
local->sta_hw_scanning = 1;
local->scan_dev = dev;
}
return rc;
}
local->sta_sw_scanning = 1;
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
netif_stop_queue(sdata->dev);
if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
(sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
ieee80211_send_nullfunc(local, sdata, 1);
}
rcu_read_unlock();
if (ssid) {
local->scan_ssid_len = ssid_len;
memcpy(local->scan_ssid, ssid, ssid_len);
} else
local->scan_ssid_len = 0;
local->scan_state = SCAN_SET_CHANNEL;
local->scan_channel_idx = 0;
local->scan_band = IEEE80211_BAND_2GHZ;
local->scan_dev = dev;
netif_tx_lock_bh(local->mdev);
local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
local->ops->configure_filter(local_to_hw(local),
FIF_BCN_PRBRESP_PROMISC,
&local->filter_flags,
local->mdev->mc_count,
local->mdev->mc_list);
netif_tx_unlock_bh(local->mdev);
/* TODO: start scan as soon as all nullfunc frames are ACKed */
queue_delayed_work(local->hw.workqueue, &local->scan_work,
IEEE80211_CHANNEL_TIME);
return 0;
}
int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return ieee80211_sta_start_scan(dev, ssid, ssid_len);
if (local->sta_sw_scanning || local->sta_hw_scanning) {
if (local->scan_dev == dev)
return 0;
return -EBUSY;
}
ifsta->scan_ssid_len = ssid_len;
if (ssid_len)
memcpy(ifsta->scan_ssid, ssid, ssid_len);
set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
return 0;
}
static char *
ieee80211_sta_scan_result(struct net_device *dev,
struct iw_request_info *info,
struct ieee80211_sta_bss *bss,
char *current_ev, char *end_buf)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct iw_event iwe;
if (time_after(jiffies,
bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_ADDR_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
if (bss_mesh_cfg(bss)) {
iwe.u.data.length = bss_mesh_id_len(bss);
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss_mesh_id(bss));
} else {
iwe.u.data.length = bss->ssid_len;
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss->ssid);
}
if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
|| bss_mesh_cfg(bss)) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
if (bss_mesh_cfg(bss))
iwe.u.mode = IW_MODE_MESH;
else if (bss->capability & WLAN_CAPABILITY_ESS)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event(info, current_ev, end_buf,
&iwe, IW_EV_UINT_LEN);
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
iwe.u.freq.e = 0;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = bss->freq;
iwe.u.freq.e = 6;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVQUAL;
iwe.u.qual.qual = bss->qual;
iwe.u.qual.level = bss->signal;
iwe.u.qual.noise = bss->noise;
iwe.u.qual.updated = local->wstats_flags;
current_ev = iwe_stream_add_event(info, current_ev, end_buf, &iwe,
IW_EV_QUAL_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
if (bss->capability & WLAN_CAPABILITY_PRIVACY)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, "");
if (bss && bss->wpa_ie) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = bss->wpa_ie_len;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss->wpa_ie);
}
if (bss && bss->rsn_ie) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = bss->rsn_ie_len;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss->rsn_ie);
}
if (bss && bss->ht_ie) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = bss->ht_ie_len;
current_ev = iwe_stream_add_point(info, current_ev, end_buf,
&iwe, bss->ht_ie);
}
if (bss && bss->supp_rates_len > 0) {
/* display all supported rates in readable format */
char *p = current_ev + iwe_stream_lcp_len(info);
int i;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
for (i = 0; i < bss->supp_rates_len; i++) {
iwe.u.bitrate.value = ((bss->supp_rates[i] &
0x7f) * 500000);
p = iwe_stream_add_value(info, current_ev, p,
end_buf, &iwe, IW_EV_PARAM_LEN);
}
current_ev = p;
}
if (bss) {
char *buf;
buf = kmalloc(30, GFP_ATOMIC);
if (buf) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, " Last beacon: %dms ago",
jiffies_to_msecs(jiffies - bss->last_update));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf, &iwe, buf);
kfree(buf);
}
}
if (bss_mesh_cfg(bss)) {
char *buf;
u8 *cfg = bss_mesh_cfg(bss);
buf = kmalloc(50, GFP_ATOMIC);
if (buf) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "Mesh network (version %d)", cfg[0]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Path Selection Protocol ID: "
"0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
cfg[4]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Path Selection Metric ID: "
"0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
cfg[8]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Congestion Control Mode ID: "
"0x%02X%02X%02X%02X", cfg[9], cfg[10],
cfg[11], cfg[12]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
sprintf(buf, "Channel Precedence: "
"0x%02X%02X%02X%02X", cfg[13], cfg[14],
cfg[15], cfg[16]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf,
&iwe, buf);
kfree(buf);
}
}
return current_ev;
}
int ieee80211_sta_scan_results(struct net_device *dev,
struct iw_request_info *info,
char *buf, size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
char *current_ev = buf;
char *end_buf = buf + len;
struct ieee80211_sta_bss *bss;
spin_lock_bh(&local->sta_bss_lock);
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
spin_unlock_bh(&local->sta_bss_lock);
return -E2BIG;
}
current_ev = ieee80211_sta_scan_result(dev, info, bss,
current_ev, end_buf);
}
spin_unlock_bh(&local->sta_bss_lock);
return current_ev - buf;
}
int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
kfree(ifsta->extra_ie);
if (len == 0) {
ifsta->extra_ie = NULL;
ifsta->extra_ie_len = 0;
return 0;
}
ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
if (!ifsta->extra_ie) {
ifsta->extra_ie_len = 0;
return -ENOMEM;
}
memcpy(ifsta->extra_ie, ie, len);
ifsta->extra_ie_len = len;
return 0;
}
struct sta_info *ieee80211_ibss_add_sta(struct net_device *dev,
struct sk_buff *skb, u8 *bssid,
u8 *addr, u64 supp_rates)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
DECLARE_MAC_BUF(mac);
int band = local->hw.conf.channel->band;
/* TODO: Could consider removing the least recently used entry and
* allow new one to be added. */
if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: No room for a new IBSS STA "
"entry %s\n", dev->name, print_mac(mac, addr));
}
return NULL;
}
if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid))
return NULL;
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
#endif
sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
if (!sta)
return NULL;
set_sta_flags(sta, WLAN_STA_AUTHORIZED);
if (supp_rates)
sta->supp_rates[band] = supp_rates;
else
sta->supp_rates[band] = sdata->u.sta.supp_rates_bits[band];
rate_control_rate_init(sta, local);
if (sta_info_insert(sta))
return NULL;
return sta;
}
int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
printk(KERN_DEBUG "%s: deauthenticating by local choice (reason=%d)\n",
dev->name, reason);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
return -EINVAL;
ieee80211_send_deauth(dev, ifsta, reason);
ieee80211_set_disassoc(dev, ifsta, 1);
return 0;
}
int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
printk(KERN_DEBUG "%s: disassociating by local choice (reason=%d)\n",
dev->name, reason);
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
return -EINVAL;
if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
return -1;
ieee80211_send_disassoc(dev, ifsta, reason);
ieee80211_set_disassoc(dev, ifsta, 0);
return 0;
}
void ieee80211_notify_mac(struct ieee80211_hw *hw,
enum ieee80211_notification_types notif_type)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
switch (notif_type) {
case IEEE80211_NOTIFY_RE_ASSOC:
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
continue;
ieee80211_sta_req_auth(sdata->dev, &sdata->u.sta);
}
rcu_read_unlock();
break;
}
}
EXPORT_SYMBOL(ieee80211_notify_mac);