2b932f6cf0
Recent GDT changes broke the SMP boot sequence if the booting CPU is numbered anything other than zero. There's also a subtle source of error in that the boot time CPU now uses cpu_gdt_table (which is actually the GDT for booting CPUs in head.S). This patch fixes both problems by making GDT descriptors themselves allocated from a per_cpu area and switching to them in cpu_init(), which now means that cpu_gdt_table is exclusively used for booting CPUs again. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com> Cc: Zachary Amsden <zach@vmware.com> Cc: Matt Tolentino <metolent@snoqualmie.dp.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
683 lines
17 KiB
C
683 lines
17 KiB
C
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/module.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/bootmem.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
#include <asm/mpspec.h>
|
|
#include <asm/apic.h>
|
|
#include <mach_apic.h>
|
|
#endif
|
|
|
|
#include "cpu.h"
|
|
|
|
DEFINE_PER_CPU(struct Xgt_desc_struct, cpu_gdt_descr);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_gdt_descr);
|
|
|
|
DEFINE_PER_CPU(unsigned char, cpu_16bit_stack[CPU_16BIT_STACK_SIZE]);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_16bit_stack);
|
|
|
|
static int cachesize_override __devinitdata = -1;
|
|
static int disable_x86_fxsr __devinitdata = 0;
|
|
static int disable_x86_serial_nr __devinitdata = 1;
|
|
|
|
struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
|
|
|
|
extern int disable_pse;
|
|
|
|
static void default_init(struct cpuinfo_x86 * c)
|
|
{
|
|
/* Not much we can do here... */
|
|
/* Check if at least it has cpuid */
|
|
if (c->cpuid_level == -1) {
|
|
/* No cpuid. It must be an ancient CPU */
|
|
if (c->x86 == 4)
|
|
strcpy(c->x86_model_id, "486");
|
|
else if (c->x86 == 3)
|
|
strcpy(c->x86_model_id, "386");
|
|
}
|
|
}
|
|
|
|
static struct cpu_dev default_cpu = {
|
|
.c_init = default_init,
|
|
.c_vendor = "Unknown",
|
|
};
|
|
static struct cpu_dev * this_cpu = &default_cpu;
|
|
|
|
static int __init cachesize_setup(char *str)
|
|
{
|
|
get_option (&str, &cachesize_override);
|
|
return 1;
|
|
}
|
|
__setup("cachesize=", cachesize_setup);
|
|
|
|
int __devinit get_model_name(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int *v;
|
|
char *p, *q;
|
|
|
|
if (cpuid_eax(0x80000000) < 0x80000004)
|
|
return 0;
|
|
|
|
v = (unsigned int *) c->x86_model_id;
|
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
|
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
|
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
|
|
c->x86_model_id[48] = 0;
|
|
|
|
/* Intel chips right-justify this string for some dumb reason;
|
|
undo that brain damage */
|
|
p = q = &c->x86_model_id[0];
|
|
while ( *p == ' ' )
|
|
p++;
|
|
if ( p != q ) {
|
|
while ( *p )
|
|
*q++ = *p++;
|
|
while ( q <= &c->x86_model_id[48] )
|
|
*q++ = '\0'; /* Zero-pad the rest */
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
void __devinit display_cacheinfo(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int n, dummy, ecx, edx, l2size;
|
|
|
|
n = cpuid_eax(0x80000000);
|
|
|
|
if (n >= 0x80000005) {
|
|
cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
|
|
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
|
|
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
|
|
c->x86_cache_size=(ecx>>24)+(edx>>24);
|
|
}
|
|
|
|
if (n < 0x80000006) /* Some chips just has a large L1. */
|
|
return;
|
|
|
|
ecx = cpuid_ecx(0x80000006);
|
|
l2size = ecx >> 16;
|
|
|
|
/* do processor-specific cache resizing */
|
|
if (this_cpu->c_size_cache)
|
|
l2size = this_cpu->c_size_cache(c,l2size);
|
|
|
|
/* Allow user to override all this if necessary. */
|
|
if (cachesize_override != -1)
|
|
l2size = cachesize_override;
|
|
|
|
if ( l2size == 0 )
|
|
return; /* Again, no L2 cache is possible */
|
|
|
|
c->x86_cache_size = l2size;
|
|
|
|
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
|
|
l2size, ecx & 0xFF);
|
|
}
|
|
|
|
/* Naming convention should be: <Name> [(<Codename>)] */
|
|
/* This table only is used unless init_<vendor>() below doesn't set it; */
|
|
/* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
|
|
|
|
/* Look up CPU names by table lookup. */
|
|
static char __devinit *table_lookup_model(struct cpuinfo_x86 *c)
|
|
{
|
|
struct cpu_model_info *info;
|
|
|
|
if ( c->x86_model >= 16 )
|
|
return NULL; /* Range check */
|
|
|
|
if (!this_cpu)
|
|
return NULL;
|
|
|
|
info = this_cpu->c_models;
|
|
|
|
while (info && info->family) {
|
|
if (info->family == c->x86)
|
|
return info->model_names[c->x86_model];
|
|
info++;
|
|
}
|
|
return NULL; /* Not found */
|
|
}
|
|
|
|
|
|
static void __devinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
|
|
{
|
|
char *v = c->x86_vendor_id;
|
|
int i;
|
|
static int printed;
|
|
|
|
for (i = 0; i < X86_VENDOR_NUM; i++) {
|
|
if (cpu_devs[i]) {
|
|
if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
|
|
(cpu_devs[i]->c_ident[1] &&
|
|
!strcmp(v,cpu_devs[i]->c_ident[1]))) {
|
|
c->x86_vendor = i;
|
|
if (!early)
|
|
this_cpu = cpu_devs[i];
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if (!printed) {
|
|
printed++;
|
|
printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
|
|
printk(KERN_ERR "CPU: Your system may be unstable.\n");
|
|
}
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
this_cpu = &default_cpu;
|
|
}
|
|
|
|
|
|
static int __init x86_fxsr_setup(char * s)
|
|
{
|
|
disable_x86_fxsr = 1;
|
|
return 1;
|
|
}
|
|
__setup("nofxsr", x86_fxsr_setup);
|
|
|
|
|
|
/* Standard macro to see if a specific flag is changeable */
|
|
static inline int flag_is_changeable_p(u32 flag)
|
|
{
|
|
u32 f1, f2;
|
|
|
|
asm("pushfl\n\t"
|
|
"pushfl\n\t"
|
|
"popl %0\n\t"
|
|
"movl %0,%1\n\t"
|
|
"xorl %2,%0\n\t"
|
|
"pushl %0\n\t"
|
|
"popfl\n\t"
|
|
"pushfl\n\t"
|
|
"popl %0\n\t"
|
|
"popfl\n\t"
|
|
: "=&r" (f1), "=&r" (f2)
|
|
: "ir" (flag));
|
|
|
|
return ((f1^f2) & flag) != 0;
|
|
}
|
|
|
|
|
|
/* Probe for the CPUID instruction */
|
|
static int __devinit have_cpuid_p(void)
|
|
{
|
|
return flag_is_changeable_p(X86_EFLAGS_ID);
|
|
}
|
|
|
|
/* Do minimum CPU detection early.
|
|
Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
|
|
The others are not touched to avoid unwanted side effects.
|
|
|
|
WARNING: this function is only called on the BP. Don't add code here
|
|
that is supposed to run on all CPUs. */
|
|
static void __init early_cpu_detect(void)
|
|
{
|
|
struct cpuinfo_x86 *c = &boot_cpu_data;
|
|
|
|
c->x86_cache_alignment = 32;
|
|
|
|
if (!have_cpuid_p())
|
|
return;
|
|
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, &c->cpuid_level,
|
|
(int *)&c->x86_vendor_id[0],
|
|
(int *)&c->x86_vendor_id[8],
|
|
(int *)&c->x86_vendor_id[4]);
|
|
|
|
get_cpu_vendor(c, 1);
|
|
|
|
c->x86 = 4;
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
u32 junk, tfms, cap0, misc;
|
|
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
|
|
c->x86 = (tfms >> 8) & 15;
|
|
c->x86_model = (tfms >> 4) & 15;
|
|
if (c->x86 == 0xf)
|
|
c->x86 += (tfms >> 20) & 0xff;
|
|
if (c->x86 >= 0x6)
|
|
c->x86_model += ((tfms >> 16) & 0xF) << 4;
|
|
c->x86_mask = tfms & 15;
|
|
if (cap0 & (1<<19))
|
|
c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
|
|
}
|
|
}
|
|
|
|
void __devinit generic_identify(struct cpuinfo_x86 * c)
|
|
{
|
|
u32 tfms, xlvl;
|
|
int junk;
|
|
|
|
if (have_cpuid_p()) {
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, &c->cpuid_level,
|
|
(int *)&c->x86_vendor_id[0],
|
|
(int *)&c->x86_vendor_id[8],
|
|
(int *)&c->x86_vendor_id[4]);
|
|
|
|
get_cpu_vendor(c, 0);
|
|
/* Initialize the standard set of capabilities */
|
|
/* Note that the vendor-specific code below might override */
|
|
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if ( c->cpuid_level >= 0x00000001 ) {
|
|
u32 capability, excap;
|
|
cpuid(0x00000001, &tfms, &junk, &excap, &capability);
|
|
c->x86_capability[0] = capability;
|
|
c->x86_capability[4] = excap;
|
|
c->x86 = (tfms >> 8) & 15;
|
|
c->x86_model = (tfms >> 4) & 15;
|
|
if (c->x86 == 0xf) {
|
|
c->x86 += (tfms >> 20) & 0xff;
|
|
c->x86_model += ((tfms >> 16) & 0xF) << 4;
|
|
}
|
|
c->x86_mask = tfms & 15;
|
|
} else {
|
|
/* Have CPUID level 0 only - unheard of */
|
|
c->x86 = 4;
|
|
}
|
|
|
|
/* AMD-defined flags: level 0x80000001 */
|
|
xlvl = cpuid_eax(0x80000000);
|
|
if ( (xlvl & 0xffff0000) == 0x80000000 ) {
|
|
if ( xlvl >= 0x80000001 ) {
|
|
c->x86_capability[1] = cpuid_edx(0x80000001);
|
|
c->x86_capability[6] = cpuid_ecx(0x80000001);
|
|
}
|
|
if ( xlvl >= 0x80000004 )
|
|
get_model_name(c); /* Default name */
|
|
}
|
|
}
|
|
|
|
early_intel_workaround(c);
|
|
|
|
#ifdef CONFIG_X86_HT
|
|
phys_proc_id[smp_processor_id()] = (cpuid_ebx(1) >> 24) & 0xff;
|
|
#endif
|
|
}
|
|
|
|
static void __devinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
|
|
{
|
|
if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
|
|
/* Disable processor serial number */
|
|
unsigned long lo,hi;
|
|
rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
|
|
lo |= 0x200000;
|
|
wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
|
|
printk(KERN_NOTICE "CPU serial number disabled.\n");
|
|
clear_bit(X86_FEATURE_PN, c->x86_capability);
|
|
|
|
/* Disabling the serial number may affect the cpuid level */
|
|
c->cpuid_level = cpuid_eax(0);
|
|
}
|
|
}
|
|
|
|
static int __init x86_serial_nr_setup(char *s)
|
|
{
|
|
disable_x86_serial_nr = 0;
|
|
return 1;
|
|
}
|
|
__setup("serialnumber", x86_serial_nr_setup);
|
|
|
|
|
|
|
|
/*
|
|
* This does the hard work of actually picking apart the CPU stuff...
|
|
*/
|
|
void __devinit identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
c->loops_per_jiffy = loops_per_jiffy;
|
|
c->x86_cache_size = -1;
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
c->cpuid_level = -1; /* CPUID not detected */
|
|
c->x86_model = c->x86_mask = 0; /* So far unknown... */
|
|
c->x86_vendor_id[0] = '\0'; /* Unset */
|
|
c->x86_model_id[0] = '\0'; /* Unset */
|
|
c->x86_max_cores = 1;
|
|
memset(&c->x86_capability, 0, sizeof c->x86_capability);
|
|
|
|
if (!have_cpuid_p()) {
|
|
/* First of all, decide if this is a 486 or higher */
|
|
/* It's a 486 if we can modify the AC flag */
|
|
if ( flag_is_changeable_p(X86_EFLAGS_AC) )
|
|
c->x86 = 4;
|
|
else
|
|
c->x86 = 3;
|
|
}
|
|
|
|
generic_identify(c);
|
|
|
|
printk(KERN_DEBUG "CPU: After generic identify, caps:");
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
printk(" %08lx", c->x86_capability[i]);
|
|
printk("\n");
|
|
|
|
if (this_cpu->c_identify) {
|
|
this_cpu->c_identify(c);
|
|
|
|
printk(KERN_DEBUG "CPU: After vendor identify, caps:");
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
printk(" %08lx", c->x86_capability[i]);
|
|
printk("\n");
|
|
}
|
|
|
|
/*
|
|
* Vendor-specific initialization. In this section we
|
|
* canonicalize the feature flags, meaning if there are
|
|
* features a certain CPU supports which CPUID doesn't
|
|
* tell us, CPUID claiming incorrect flags, or other bugs,
|
|
* we handle them here.
|
|
*
|
|
* At the end of this section, c->x86_capability better
|
|
* indicate the features this CPU genuinely supports!
|
|
*/
|
|
if (this_cpu->c_init)
|
|
this_cpu->c_init(c);
|
|
|
|
/* Disable the PN if appropriate */
|
|
squash_the_stupid_serial_number(c);
|
|
|
|
/*
|
|
* The vendor-specific functions might have changed features. Now
|
|
* we do "generic changes."
|
|
*/
|
|
|
|
/* TSC disabled? */
|
|
if ( tsc_disable )
|
|
clear_bit(X86_FEATURE_TSC, c->x86_capability);
|
|
|
|
/* FXSR disabled? */
|
|
if (disable_x86_fxsr) {
|
|
clear_bit(X86_FEATURE_FXSR, c->x86_capability);
|
|
clear_bit(X86_FEATURE_XMM, c->x86_capability);
|
|
}
|
|
|
|
if (disable_pse)
|
|
clear_bit(X86_FEATURE_PSE, c->x86_capability);
|
|
|
|
/* If the model name is still unset, do table lookup. */
|
|
if ( !c->x86_model_id[0] ) {
|
|
char *p;
|
|
p = table_lookup_model(c);
|
|
if ( p )
|
|
strcpy(c->x86_model_id, p);
|
|
else
|
|
/* Last resort... */
|
|
sprintf(c->x86_model_id, "%02x/%02x",
|
|
c->x86_vendor, c->x86_model);
|
|
}
|
|
|
|
/* Now the feature flags better reflect actual CPU features! */
|
|
|
|
printk(KERN_DEBUG "CPU: After all inits, caps:");
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
printk(" %08lx", c->x86_capability[i]);
|
|
printk("\n");
|
|
|
|
/*
|
|
* On SMP, boot_cpu_data holds the common feature set between
|
|
* all CPUs; so make sure that we indicate which features are
|
|
* common between the CPUs. The first time this routine gets
|
|
* executed, c == &boot_cpu_data.
|
|
*/
|
|
if ( c != &boot_cpu_data ) {
|
|
/* AND the already accumulated flags with these */
|
|
for ( i = 0 ; i < NCAPINTS ; i++ )
|
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
|
|
}
|
|
|
|
/* Init Machine Check Exception if available. */
|
|
mcheck_init(c);
|
|
|
|
if (c == &boot_cpu_data)
|
|
sysenter_setup();
|
|
enable_sep_cpu();
|
|
|
|
if (c == &boot_cpu_data)
|
|
mtrr_bp_init();
|
|
else
|
|
mtrr_ap_init();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_HT
|
|
void __devinit detect_ht(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
int index_msb, core_bits;
|
|
int cpu = smp_processor_id();
|
|
|
|
cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
|
|
c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
|
|
|
|
if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
|
|
return;
|
|
|
|
smp_num_siblings = (ebx & 0xff0000) >> 16;
|
|
|
|
if (smp_num_siblings == 1) {
|
|
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
|
|
} else if (smp_num_siblings > 1 ) {
|
|
|
|
if (smp_num_siblings > NR_CPUS) {
|
|
printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
|
|
smp_num_siblings = 1;
|
|
return;
|
|
}
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
phys_proc_id[cpu] = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
|
|
|
|
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
|
|
phys_proc_id[cpu]);
|
|
|
|
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
|
|
|
|
index_msb = get_count_order(smp_num_siblings) ;
|
|
|
|
core_bits = get_count_order(c->x86_max_cores);
|
|
|
|
cpu_core_id[cpu] = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
|
|
((1 << core_bits) - 1);
|
|
|
|
if (c->x86_max_cores > 1)
|
|
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
|
|
cpu_core_id[cpu]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void __devinit print_cpu_info(struct cpuinfo_x86 *c)
|
|
{
|
|
char *vendor = NULL;
|
|
|
|
if (c->x86_vendor < X86_VENDOR_NUM)
|
|
vendor = this_cpu->c_vendor;
|
|
else if (c->cpuid_level >= 0)
|
|
vendor = c->x86_vendor_id;
|
|
|
|
if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
|
|
printk("%s ", vendor);
|
|
|
|
if (!c->x86_model_id[0])
|
|
printk("%d86", c->x86);
|
|
else
|
|
printk("%s", c->x86_model_id);
|
|
|
|
if (c->x86_mask || c->cpuid_level >= 0)
|
|
printk(" stepping %02x\n", c->x86_mask);
|
|
else
|
|
printk("\n");
|
|
}
|
|
|
|
cpumask_t cpu_initialized __devinitdata = CPU_MASK_NONE;
|
|
|
|
/* This is hacky. :)
|
|
* We're emulating future behavior.
|
|
* In the future, the cpu-specific init functions will be called implicitly
|
|
* via the magic of initcalls.
|
|
* They will insert themselves into the cpu_devs structure.
|
|
* Then, when cpu_init() is called, we can just iterate over that array.
|
|
*/
|
|
|
|
extern int intel_cpu_init(void);
|
|
extern int cyrix_init_cpu(void);
|
|
extern int nsc_init_cpu(void);
|
|
extern int amd_init_cpu(void);
|
|
extern int centaur_init_cpu(void);
|
|
extern int transmeta_init_cpu(void);
|
|
extern int rise_init_cpu(void);
|
|
extern int nexgen_init_cpu(void);
|
|
extern int umc_init_cpu(void);
|
|
|
|
void __init early_cpu_init(void)
|
|
{
|
|
intel_cpu_init();
|
|
cyrix_init_cpu();
|
|
nsc_init_cpu();
|
|
amd_init_cpu();
|
|
centaur_init_cpu();
|
|
transmeta_init_cpu();
|
|
rise_init_cpu();
|
|
nexgen_init_cpu();
|
|
umc_init_cpu();
|
|
early_cpu_detect();
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
/* pse is not compatible with on-the-fly unmapping,
|
|
* disable it even if the cpus claim to support it.
|
|
*/
|
|
clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
|
|
disable_pse = 1;
|
|
#endif
|
|
}
|
|
/*
|
|
* cpu_init() initializes state that is per-CPU. Some data is already
|
|
* initialized (naturally) in the bootstrap process, such as the GDT
|
|
* and IDT. We reload them nevertheless, this function acts as a
|
|
* 'CPU state barrier', nothing should get across.
|
|
*/
|
|
void __devinit cpu_init(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tss_struct * t = &per_cpu(init_tss, cpu);
|
|
struct thread_struct *thread = ¤t->thread;
|
|
struct desc_struct *gdt;
|
|
__u32 stk16_off = (__u32)&per_cpu(cpu_16bit_stack, cpu);
|
|
struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
|
|
|
|
if (cpu_test_and_set(cpu, cpu_initialized)) {
|
|
printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
|
|
for (;;) local_irq_enable();
|
|
}
|
|
printk(KERN_INFO "Initializing CPU#%d\n", cpu);
|
|
|
|
if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
|
|
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
|
|
if (tsc_disable && cpu_has_tsc) {
|
|
printk(KERN_NOTICE "Disabling TSC...\n");
|
|
/**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
|
|
clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
|
|
set_in_cr4(X86_CR4_TSD);
|
|
}
|
|
|
|
/*
|
|
* This is a horrible hack to allocate the GDT. The problem
|
|
* is that cpu_init() is called really early for the boot CPU
|
|
* (and hence needs bootmem) but much later for the secondary
|
|
* CPUs, when bootmem will have gone away
|
|
*/
|
|
if (NODE_DATA(0)->bdata->node_bootmem_map) {
|
|
gdt = (struct desc_struct *)alloc_bootmem_pages(PAGE_SIZE);
|
|
/* alloc_bootmem_pages panics on failure, so no check */
|
|
memset(gdt, 0, PAGE_SIZE);
|
|
} else {
|
|
gdt = (struct desc_struct *)get_zeroed_page(GFP_KERNEL);
|
|
if (unlikely(!gdt)) {
|
|
printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
|
|
for (;;)
|
|
local_irq_enable();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the per-CPU GDT with the boot GDT,
|
|
* and set up the GDT descriptor:
|
|
*/
|
|
memcpy(gdt, cpu_gdt_table, GDT_SIZE);
|
|
|
|
/* Set up GDT entry for 16bit stack */
|
|
*(__u64 *)(&gdt[GDT_ENTRY_ESPFIX_SS]) |=
|
|
((((__u64)stk16_off) << 16) & 0x000000ffffff0000ULL) |
|
|
((((__u64)stk16_off) << 32) & 0xff00000000000000ULL) |
|
|
(CPU_16BIT_STACK_SIZE - 1);
|
|
|
|
cpu_gdt_descr->size = GDT_SIZE - 1;
|
|
cpu_gdt_descr->address = (unsigned long)gdt;
|
|
|
|
load_gdt(cpu_gdt_descr);
|
|
load_idt(&idt_descr);
|
|
|
|
/*
|
|
* Set up and load the per-CPU TSS and LDT
|
|
*/
|
|
atomic_inc(&init_mm.mm_count);
|
|
current->active_mm = &init_mm;
|
|
if (current->mm)
|
|
BUG();
|
|
enter_lazy_tlb(&init_mm, current);
|
|
|
|
load_esp0(t, thread);
|
|
set_tss_desc(cpu,t);
|
|
load_TR_desc();
|
|
load_LDT(&init_mm.context);
|
|
|
|
#ifdef CONFIG_DOUBLEFAULT
|
|
/* Set up doublefault TSS pointer in the GDT */
|
|
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
|
|
#endif
|
|
|
|
/* Clear %fs and %gs. */
|
|
asm volatile ("xorl %eax, %eax; movl %eax, %fs; movl %eax, %gs");
|
|
|
|
/* Clear all 6 debug registers: */
|
|
set_debugreg(0, 0);
|
|
set_debugreg(0, 1);
|
|
set_debugreg(0, 2);
|
|
set_debugreg(0, 3);
|
|
set_debugreg(0, 6);
|
|
set_debugreg(0, 7);
|
|
|
|
/*
|
|
* Force FPU initialization:
|
|
*/
|
|
current_thread_info()->status = 0;
|
|
clear_used_math();
|
|
mxcsr_feature_mask_init();
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void __devinit cpu_uninit(void)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
cpu_clear(cpu, cpu_initialized);
|
|
|
|
/* lazy TLB state */
|
|
per_cpu(cpu_tlbstate, cpu).state = 0;
|
|
per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
|
|
}
|
|
#endif
|