android_kernel_xiaomi_sm8350/kernel/locking/test-ww_mutex.c
Thomas Gleixner d6cd1e9b9f treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 9
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not you can access it online at http www gnu
  org licenses gpl 2 0 html

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154041.430943677@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 11:28:40 +02:00

635 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Module-based API test facility for ww_mutexes
*/
#include <linux/kernel.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/ww_mutex.h>
static DEFINE_WD_CLASS(ww_class);
struct workqueue_struct *wq;
struct test_mutex {
struct work_struct work;
struct ww_mutex mutex;
struct completion ready, go, done;
unsigned int flags;
};
#define TEST_MTX_SPIN BIT(0)
#define TEST_MTX_TRY BIT(1)
#define TEST_MTX_CTX BIT(2)
#define __TEST_MTX_LAST BIT(3)
static void test_mutex_work(struct work_struct *work)
{
struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
complete(&mtx->ready);
wait_for_completion(&mtx->go);
if (mtx->flags & TEST_MTX_TRY) {
while (!ww_mutex_trylock(&mtx->mutex))
cond_resched();
} else {
ww_mutex_lock(&mtx->mutex, NULL);
}
complete(&mtx->done);
ww_mutex_unlock(&mtx->mutex);
}
static int __test_mutex(unsigned int flags)
{
#define TIMEOUT (HZ / 16)
struct test_mutex mtx;
struct ww_acquire_ctx ctx;
int ret;
ww_mutex_init(&mtx.mutex, &ww_class);
ww_acquire_init(&ctx, &ww_class);
INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
init_completion(&mtx.ready);
init_completion(&mtx.go);
init_completion(&mtx.done);
mtx.flags = flags;
schedule_work(&mtx.work);
wait_for_completion(&mtx.ready);
ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
complete(&mtx.go);
if (flags & TEST_MTX_SPIN) {
unsigned long timeout = jiffies + TIMEOUT;
ret = 0;
do {
if (completion_done(&mtx.done)) {
ret = -EINVAL;
break;
}
cond_resched();
} while (time_before(jiffies, timeout));
} else {
ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
}
ww_mutex_unlock(&mtx.mutex);
ww_acquire_fini(&ctx);
if (ret) {
pr_err("%s(flags=%x): mutual exclusion failure\n",
__func__, flags);
ret = -EINVAL;
}
flush_work(&mtx.work);
destroy_work_on_stack(&mtx.work);
return ret;
#undef TIMEOUT
}
static int test_mutex(void)
{
int ret;
int i;
for (i = 0; i < __TEST_MTX_LAST; i++) {
ret = __test_mutex(i);
if (ret)
return ret;
}
return 0;
}
static int test_aa(void)
{
struct ww_mutex mutex;
struct ww_acquire_ctx ctx;
int ret;
ww_mutex_init(&mutex, &ww_class);
ww_acquire_init(&ctx, &ww_class);
ww_mutex_lock(&mutex, &ctx);
if (ww_mutex_trylock(&mutex)) {
pr_err("%s: trylocked itself!\n", __func__);
ww_mutex_unlock(&mutex);
ret = -EINVAL;
goto out;
}
ret = ww_mutex_lock(&mutex, &ctx);
if (ret != -EALREADY) {
pr_err("%s: missed deadlock for recursing, ret=%d\n",
__func__, ret);
if (!ret)
ww_mutex_unlock(&mutex);
ret = -EINVAL;
goto out;
}
ret = 0;
out:
ww_mutex_unlock(&mutex);
ww_acquire_fini(&ctx);
return ret;
}
struct test_abba {
struct work_struct work;
struct ww_mutex a_mutex;
struct ww_mutex b_mutex;
struct completion a_ready;
struct completion b_ready;
bool resolve;
int result;
};
static void test_abba_work(struct work_struct *work)
{
struct test_abba *abba = container_of(work, typeof(*abba), work);
struct ww_acquire_ctx ctx;
int err;
ww_acquire_init(&ctx, &ww_class);
ww_mutex_lock(&abba->b_mutex, &ctx);
complete(&abba->b_ready);
wait_for_completion(&abba->a_ready);
err = ww_mutex_lock(&abba->a_mutex, &ctx);
if (abba->resolve && err == -EDEADLK) {
ww_mutex_unlock(&abba->b_mutex);
ww_mutex_lock_slow(&abba->a_mutex, &ctx);
err = ww_mutex_lock(&abba->b_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(&abba->a_mutex);
ww_mutex_unlock(&abba->b_mutex);
ww_acquire_fini(&ctx);
abba->result = err;
}
static int test_abba(bool resolve)
{
struct test_abba abba;
struct ww_acquire_ctx ctx;
int err, ret;
ww_mutex_init(&abba.a_mutex, &ww_class);
ww_mutex_init(&abba.b_mutex, &ww_class);
INIT_WORK_ONSTACK(&abba.work, test_abba_work);
init_completion(&abba.a_ready);
init_completion(&abba.b_ready);
abba.resolve = resolve;
schedule_work(&abba.work);
ww_acquire_init(&ctx, &ww_class);
ww_mutex_lock(&abba.a_mutex, &ctx);
complete(&abba.a_ready);
wait_for_completion(&abba.b_ready);
err = ww_mutex_lock(&abba.b_mutex, &ctx);
if (resolve && err == -EDEADLK) {
ww_mutex_unlock(&abba.a_mutex);
ww_mutex_lock_slow(&abba.b_mutex, &ctx);
err = ww_mutex_lock(&abba.a_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(&abba.b_mutex);
ww_mutex_unlock(&abba.a_mutex);
ww_acquire_fini(&ctx);
flush_work(&abba.work);
destroy_work_on_stack(&abba.work);
ret = 0;
if (resolve) {
if (err || abba.result) {
pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
__func__, err, abba.result);
ret = -EINVAL;
}
} else {
if (err != -EDEADLK && abba.result != -EDEADLK) {
pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
__func__, err, abba.result);
ret = -EINVAL;
}
}
return ret;
}
struct test_cycle {
struct work_struct work;
struct ww_mutex a_mutex;
struct ww_mutex *b_mutex;
struct completion *a_signal;
struct completion b_signal;
int result;
};
static void test_cycle_work(struct work_struct *work)
{
struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
struct ww_acquire_ctx ctx;
int err, erra = 0;
ww_acquire_init(&ctx, &ww_class);
ww_mutex_lock(&cycle->a_mutex, &ctx);
complete(cycle->a_signal);
wait_for_completion(&cycle->b_signal);
err = ww_mutex_lock(cycle->b_mutex, &ctx);
if (err == -EDEADLK) {
err = 0;
ww_mutex_unlock(&cycle->a_mutex);
ww_mutex_lock_slow(cycle->b_mutex, &ctx);
erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(cycle->b_mutex);
if (!erra)
ww_mutex_unlock(&cycle->a_mutex);
ww_acquire_fini(&ctx);
cycle->result = err ?: erra;
}
static int __test_cycle(unsigned int nthreads)
{
struct test_cycle *cycles;
unsigned int n, last = nthreads - 1;
int ret;
cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
if (!cycles)
return -ENOMEM;
for (n = 0; n < nthreads; n++) {
struct test_cycle *cycle = &cycles[n];
ww_mutex_init(&cycle->a_mutex, &ww_class);
if (n == last)
cycle->b_mutex = &cycles[0].a_mutex;
else
cycle->b_mutex = &cycles[n + 1].a_mutex;
if (n == 0)
cycle->a_signal = &cycles[last].b_signal;
else
cycle->a_signal = &cycles[n - 1].b_signal;
init_completion(&cycle->b_signal);
INIT_WORK(&cycle->work, test_cycle_work);
cycle->result = 0;
}
for (n = 0; n < nthreads; n++)
queue_work(wq, &cycles[n].work);
flush_workqueue(wq);
ret = 0;
for (n = 0; n < nthreads; n++) {
struct test_cycle *cycle = &cycles[n];
if (!cycle->result)
continue;
pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
n, nthreads, cycle->result);
ret = -EINVAL;
break;
}
for (n = 0; n < nthreads; n++)
ww_mutex_destroy(&cycles[n].a_mutex);
kfree(cycles);
return ret;
}
static int test_cycle(unsigned int ncpus)
{
unsigned int n;
int ret;
for (n = 2; n <= ncpus + 1; n++) {
ret = __test_cycle(n);
if (ret)
return ret;
}
return 0;
}
struct stress {
struct work_struct work;
struct ww_mutex *locks;
unsigned long timeout;
int nlocks;
};
static int *get_random_order(int count)
{
int *order;
int n, r, tmp;
order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
if (!order)
return order;
for (n = 0; n < count; n++)
order[n] = n;
for (n = count - 1; n > 1; n--) {
r = get_random_int() % (n + 1);
if (r != n) {
tmp = order[n];
order[n] = order[r];
order[r] = tmp;
}
}
return order;
}
static void dummy_load(struct stress *stress)
{
usleep_range(1000, 2000);
}
static void stress_inorder_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
const int nlocks = stress->nlocks;
struct ww_mutex *locks = stress->locks;
struct ww_acquire_ctx ctx;
int *order;
order = get_random_order(nlocks);
if (!order)
return;
do {
int contended = -1;
int n, err;
ww_acquire_init(&ctx, &ww_class);
retry:
err = 0;
for (n = 0; n < nlocks; n++) {
if (n == contended)
continue;
err = ww_mutex_lock(&locks[order[n]], &ctx);
if (err < 0)
break;
}
if (!err)
dummy_load(stress);
if (contended > n)
ww_mutex_unlock(&locks[order[contended]]);
contended = n;
while (n--)
ww_mutex_unlock(&locks[order[n]]);
if (err == -EDEADLK) {
ww_mutex_lock_slow(&locks[order[contended]], &ctx);
goto retry;
}
if (err) {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
ww_acquire_fini(&ctx);
} while (!time_after(jiffies, stress->timeout));
kfree(order);
kfree(stress);
}
struct reorder_lock {
struct list_head link;
struct ww_mutex *lock;
};
static void stress_reorder_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
LIST_HEAD(locks);
struct ww_acquire_ctx ctx;
struct reorder_lock *ll, *ln;
int *order;
int n, err;
order = get_random_order(stress->nlocks);
if (!order)
return;
for (n = 0; n < stress->nlocks; n++) {
ll = kmalloc(sizeof(*ll), GFP_KERNEL);
if (!ll)
goto out;
ll->lock = &stress->locks[order[n]];
list_add(&ll->link, &locks);
}
kfree(order);
order = NULL;
do {
ww_acquire_init(&ctx, &ww_class);
list_for_each_entry(ll, &locks, link) {
err = ww_mutex_lock(ll->lock, &ctx);
if (!err)
continue;
ln = ll;
list_for_each_entry_continue_reverse(ln, &locks, link)
ww_mutex_unlock(ln->lock);
if (err != -EDEADLK) {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
ww_mutex_lock_slow(ll->lock, &ctx);
list_move(&ll->link, &locks); /* restarts iteration */
}
dummy_load(stress);
list_for_each_entry(ll, &locks, link)
ww_mutex_unlock(ll->lock);
ww_acquire_fini(&ctx);
} while (!time_after(jiffies, stress->timeout));
out:
list_for_each_entry_safe(ll, ln, &locks, link)
kfree(ll);
kfree(order);
kfree(stress);
}
static void stress_one_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
const int nlocks = stress->nlocks;
struct ww_mutex *lock = stress->locks + (get_random_int() % nlocks);
int err;
do {
err = ww_mutex_lock(lock, NULL);
if (!err) {
dummy_load(stress);
ww_mutex_unlock(lock);
} else {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
} while (!time_after(jiffies, stress->timeout));
kfree(stress);
}
#define STRESS_INORDER BIT(0)
#define STRESS_REORDER BIT(1)
#define STRESS_ONE BIT(2)
#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
static int stress(int nlocks, int nthreads, unsigned int flags)
{
struct ww_mutex *locks;
int n;
locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
if (!locks)
return -ENOMEM;
for (n = 0; n < nlocks; n++)
ww_mutex_init(&locks[n], &ww_class);
for (n = 0; nthreads; n++) {
struct stress *stress;
void (*fn)(struct work_struct *work);
fn = NULL;
switch (n & 3) {
case 0:
if (flags & STRESS_INORDER)
fn = stress_inorder_work;
break;
case 1:
if (flags & STRESS_REORDER)
fn = stress_reorder_work;
break;
case 2:
if (flags & STRESS_ONE)
fn = stress_one_work;
break;
}
if (!fn)
continue;
stress = kmalloc(sizeof(*stress), GFP_KERNEL);
if (!stress)
break;
INIT_WORK(&stress->work, fn);
stress->locks = locks;
stress->nlocks = nlocks;
stress->timeout = jiffies + 2*HZ;
queue_work(wq, &stress->work);
nthreads--;
}
flush_workqueue(wq);
for (n = 0; n < nlocks; n++)
ww_mutex_destroy(&locks[n]);
kfree(locks);
return 0;
}
static int __init test_ww_mutex_init(void)
{
int ncpus = num_online_cpus();
int ret;
wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
if (!wq)
return -ENOMEM;
ret = test_mutex();
if (ret)
return ret;
ret = test_aa();
if (ret)
return ret;
ret = test_abba(false);
if (ret)
return ret;
ret = test_abba(true);
if (ret)
return ret;
ret = test_cycle(ncpus);
if (ret)
return ret;
ret = stress(16, 2*ncpus, STRESS_INORDER);
if (ret)
return ret;
ret = stress(16, 2*ncpus, STRESS_REORDER);
if (ret)
return ret;
ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
if (ret)
return ret;
return 0;
}
static void __exit test_ww_mutex_exit(void)
{
destroy_workqueue(wq);
}
module_init(test_ww_mutex_init);
module_exit(test_ww_mutex_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Intel Corporation");