android_kernel_xiaomi_sm8350/drivers/mtd/nand/at91_nand.c
Atsushi Nemoto 2314488e81 [MTD] [NAND] at91_nand: control NCE signal
This driver did not control NCE signal during normal operations (only
enable NCE on probing and disable NCE on removing).  This patch make
NCE signal inactive on idle state.

Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2008-04-25 09:08:05 +01:00

595 lines
14 KiB
C

/*
* drivers/mtd/nand/at91_nand.c
*
* Copyright (C) 2003 Rick Bronson
*
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
*
* Derived from drivers/mtd/spia.c
* Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com)
*
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007
*
* Derived from Das U-Boot source code
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
* (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <asm/sizes.h>
#include <asm/hardware.h>
#include <asm/arch/board.h>
#include <asm/arch/gpio.h>
#ifdef CONFIG_MTD_NAND_AT91_ECC_HW
#define hard_ecc 1
#else
#define hard_ecc 0
#endif
#ifdef CONFIG_MTD_NAND_AT91_ECC_NONE
#define no_ecc 1
#else
#define no_ecc 0
#endif
/* Register access macros */
#define ecc_readl(add, reg) \
__raw_readl(add + AT91_ECC_##reg)
#define ecc_writel(add, reg, value) \
__raw_writel((value), add + AT91_ECC_##reg)
#include <asm/arch/at91_ecc.h> /* AT91SAM9260/3 ECC registers */
/* oob layout for large page size
* bad block info is on bytes 0 and 1
* the bytes have to be consecutives to avoid
* several NAND_CMD_RNDOUT during read
*/
static struct nand_ecclayout at91_oobinfo_large = {
.eccbytes = 4,
.eccpos = {60, 61, 62, 63},
.oobfree = {
{2, 58}
},
};
/* oob layout for small page size
* bad block info is on bytes 4 and 5
* the bytes have to be consecutives to avoid
* several NAND_CMD_RNDOUT during read
*/
static struct nand_ecclayout at91_oobinfo_small = {
.eccbytes = 4,
.eccpos = {0, 1, 2, 3},
.oobfree = {
{6, 10}
},
};
struct at91_nand_host {
struct nand_chip nand_chip;
struct mtd_info mtd;
void __iomem *io_base;
struct at91_nand_data *board;
struct device *dev;
void __iomem *ecc;
};
/*
* Hardware specific access to control-lines
*/
static void at91_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *nand_chip = mtd->priv;
struct at91_nand_host *host = nand_chip->priv;
if (host->board->enable_pin && (ctrl & NAND_CTRL_CHANGE)) {
if (ctrl & NAND_NCE)
at91_set_gpio_value(host->board->enable_pin, 0);
else
at91_set_gpio_value(host->board->enable_pin, 1);
}
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, host->io_base + (1 << host->board->cle));
else
writeb(cmd, host->io_base + (1 << host->board->ale));
}
/*
* Read the Device Ready pin.
*/
static int at91_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct at91_nand_host *host = nand_chip->priv;
return at91_get_gpio_value(host->board->rdy_pin);
}
/*
* Enable NAND.
*/
static void at91_nand_enable(struct at91_nand_host *host)
{
if (host->board->enable_pin)
at91_set_gpio_value(host->board->enable_pin, 0);
}
/*
* Disable NAND.
*/
static void at91_nand_disable(struct at91_nand_host *host)
{
if (host->board->enable_pin)
at91_set_gpio_value(host->board->enable_pin, 1);
}
/*
* write oob for small pages
*/
static int at91_nand_write_oob_512(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size, length = mtd->oobsize;
int len, pos, status = 0;
const uint8_t *bufpoi = chip->oob_poi;
pos = eccsize + chunk;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
len = min_t(int, length, chunk);
chip->write_buf(mtd, bufpoi, len);
bufpoi += len;
length -= len;
if (length > 0)
chip->write_buf(mtd, bufpoi, length);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/*
* read oob for small pages
*/
static int at91_nand_read_oob_512(struct mtd_info *mtd,
struct nand_chip *chip, int page, int sndcmd)
{
if (sndcmd) {
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
sndcmd = 0;
}
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return sndcmd;
}
/*
* Calculate HW ECC
*
* function called after a write
*
* mtd: MTD block structure
* dat: raw data (unused)
* ecc_code: buffer for ECC
*/
static int at91_nand_calculate(struct mtd_info *mtd,
const u_char *dat, unsigned char *ecc_code)
{
struct nand_chip *nand_chip = mtd->priv;
struct at91_nand_host *host = nand_chip->priv;
uint32_t *eccpos = nand_chip->ecc.layout->eccpos;
unsigned int ecc_value;
/* get the first 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, PR);
ecc_code[eccpos[0]] = ecc_value & 0xFF;
ecc_code[eccpos[1]] = (ecc_value >> 8) & 0xFF;
/* get the last 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, NPR) & AT91_ECC_NPARITY;
ecc_code[eccpos[2]] = ecc_value & 0xFF;
ecc_code[eccpos[3]] = (ecc_value >> 8) & 0xFF;
return 0;
}
/*
* HW ECC read page function
*
* mtd: mtd info structure
* chip: nand chip info structure
* buf: buffer to store read data
*/
static int at91_nand_read_page(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
uint8_t *ecc_pos;
int stat;
/* read the page */
chip->read_buf(mtd, p, eccsize);
/* move to ECC position if needed */
if (eccpos[0] != 0) {
/* This only works on large pages
* because the ECC controller waits for
* NAND_CMD_RNDOUTSTART after the
* NAND_CMD_RNDOUT.
* anyway, for small pages, the eccpos[0] == 0
*/
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
mtd->writesize + eccpos[0], -1);
}
/* the ECC controller needs to read the ECC just after the data */
ecc_pos = oob + eccpos[0];
chip->read_buf(mtd, ecc_pos, eccbytes);
/* check if there's an error */
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
/* get back to oob start (end of page) */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
/* read the oob */
chip->read_buf(mtd, oob, mtd->oobsize);
return 0;
}
/*
* HW ECC Correction
*
* function called after a read
*
* mtd: MTD block structure
* dat: raw data read from the chip
* read_ecc: ECC from the chip (unused)
* isnull: unused
*
* Detect and correct a 1 bit error for a page
*/
static int at91_nand_correct(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *isnull)
{
struct nand_chip *nand_chip = mtd->priv;
struct at91_nand_host *host = nand_chip->priv;
unsigned int ecc_status;
unsigned int ecc_word, ecc_bit;
/* get the status from the Status Register */
ecc_status = ecc_readl(host->ecc, SR);
/* if there's no error */
if (likely(!(ecc_status & AT91_ECC_RECERR)))
return 0;
/* get error bit offset (4 bits) */
ecc_bit = ecc_readl(host->ecc, PR) & AT91_ECC_BITADDR;
/* get word address (12 bits) */
ecc_word = ecc_readl(host->ecc, PR) & AT91_ECC_WORDADDR;
ecc_word >>= 4;
/* if there are multiple errors */
if (ecc_status & AT91_ECC_MULERR) {
/* check if it is a freshly erased block
* (filled with 0xff) */
if ((ecc_bit == AT91_ECC_BITADDR)
&& (ecc_word == (AT91_ECC_WORDADDR >> 4))) {
/* the block has just been erased, return OK */
return 0;
}
/* it doesn't seems to be a freshly
* erased block.
* We can't correct so many errors */
dev_dbg(host->dev, "at91_nand : multiple errors detected."
" Unable to correct.\n");
return -EIO;
}
/* if there's a single bit error : we can correct it */
if (ecc_status & AT91_ECC_ECCERR) {
/* there's nothing much to do here.
* the bit error is on the ECC itself.
*/
dev_dbg(host->dev, "at91_nand : one bit error on ECC code."
" Nothing to correct\n");
return 0;
}
dev_dbg(host->dev, "at91_nand : one bit error on data."
" (word offset in the page :"
" 0x%x bit offset : 0x%x)\n",
ecc_word, ecc_bit);
/* correct the error */
if (nand_chip->options & NAND_BUSWIDTH_16) {
/* 16 bits words */
((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
} else {
/* 8 bits words */
dat[ecc_word] ^= (1 << ecc_bit);
}
dev_dbg(host->dev, "at91_nand : error corrected\n");
return 1;
}
/*
* Enable HW ECC : unsused
*/
static void at91_nand_hwctl(struct mtd_info *mtd, int mode) { ; }
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "cmdlinepart", NULL };
#endif
/*
* Probe for the NAND device.
*/
static int __init at91_nand_probe(struct platform_device *pdev)
{
struct at91_nand_host *host;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
struct resource *regs;
struct resource *mem;
int res;
#ifdef CONFIG_MTD_PARTITIONS
struct mtd_partition *partitions = NULL;
int num_partitions = 0;
#endif
/* Allocate memory for the device structure (and zero it) */
host = kzalloc(sizeof(struct at91_nand_host), GFP_KERNEL);
if (!host) {
printk(KERN_ERR "at91_nand: failed to allocate device structure.\n");
return -ENOMEM;
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
printk(KERN_ERR "at91_nand: can't get I/O resource mem\n");
return -ENXIO;
}
host->io_base = ioremap(mem->start, mem->end - mem->start + 1);
if (host->io_base == NULL) {
printk(KERN_ERR "at91_nand: ioremap failed\n");
kfree(host);
return -EIO;
}
mtd = &host->mtd;
nand_chip = &host->nand_chip;
host->board = pdev->dev.platform_data;
host->dev = &pdev->dev;
nand_chip->priv = host; /* link the private data structures */
mtd->priv = nand_chip;
mtd->owner = THIS_MODULE;
/* Set address of NAND IO lines */
nand_chip->IO_ADDR_R = host->io_base;
nand_chip->IO_ADDR_W = host->io_base;
nand_chip->cmd_ctrl = at91_nand_cmd_ctrl;
if (host->board->rdy_pin)
nand_chip->dev_ready = at91_nand_device_ready;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!regs && hard_ecc) {
printk(KERN_ERR "at91_nand: can't get I/O resource "
"regs\nFalling back on software ECC\n");
}
nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */
if (no_ecc)
nand_chip->ecc.mode = NAND_ECC_NONE;
if (hard_ecc && regs) {
host->ecc = ioremap(regs->start, regs->end - regs->start + 1);
if (host->ecc == NULL) {
printk(KERN_ERR "at91_nand: ioremap failed\n");
res = -EIO;
goto err_ecc_ioremap;
}
nand_chip->ecc.mode = NAND_ECC_HW_SYNDROME;
nand_chip->ecc.calculate = at91_nand_calculate;
nand_chip->ecc.correct = at91_nand_correct;
nand_chip->ecc.hwctl = at91_nand_hwctl;
nand_chip->ecc.read_page = at91_nand_read_page;
nand_chip->ecc.bytes = 4;
nand_chip->ecc.prepad = 0;
nand_chip->ecc.postpad = 0;
}
nand_chip->chip_delay = 20; /* 20us command delay time */
if (host->board->bus_width_16) /* 16-bit bus width */
nand_chip->options |= NAND_BUSWIDTH_16;
platform_set_drvdata(pdev, host);
at91_nand_enable(host);
if (host->board->det_pin) {
if (at91_get_gpio_value(host->board->det_pin)) {
printk ("No SmartMedia card inserted.\n");
res = ENXIO;
goto out;
}
}
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1)) {
res = -ENXIO;
goto out;
}
if (nand_chip->ecc.mode == NAND_ECC_HW_SYNDROME) {
/* ECC is calculated for the whole page (1 step) */
nand_chip->ecc.size = mtd->writesize;
/* set ECC page size and oob layout */
switch (mtd->writesize) {
case 512:
nand_chip->ecc.layout = &at91_oobinfo_small;
nand_chip->ecc.read_oob = at91_nand_read_oob_512;
nand_chip->ecc.write_oob = at91_nand_write_oob_512;
ecc_writel(host->ecc, MR, AT91_ECC_PAGESIZE_528);
break;
case 1024:
nand_chip->ecc.layout = &at91_oobinfo_large;
ecc_writel(host->ecc, MR, AT91_ECC_PAGESIZE_1056);
break;
case 2048:
nand_chip->ecc.layout = &at91_oobinfo_large;
ecc_writel(host->ecc, MR, AT91_ECC_PAGESIZE_2112);
break;
case 4096:
nand_chip->ecc.layout = &at91_oobinfo_large;
ecc_writel(host->ecc, MR, AT91_ECC_PAGESIZE_4224);
break;
default:
/* page size not handled by HW ECC */
/* switching back to soft ECC */
nand_chip->ecc.mode = NAND_ECC_SOFT;
nand_chip->ecc.calculate = NULL;
nand_chip->ecc.correct = NULL;
nand_chip->ecc.hwctl = NULL;
nand_chip->ecc.read_page = NULL;
nand_chip->ecc.postpad = 0;
nand_chip->ecc.prepad = 0;
nand_chip->ecc.bytes = 0;
break;
}
}
/* second phase scan */
if (nand_scan_tail(mtd)) {
res = -ENXIO;
goto out;
}
#ifdef CONFIG_MTD_PARTITIONS
#ifdef CONFIG_MTD_CMDLINE_PARTS
mtd->name = "at91_nand";
num_partitions = parse_mtd_partitions(mtd, part_probes,
&partitions, 0);
#endif
if (num_partitions <= 0 && host->board->partition_info)
partitions = host->board->partition_info(mtd->size,
&num_partitions);
if ((!partitions) || (num_partitions == 0)) {
printk(KERN_ERR "at91_nand: No parititions defined, or unsupported device.\n");
res = ENXIO;
goto release;
}
res = add_mtd_partitions(mtd, partitions, num_partitions);
#else
res = add_mtd_device(mtd);
#endif
if (!res)
return res;
#ifdef CONFIG_MTD_PARTITIONS
release:
#endif
nand_release(mtd);
out:
iounmap(host->ecc);
err_ecc_ioremap:
at91_nand_disable(host);
platform_set_drvdata(pdev, NULL);
iounmap(host->io_base);
kfree(host);
return res;
}
/*
* Remove a NAND device.
*/
static int __devexit at91_nand_remove(struct platform_device *pdev)
{
struct at91_nand_host *host = platform_get_drvdata(pdev);
struct mtd_info *mtd = &host->mtd;
nand_release(mtd);
at91_nand_disable(host);
iounmap(host->io_base);
iounmap(host->ecc);
kfree(host);
return 0;
}
static struct platform_driver at91_nand_driver = {
.probe = at91_nand_probe,
.remove = at91_nand_remove,
.driver = {
.name = "at91_nand",
.owner = THIS_MODULE,
},
};
static int __init at91_nand_init(void)
{
return platform_driver_register(&at91_nand_driver);
}
static void __exit at91_nand_exit(void)
{
platform_driver_unregister(&at91_nand_driver);
}
module_init(at91_nand_init);
module_exit(at91_nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rick Bronson");
MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91RM9200 / AT91SAM9");
MODULE_ALIAS("platform:at91_nand");