android_kernel_xiaomi_sm8350/drivers/scsi/ncr53c8xx.c
Linus Torvalds ec0bf39a47 Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
* master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6: (73 commits)
  [SCSI] aic79xx: Add ASC-29320LPE ids to driver
  [SCSI] stex: version update
  [SCSI] stex: change wait loop code
  [SCSI] stex: add new device type support
  [SCSI] stex: update device id info
  [SCSI] stex: adjust default queue length
  [SCSI] stex: add value check in hard reset routine
  [SCSI] stex: fix controller_info command handling
  [SCSI] stex: fix biosparam calculation
  [SCSI] megaraid: fix MMIO casts
  [SCSI] tgt: fix undefined flush_dcache_page() problem
  [SCSI] libsas: better error handling in sas_expander.c
  [SCSI] lpfc 8.1.11 : Change version number to 8.1.11
  [SCSI] lpfc 8.1.11 : Misc Fixes
  [SCSI] lpfc 8.1.11 : Add soft_wwnn sysfs attribute, rename soft_wwn_enable
  [SCSI] lpfc 8.1.11 : Removed decoding of PCI Subsystem Id
  [SCSI] lpfc 8.1.11 : Add MSI (Message Signalled Interrupts) support
  [SCSI] lpfc 8.1.11 : Adjust LOG_FCP logging
  [SCSI] lpfc 8.1.11 : Fix Memory leaks
  [SCSI] lpfc 8.1.11 : Fix lpfc_multi_ring_support
  ...
2006-12-05 16:09:46 -08:00

8682 lines
212 KiB
C

/******************************************************************************
** Device driver for the PCI-SCSI NCR538XX controller family.
**
** Copyright (C) 1994 Wolfgang Stanglmeier
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**
**-----------------------------------------------------------------------------
**
** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
** and is currently maintained by
**
** Gerard Roudier <groudier@free.fr>
**
** Being given that this driver originates from the FreeBSD version, and
** in order to keep synergy on both, any suggested enhancements and corrections
** received on Linux are automatically a potential candidate for the FreeBSD
** version.
**
** The original driver has been written for 386bsd and FreeBSD by
** Wolfgang Stanglmeier <wolf@cologne.de>
** Stefan Esser <se@mi.Uni-Koeln.de>
**
** And has been ported to NetBSD by
** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
**
**-----------------------------------------------------------------------------
**
** Brief history
**
** December 10 1995 by Gerard Roudier:
** Initial port to Linux.
**
** June 23 1996 by Gerard Roudier:
** Support for 64 bits architectures (Alpha).
**
** November 30 1996 by Gerard Roudier:
** Support for Fast-20 scsi.
** Support for large DMA fifo and 128 dwords bursting.
**
** February 27 1997 by Gerard Roudier:
** Support for Fast-40 scsi.
** Support for on-Board RAM.
**
** May 3 1997 by Gerard Roudier:
** Full support for scsi scripts instructions pre-fetching.
**
** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
** Support for NvRAM detection and reading.
**
** August 18 1997 by Cort <cort@cs.nmt.edu>:
** Support for Power/PC (Big Endian).
**
** June 20 1998 by Gerard Roudier
** Support for up to 64 tags per lun.
** O(1) everywhere (C and SCRIPTS) for normal cases.
** Low PCI traffic for command handling when on-chip RAM is present.
** Aggressive SCSI SCRIPTS optimizations.
**
** 2005 by Matthew Wilcox and James Bottomley
** PCI-ectomy. This driver now supports only the 720 chip (see the
** NCR_Q720 and zalon drivers for the bus probe logic).
**
*******************************************************************************
*/
/*
** Supported SCSI-II features:
** Synchronous negotiation
** Wide negotiation (depends on the NCR Chip)
** Enable disconnection
** Tagged command queuing
** Parity checking
** Etc...
**
** Supported NCR/SYMBIOS chips:
** 53C720 (Wide, Fast SCSI-2, intfly problems)
*/
/* Name and version of the driver */
#define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
#define SCSI_NCR_DEBUG_FLAGS (0)
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/system.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_spi.h>
#include "ncr53c8xx.h"
#define NAME53C8XX "ncr53c8xx"
/*==========================================================
**
** Debugging tags
**
**==========================================================
*/
#define DEBUG_ALLOC (0x0001)
#define DEBUG_PHASE (0x0002)
#define DEBUG_QUEUE (0x0008)
#define DEBUG_RESULT (0x0010)
#define DEBUG_POINTER (0x0020)
#define DEBUG_SCRIPT (0x0040)
#define DEBUG_TINY (0x0080)
#define DEBUG_TIMING (0x0100)
#define DEBUG_NEGO (0x0200)
#define DEBUG_TAGS (0x0400)
#define DEBUG_SCATTER (0x0800)
#define DEBUG_IC (0x1000)
/*
** Enable/Disable debug messages.
** Can be changed at runtime too.
*/
#ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
#define DEBUG_FLAGS ncr_debug
#else
#define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
#endif
static inline struct list_head *ncr_list_pop(struct list_head *head)
{
if (!list_empty(head)) {
struct list_head *elem = head->next;
list_del(elem);
return elem;
}
return NULL;
}
/*==========================================================
**
** Simple power of two buddy-like allocator.
**
** This simple code is not intended to be fast, but to
** provide power of 2 aligned memory allocations.
** Since the SCRIPTS processor only supplies 8 bit
** arithmetic, this allocator allows simple and fast
** address calculations from the SCRIPTS code.
** In addition, cache line alignment is guaranteed for
** power of 2 cache line size.
** Enhanced in linux-2.3.44 to provide a memory pool
** per pcidev to support dynamic dma mapping. (I would
** have preferred a real bus abstraction, btw).
**
**==========================================================
*/
#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
#if PAGE_SIZE >= 8192
#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
#else
#define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
#endif
#define MEMO_FREE_UNUSED /* Free unused pages immediately */
#define MEMO_WARN 1
#define MEMO_GFP_FLAGS GFP_ATOMIC
#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
typedef struct device *m_bush_t; /* Something that addresses DMAable */
typedef struct m_link { /* Link between free memory chunks */
struct m_link *next;
} m_link_s;
typedef struct m_vtob { /* Virtual to Bus address translation */
struct m_vtob *next;
m_addr_t vaddr;
m_addr_t baddr;
} m_vtob_s;
#define VTOB_HASH_SHIFT 5
#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
#define VTOB_HASH_CODE(m) \
((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
typedef struct m_pool { /* Memory pool of a given kind */
m_bush_t bush;
m_addr_t (*getp)(struct m_pool *);
void (*freep)(struct m_pool *, m_addr_t);
int nump;
m_vtob_s *(vtob[VTOB_HASH_SIZE]);
struct m_pool *next;
struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
} m_pool_s;
static void *___m_alloc(m_pool_s *mp, int size)
{
int i = 0;
int s = (1 << MEMO_SHIFT);
int j;
m_addr_t a;
m_link_s *h = mp->h;
if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
return NULL;
while (size > s) {
s <<= 1;
++i;
}
j = i;
while (!h[j].next) {
if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
h[j].next = (m_link_s *)mp->getp(mp);
if (h[j].next)
h[j].next->next = NULL;
break;
}
++j;
s <<= 1;
}
a = (m_addr_t) h[j].next;
if (a) {
h[j].next = h[j].next->next;
while (j > i) {
j -= 1;
s >>= 1;
h[j].next = (m_link_s *) (a+s);
h[j].next->next = NULL;
}
}
#ifdef DEBUG
printk("___m_alloc(%d) = %p\n", size, (void *) a);
#endif
return (void *) a;
}
static void ___m_free(m_pool_s *mp, void *ptr, int size)
{
int i = 0;
int s = (1 << MEMO_SHIFT);
m_link_s *q;
m_addr_t a, b;
m_link_s *h = mp->h;
#ifdef DEBUG
printk("___m_free(%p, %d)\n", ptr, size);
#endif
if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
return;
while (size > s) {
s <<= 1;
++i;
}
a = (m_addr_t) ptr;
while (1) {
#ifdef MEMO_FREE_UNUSED
if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
mp->freep(mp, a);
break;
}
#endif
b = a ^ s;
q = &h[i];
while (q->next && q->next != (m_link_s *) b) {
q = q->next;
}
if (!q->next) {
((m_link_s *) a)->next = h[i].next;
h[i].next = (m_link_s *) a;
break;
}
q->next = q->next->next;
a = a & b;
s <<= 1;
++i;
}
}
static DEFINE_SPINLOCK(ncr53c8xx_lock);
static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
{
void *p;
p = ___m_alloc(mp, size);
if (DEBUG_FLAGS & DEBUG_ALLOC)
printk ("new %-10s[%4d] @%p.\n", name, size, p);
if (p)
memset(p, 0, size);
else if (uflags & MEMO_WARN)
printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
return p;
}
#define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
{
if (DEBUG_FLAGS & DEBUG_ALLOC)
printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
___m_free(mp, ptr, size);
}
/*
* With pci bus iommu support, we use a default pool of unmapped memory
* for memory we donnot need to DMA from/to and one pool per pcidev for
* memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
*/
static m_addr_t ___mp0_getp(m_pool_s *mp)
{
m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
if (m)
++mp->nump;
return m;
}
static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
{
free_pages(m, MEMO_PAGE_ORDER);
--mp->nump;
}
static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
/*
* DMAable pools.
*/
/*
* With pci bus iommu support, we maintain one pool per pcidev and a
* hashed reverse table for virtual to bus physical address translations.
*/
static m_addr_t ___dma_getp(m_pool_s *mp)
{
m_addr_t vp;
m_vtob_s *vbp;
vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
if (vbp) {
dma_addr_t daddr;
vp = (m_addr_t) dma_alloc_coherent(mp->bush,
PAGE_SIZE<<MEMO_PAGE_ORDER,
&daddr, GFP_ATOMIC);
if (vp) {
int hc = VTOB_HASH_CODE(vp);
vbp->vaddr = vp;
vbp->baddr = daddr;
vbp->next = mp->vtob[hc];
mp->vtob[hc] = vbp;
++mp->nump;
return vp;
}
}
if (vbp)
__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
return 0;
}
static void ___dma_freep(m_pool_s *mp, m_addr_t m)
{
m_vtob_s **vbpp, *vbp;
int hc = VTOB_HASH_CODE(m);
vbpp = &mp->vtob[hc];
while (*vbpp && (*vbpp)->vaddr != m)
vbpp = &(*vbpp)->next;
if (*vbpp) {
vbp = *vbpp;
*vbpp = (*vbpp)->next;
dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
(void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
--mp->nump;
}
}
static inline m_pool_s *___get_dma_pool(m_bush_t bush)
{
m_pool_s *mp;
for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
return mp;
}
static m_pool_s *___cre_dma_pool(m_bush_t bush)
{
m_pool_s *mp;
mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
if (mp) {
memset(mp, 0, sizeof(*mp));
mp->bush = bush;
mp->getp = ___dma_getp;
mp->freep = ___dma_freep;
mp->next = mp0.next;
mp0.next = mp;
}
return mp;
}
static void ___del_dma_pool(m_pool_s *p)
{
struct m_pool **pp = &mp0.next;
while (*pp && *pp != p)
pp = &(*pp)->next;
if (*pp) {
*pp = (*pp)->next;
__m_free(&mp0, p, sizeof(*p), "MPOOL");
}
}
static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
{
u_long flags;
struct m_pool *mp;
void *m = NULL;
spin_lock_irqsave(&ncr53c8xx_lock, flags);
mp = ___get_dma_pool(bush);
if (!mp)
mp = ___cre_dma_pool(bush);
if (mp)
m = __m_calloc(mp, size, name);
if (mp && !mp->nump)
___del_dma_pool(mp);
spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
return m;
}
static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
{
u_long flags;
struct m_pool *mp;
spin_lock_irqsave(&ncr53c8xx_lock, flags);
mp = ___get_dma_pool(bush);
if (mp)
__m_free(mp, m, size, name);
if (mp && !mp->nump)
___del_dma_pool(mp);
spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
}
static m_addr_t __vtobus(m_bush_t bush, void *m)
{
u_long flags;
m_pool_s *mp;
int hc = VTOB_HASH_CODE(m);
m_vtob_s *vp = NULL;
m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
spin_lock_irqsave(&ncr53c8xx_lock, flags);
mp = ___get_dma_pool(bush);
if (mp) {
vp = mp->vtob[hc];
while (vp && (m_addr_t) vp->vaddr != a)
vp = vp->next;
}
spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
}
#define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
#define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
#define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
#define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
#define _vtobus(np, p) __vtobus(np->dev, p)
#define vtobus(p) _vtobus(np, p)
/*
* Deal with DMA mapping/unmapping.
*/
/* To keep track of the dma mapping (sg/single) that has been set */
#define __data_mapped SCp.phase
#define __data_mapping SCp.have_data_in
static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
{
switch(cmd->__data_mapped) {
case 2:
dma_unmap_sg(dev, cmd->request_buffer, cmd->use_sg,
cmd->sc_data_direction);
break;
case 1:
dma_unmap_single(dev, cmd->__data_mapping,
cmd->request_bufflen,
cmd->sc_data_direction);
break;
}
cmd->__data_mapped = 0;
}
static u_long __map_scsi_single_data(struct device *dev, struct scsi_cmnd *cmd)
{
dma_addr_t mapping;
if (cmd->request_bufflen == 0)
return 0;
mapping = dma_map_single(dev, cmd->request_buffer,
cmd->request_bufflen,
cmd->sc_data_direction);
cmd->__data_mapped = 1;
cmd->__data_mapping = mapping;
return mapping;
}
static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
{
int use_sg;
if (cmd->use_sg == 0)
return 0;
use_sg = dma_map_sg(dev, cmd->request_buffer, cmd->use_sg,
cmd->sc_data_direction);
cmd->__data_mapped = 2;
cmd->__data_mapping = use_sg;
return use_sg;
}
#define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
#define map_scsi_single_data(np, cmd) __map_scsi_single_data(np->dev, cmd)
#define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
/*==========================================================
**
** Driver setup.
**
** This structure is initialized from linux config
** options. It can be overridden at boot-up by the boot
** command line.
**
**==========================================================
*/
static struct ncr_driver_setup
driver_setup = SCSI_NCR_DRIVER_SETUP;
#ifndef MODULE
#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
static struct ncr_driver_setup
driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
#endif
#endif /* !MODULE */
#define initverbose (driver_setup.verbose)
#define bootverbose (np->verbose)
/*===================================================================
**
** Driver setup from the boot command line
**
**===================================================================
*/
#ifdef MODULE
#define ARG_SEP ' '
#else
#define ARG_SEP ','
#endif
#define OPT_TAGS 1
#define OPT_MASTER_PARITY 2
#define OPT_SCSI_PARITY 3
#define OPT_DISCONNECTION 4
#define OPT_SPECIAL_FEATURES 5
#define OPT_UNUSED_1 6
#define OPT_FORCE_SYNC_NEGO 7
#define OPT_REVERSE_PROBE 8
#define OPT_DEFAULT_SYNC 9
#define OPT_VERBOSE 10
#define OPT_DEBUG 11
#define OPT_BURST_MAX 12
#define OPT_LED_PIN 13
#define OPT_MAX_WIDE 14
#define OPT_SETTLE_DELAY 15
#define OPT_DIFF_SUPPORT 16
#define OPT_IRQM 17
#define OPT_PCI_FIX_UP 18
#define OPT_BUS_CHECK 19
#define OPT_OPTIMIZE 20
#define OPT_RECOVERY 21
#define OPT_SAFE_SETUP 22
#define OPT_USE_NVRAM 23
#define OPT_EXCLUDE 24
#define OPT_HOST_ID 25
#ifdef SCSI_NCR_IARB_SUPPORT
#define OPT_IARB 26
#endif
#ifdef MODULE
#define ARG_SEP ' '
#else
#define ARG_SEP ','
#endif
#ifndef MODULE
static char setup_token[] __initdata =
"tags:" "mpar:"
"spar:" "disc:"
"specf:" "ultra:"
"fsn:" "revprob:"
"sync:" "verb:"
"debug:" "burst:"
"led:" "wide:"
"settle:" "diff:"
"irqm:" "pcifix:"
"buschk:" "optim:"
"recovery:"
"safe:" "nvram:"
"excl:" "hostid:"
#ifdef SCSI_NCR_IARB_SUPPORT
"iarb:"
#endif
; /* DONNOT REMOVE THIS ';' */
static int __init get_setup_token(char *p)
{
char *cur = setup_token;
char *pc;
int i = 0;
while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
++pc;
++i;
if (!strncmp(p, cur, pc - cur))
return i;
cur = pc;
}
return 0;
}
static int __init sym53c8xx__setup(char *str)
{
#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
char *cur = str;
char *pc, *pv;
int i, val, c;
int xi = 0;
while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
char *pe;
val = 0;
pv = pc;
c = *++pv;
if (c == 'n')
val = 0;
else if (c == 'y')
val = 1;
else
val = (int) simple_strtoul(pv, &pe, 0);
switch (get_setup_token(cur)) {
case OPT_TAGS:
driver_setup.default_tags = val;
if (pe && *pe == '/') {
i = 0;
while (*pe && *pe != ARG_SEP &&
i < sizeof(driver_setup.tag_ctrl)-1) {
driver_setup.tag_ctrl[i++] = *pe++;
}
driver_setup.tag_ctrl[i] = '\0';
}
break;
case OPT_MASTER_PARITY:
driver_setup.master_parity = val;
break;
case OPT_SCSI_PARITY:
driver_setup.scsi_parity = val;
break;
case OPT_DISCONNECTION:
driver_setup.disconnection = val;
break;
case OPT_SPECIAL_FEATURES:
driver_setup.special_features = val;
break;
case OPT_FORCE_SYNC_NEGO:
driver_setup.force_sync_nego = val;
break;
case OPT_REVERSE_PROBE:
driver_setup.reverse_probe = val;
break;
case OPT_DEFAULT_SYNC:
driver_setup.default_sync = val;
break;
case OPT_VERBOSE:
driver_setup.verbose = val;
break;
case OPT_DEBUG:
driver_setup.debug = val;
break;
case OPT_BURST_MAX:
driver_setup.burst_max = val;
break;
case OPT_LED_PIN:
driver_setup.led_pin = val;
break;
case OPT_MAX_WIDE:
driver_setup.max_wide = val? 1:0;
break;
case OPT_SETTLE_DELAY:
driver_setup.settle_delay = val;
break;
case OPT_DIFF_SUPPORT:
driver_setup.diff_support = val;
break;
case OPT_IRQM:
driver_setup.irqm = val;
break;
case OPT_PCI_FIX_UP:
driver_setup.pci_fix_up = val;
break;
case OPT_BUS_CHECK:
driver_setup.bus_check = val;
break;
case OPT_OPTIMIZE:
driver_setup.optimize = val;
break;
case OPT_RECOVERY:
driver_setup.recovery = val;
break;
case OPT_USE_NVRAM:
driver_setup.use_nvram = val;
break;
case OPT_SAFE_SETUP:
memcpy(&driver_setup, &driver_safe_setup,
sizeof(driver_setup));
break;
case OPT_EXCLUDE:
if (xi < SCSI_NCR_MAX_EXCLUDES)
driver_setup.excludes[xi++] = val;
break;
case OPT_HOST_ID:
driver_setup.host_id = val;
break;
#ifdef SCSI_NCR_IARB_SUPPORT
case OPT_IARB:
driver_setup.iarb = val;
break;
#endif
default:
printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
break;
}
if ((cur = strchr(cur, ARG_SEP)) != NULL)
++cur;
}
#endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
return 1;
}
#endif /* !MODULE */
/*===================================================================
**
** Get device queue depth from boot command line.
**
**===================================================================
*/
#define DEF_DEPTH (driver_setup.default_tags)
#define ALL_TARGETS -2
#define NO_TARGET -1
#define ALL_LUNS -2
#define NO_LUN -1
static int device_queue_depth(int unit, int target, int lun)
{
int c, h, t, u, v;
char *p = driver_setup.tag_ctrl;
char *ep;
h = -1;
t = NO_TARGET;
u = NO_LUN;
while ((c = *p++) != 0) {
v = simple_strtoul(p, &ep, 0);
switch(c) {
case '/':
++h;
t = ALL_TARGETS;
u = ALL_LUNS;
break;
case 't':
if (t != target)
t = (target == v) ? v : NO_TARGET;
u = ALL_LUNS;
break;
case 'u':
if (u != lun)
u = (lun == v) ? v : NO_LUN;
break;
case 'q':
if (h == unit &&
(t == ALL_TARGETS || t == target) &&
(u == ALL_LUNS || u == lun))
return v;
break;
case '-':
t = ALL_TARGETS;
u = ALL_LUNS;
break;
default:
break;
}
p = ep;
}
return DEF_DEPTH;
}
/*==========================================================
**
** The CCB done queue uses an array of CCB virtual
** addresses. Empty entries are flagged using the bogus
** virtual address 0xffffffff.
**
** Since PCI ensures that only aligned DWORDs are accessed
** atomically, 64 bit little-endian architecture requires
** to test the high order DWORD of the entry to determine
** if it is empty or valid.
**
** BTW, I will make things differently as soon as I will
** have a better idea, but this is simple and should work.
**
**==========================================================
*/
#define SCSI_NCR_CCB_DONE_SUPPORT
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
#define MAX_DONE 24
#define CCB_DONE_EMPTY 0xffffffffUL
/* All 32 bit architectures */
#if BITS_PER_LONG == 32
#define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
/* All > 32 bit (64 bit) architectures regardless endian-ness */
#else
#define CCB_DONE_VALID(cp) \
((((u_long) cp) & 0xffffffff00000000ul) && \
(((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
#endif
#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
/*==========================================================
**
** Configuration and Debugging
**
**==========================================================
*/
/*
** SCSI address of this device.
** The boot routines should have set it.
** If not, use this.
*/
#ifndef SCSI_NCR_MYADDR
#define SCSI_NCR_MYADDR (7)
#endif
/*
** The maximum number of tags per logic unit.
** Used only for disk devices that support tags.
*/
#ifndef SCSI_NCR_MAX_TAGS
#define SCSI_NCR_MAX_TAGS (8)
#endif
/*
** TAGS are actually limited to 64 tags/lun.
** We need to deal with power of 2, for alignment constraints.
*/
#if SCSI_NCR_MAX_TAGS > 64
#define MAX_TAGS (64)
#else
#define MAX_TAGS SCSI_NCR_MAX_TAGS
#endif
#define NO_TAG (255)
/*
** Choose appropriate type for tag bitmap.
*/
#if MAX_TAGS > 32
typedef u64 tagmap_t;
#else
typedef u32 tagmap_t;
#endif
/*
** Number of targets supported by the driver.
** n permits target numbers 0..n-1.
** Default is 16, meaning targets #0..#15.
** #7 .. is myself.
*/
#ifdef SCSI_NCR_MAX_TARGET
#define MAX_TARGET (SCSI_NCR_MAX_TARGET)
#else
#define MAX_TARGET (16)
#endif
/*
** Number of logic units supported by the driver.
** n enables logic unit numbers 0..n-1.
** The common SCSI devices require only
** one lun, so take 1 as the default.
*/
#ifdef SCSI_NCR_MAX_LUN
#define MAX_LUN SCSI_NCR_MAX_LUN
#else
#define MAX_LUN (1)
#endif
/*
** Asynchronous pre-scaler (ns). Shall be 40
*/
#ifndef SCSI_NCR_MIN_ASYNC
#define SCSI_NCR_MIN_ASYNC (40)
#endif
/*
** The maximum number of jobs scheduled for starting.
** There should be one slot per target, and one slot
** for each tag of each target in use.
** The calculation below is actually quite silly ...
*/
#ifdef SCSI_NCR_CAN_QUEUE
#define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
#else
#define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
#endif
/*
** We limit the max number of pending IO to 250.
** since we donnot want to allocate more than 1
** PAGE for 'scripth'.
*/
#if MAX_START > 250
#undef MAX_START
#define MAX_START 250
#endif
/*
** The maximum number of segments a transfer is split into.
** We support up to 127 segments for both read and write.
** The data scripts are broken into 2 sub-scripts.
** 80 (MAX_SCATTERL) segments are moved from a sub-script
** in on-chip RAM. This makes data transfers shorter than
** 80k (assuming 1k fs) as fast as possible.
*/
#define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
#if (MAX_SCATTER > 80)
#define MAX_SCATTERL 80
#define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
#else
#define MAX_SCATTERL (MAX_SCATTER-1)
#define MAX_SCATTERH 1
#endif
/*
** other
*/
#define NCR_SNOOP_TIMEOUT (1000000)
/*
** Other definitions
*/
#define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
#define initverbose (driver_setup.verbose)
#define bootverbose (np->verbose)
/*==========================================================
**
** Command control block states.
**
**==========================================================
*/
#define HS_IDLE (0)
#define HS_BUSY (1)
#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
#define HS_DISCONNECT (3) /* Disconnected by target */
#define HS_DONEMASK (0x80)
#define HS_COMPLETE (4|HS_DONEMASK)
#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
#define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
#define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
#define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
#define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
#define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
/*
** Invalid host status values used by the SCRIPTS processor
** when the nexus is not fully identified.
** Shall never appear in a CCB.
*/
#define HS_INVALMASK (0x40)
#define HS_SELECTING (0|HS_INVALMASK)
#define HS_IN_RESELECT (1|HS_INVALMASK)
#define HS_STARTING (2|HS_INVALMASK)
/*
** Flags set by the SCRIPT processor for commands
** that have been skipped.
*/
#define HS_SKIPMASK (0x20)
/*==========================================================
**
** Software Interrupt Codes
**
**==========================================================
*/
#define SIR_BAD_STATUS (1)
#define SIR_XXXXXXXXXX (2)
#define SIR_NEGO_SYNC (3)
#define SIR_NEGO_WIDE (4)
#define SIR_NEGO_FAILED (5)
#define SIR_NEGO_PROTO (6)
#define SIR_REJECT_RECEIVED (7)
#define SIR_REJECT_SENT (8)
#define SIR_IGN_RESIDUE (9)
#define SIR_MISSING_SAVE (10)
#define SIR_RESEL_NO_MSG_IN (11)
#define SIR_RESEL_NO_IDENTIFY (12)
#define SIR_RESEL_BAD_LUN (13)
#define SIR_RESEL_BAD_TARGET (14)
#define SIR_RESEL_BAD_I_T_L (15)
#define SIR_RESEL_BAD_I_T_L_Q (16)
#define SIR_DONE_OVERFLOW (17)
#define SIR_INTFLY (18)
#define SIR_MAX (18)
/*==========================================================
**
** Extended error codes.
** xerr_status field of struct ccb.
**
**==========================================================
*/
#define XE_OK (0)
#define XE_EXTRA_DATA (1) /* unexpected data phase */
#define XE_BAD_PHASE (2) /* illegal phase (4/5) */
/*==========================================================
**
** Negotiation status.
** nego_status field of struct ccb.
**
**==========================================================
*/
#define NS_NOCHANGE (0)
#define NS_SYNC (1)
#define NS_WIDE (2)
#define NS_PPR (4)
/*==========================================================
**
** Misc.
**
**==========================================================
*/
#define CCB_MAGIC (0xf2691ad2)
/*==========================================================
**
** Declaration of structs.
**
**==========================================================
*/
static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
struct tcb;
struct lcb;
struct ccb;
struct ncb;
struct script;
struct link {
ncrcmd l_cmd;
ncrcmd l_paddr;
};
struct usrcmd {
u_long target;
u_long lun;
u_long data;
u_long cmd;
};
#define UC_SETSYNC 10
#define UC_SETTAGS 11
#define UC_SETDEBUG 12
#define UC_SETORDER 13
#define UC_SETWIDE 14
#define UC_SETFLAG 15
#define UC_SETVERBOSE 17
#define UF_TRACE (0x01)
#define UF_NODISC (0x02)
#define UF_NOSCAN (0x04)
/*========================================================================
**
** Declaration of structs: target control block
**
**========================================================================
*/
struct tcb {
/*----------------------------------------------------------------
** During reselection the ncr jumps to this point with SFBR
** set to the encoded target number with bit 7 set.
** if it's not this target, jump to the next.
**
** JUMP IF (SFBR != #target#), @(next tcb)
**----------------------------------------------------------------
*/
struct link jump_tcb;
/*----------------------------------------------------------------
** Load the actual values for the sxfer and the scntl3
** register (sync/wide mode).
**
** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
**----------------------------------------------------------------
*/
ncrcmd getscr[6];
/*----------------------------------------------------------------
** Get the IDENTIFY message and load the LUN to SFBR.
**
** CALL, <RESEL_LUN>
**----------------------------------------------------------------
*/
struct link call_lun;
/*----------------------------------------------------------------
** Now look for the right lun.
**
** For i = 0 to 3
** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
**
** Recent chips will prefetch the 4 JUMPS using only 1 burst.
** It is kind of hashcoding.
**----------------------------------------------------------------
*/
struct link jump_lcb[4]; /* JUMPs for reselection */
struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
/*----------------------------------------------------------------
** Pointer to the ccb used for negotiation.
** Prevent from starting a negotiation for all queued commands
** when tagged command queuing is enabled.
**----------------------------------------------------------------
*/
struct ccb * nego_cp;
/*----------------------------------------------------------------
** statistical data
**----------------------------------------------------------------
*/
u_long transfers;
u_long bytes;
/*----------------------------------------------------------------
** negotiation of wide and synch transfer and device quirks.
**----------------------------------------------------------------
*/
#ifdef SCSI_NCR_BIG_ENDIAN
/*0*/ u16 period;
/*2*/ u_char sval;
/*3*/ u_char minsync;
/*0*/ u_char wval;
/*1*/ u_char widedone;
/*2*/ u_char quirks;
/*3*/ u_char maxoffs;
#else
/*0*/ u_char minsync;
/*1*/ u_char sval;
/*2*/ u16 period;
/*0*/ u_char maxoffs;
/*1*/ u_char quirks;
/*2*/ u_char widedone;
/*3*/ u_char wval;
#endif
/* User settable limits and options. */
u_char usrsync;
u_char usrwide;
u_char usrtags;
u_char usrflag;
struct scsi_target *starget;
};
/*========================================================================
**
** Declaration of structs: lun control block
**
**========================================================================
*/
struct lcb {
/*----------------------------------------------------------------
** During reselection the ncr jumps to this point
** with SFBR set to the "Identify" message.
** if it's not this lun, jump to the next.
**
** JUMP IF (SFBR != #lun#), @(next lcb of this target)
**
** It is this lun. Load TEMP with the nexus jumps table
** address and jump to RESEL_TAG (or RESEL_NOTAG).
**
** SCR_COPY (4), p_jump_ccb, TEMP,
** SCR_JUMP, <RESEL_TAG>
**----------------------------------------------------------------
*/
struct link jump_lcb;
ncrcmd load_jump_ccb[3];
struct link jump_tag;
ncrcmd p_jump_ccb; /* Jump table bus address */
/*----------------------------------------------------------------
** Jump table used by the script processor to directly jump
** to the CCB corresponding to the reselected nexus.
** Address is allocated on 256 bytes boundary in order to
** allow 8 bit calculation of the tag jump entry for up to
** 64 possible tags.
**----------------------------------------------------------------
*/
u32 jump_ccb_0; /* Default table if no tags */
u32 *jump_ccb; /* Virtual address */
/*----------------------------------------------------------------
** CCB queue management.
**----------------------------------------------------------------
*/
struct list_head free_ccbq; /* Queue of available CCBs */
struct list_head busy_ccbq; /* Queue of busy CCBs */
struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
struct list_head skip_ccbq; /* Queue of skipped CCBs */
u_char actccbs; /* Number of allocated CCBs */
u_char busyccbs; /* CCBs busy for this lun */
u_char queuedccbs; /* CCBs queued to the controller*/
u_char queuedepth; /* Queue depth for this lun */
u_char scdev_depth; /* SCSI device queue depth */
u_char maxnxs; /* Max possible nexuses */
/*----------------------------------------------------------------
** Control of tagged command queuing.
** Tags allocation is performed using a circular buffer.
** This avoids using a loop for tag allocation.
**----------------------------------------------------------------
*/
u_char ia_tag; /* Allocation index */
u_char if_tag; /* Freeing index */
u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
u_char usetags; /* Command queuing is active */
u_char maxtags; /* Max nr of tags asked by user */
u_char numtags; /* Current number of tags */
/*----------------------------------------------------------------
** QUEUE FULL control and ORDERED tag control.
**----------------------------------------------------------------
*/
/*----------------------------------------------------------------
** QUEUE FULL and ORDERED tag control.
**----------------------------------------------------------------
*/
u16 num_good; /* Nr of GOOD since QUEUE FULL */
tagmap_t tags_umap; /* Used tags bitmap */
tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
u_long tags_stime; /* Last time we set smap=umap */
struct ccb * held_ccb; /* CCB held for QUEUE FULL */
};
/*========================================================================
**
** Declaration of structs: the launch script.
**
**========================================================================
**
** It is part of the CCB and is called by the scripts processor to
** start or restart the data structure (nexus).
** This 6 DWORDs mini script makes use of prefetching.
**
**------------------------------------------------------------------------
*/
struct launch {
/*----------------------------------------------------------------
** SCR_COPY(4), @(p_phys), @(dsa register)
** SCR_JUMP, @(scheduler_point)
**----------------------------------------------------------------
*/
ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
struct link schedule; /* Jump to scheduler point */
ncrcmd p_phys; /* 'phys' header bus address */
};
/*========================================================================
**
** Declaration of structs: global HEADER.
**
**========================================================================
**
** This substructure is copied from the ccb to a global address after
** selection (or reselection) and copied back before disconnect.
**
** These fields are accessible to the script processor.
**
**------------------------------------------------------------------------
*/
struct head {
/*----------------------------------------------------------------
** Saved data pointer.
** Points to the position in the script responsible for the
** actual transfer transfer of data.
** It's written after reception of a SAVE_DATA_POINTER message.
** The goalpointer points after the last transfer command.
**----------------------------------------------------------------
*/
u32 savep;
u32 lastp;
u32 goalp;
/*----------------------------------------------------------------
** Alternate data pointer.
** They are copied back to savep/lastp/goalp by the SCRIPTS
** when the direction is unknown and the device claims data out.
**----------------------------------------------------------------
*/
u32 wlastp;
u32 wgoalp;
/*----------------------------------------------------------------
** The virtual address of the ccb containing this header.
**----------------------------------------------------------------
*/
struct ccb * cp;
/*----------------------------------------------------------------
** Status fields.
**----------------------------------------------------------------
*/
u_char scr_st[4]; /* script status */
u_char status[4]; /* host status. must be the */
/* last DWORD of the header. */
};
/*
** The status bytes are used by the host and the script processor.
**
** The byte corresponding to the host_status must be stored in the
** last DWORD of the CCB header since it is used for command
** completion (ncr_wakeup()). Doing so, we are sure that the header
** has been entirely copied back to the CCB when the host_status is
** seen complete by the CPU.
**
** The last four bytes (status[4]) are copied to the scratchb register
** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
** and copied back just after disconnecting.
** Inside the script the XX_REG are used.
**
** The first four bytes (scr_st[4]) are used inside the script by
** "COPY" commands.
** Because source and destination must have the same alignment
** in a DWORD, the fields HAVE to be at the chosen offsets.
** xerr_st 0 (0x34) scratcha
** sync_st 1 (0x05) sxfer
** wide_st 3 (0x03) scntl3
*/
/*
** Last four bytes (script)
*/
#define QU_REG scr0
#define HS_REG scr1
#define HS_PRT nc_scr1
#define SS_REG scr2
#define SS_PRT nc_scr2
#define PS_REG scr3
/*
** Last four bytes (host)
*/
#ifdef SCSI_NCR_BIG_ENDIAN
#define actualquirks phys.header.status[3]
#define host_status phys.header.status[2]
#define scsi_status phys.header.status[1]
#define parity_status phys.header.status[0]
#else
#define actualquirks phys.header.status[0]
#define host_status phys.header.status[1]
#define scsi_status phys.header.status[2]
#define parity_status phys.header.status[3]
#endif
/*
** First four bytes (script)
*/
#define xerr_st header.scr_st[0]
#define sync_st header.scr_st[1]
#define nego_st header.scr_st[2]
#define wide_st header.scr_st[3]
/*
** First four bytes (host)
*/
#define xerr_status phys.xerr_st
#define nego_status phys.nego_st
#if 0
#define sync_status phys.sync_st
#define wide_status phys.wide_st
#endif
/*==========================================================
**
** Declaration of structs: Data structure block
**
**==========================================================
**
** During execution of a ccb by the script processor,
** the DSA (data structure address) register points
** to this substructure of the ccb.
** This substructure contains the header with
** the script-processor-changeable data and
** data blocks for the indirect move commands.
**
**----------------------------------------------------------
*/
struct dsb {
/*
** Header.
*/
struct head header;
/*
** Table data for Script
*/
struct scr_tblsel select;
struct scr_tblmove smsg ;
struct scr_tblmove cmd ;
struct scr_tblmove sense ;
struct scr_tblmove data[MAX_SCATTER];
};
/*========================================================================
**
** Declaration of structs: Command control block.
**
**========================================================================
*/
struct ccb {
/*----------------------------------------------------------------
** This is the data structure which is pointed by the DSA
** register when it is executed by the script processor.
** It must be the first entry because it contains the header
** as first entry that must be cache line aligned.
**----------------------------------------------------------------
*/
struct dsb phys;
/*----------------------------------------------------------------
** Mini-script used at CCB execution start-up.
** Load the DSA with the data structure address (phys) and
** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
**----------------------------------------------------------------
*/
struct launch start;
/*----------------------------------------------------------------
** Mini-script used at CCB relection to restart the nexus.
** Load the DSA with the data structure address (phys) and
** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
**----------------------------------------------------------------
*/
struct launch restart;
/*----------------------------------------------------------------
** If a data transfer phase is terminated too early
** (after reception of a message (i.e. DISCONNECT)),
** we have to prepare a mini script to transfer
** the rest of the data.
**----------------------------------------------------------------
*/
ncrcmd patch[8];
/*----------------------------------------------------------------
** The general SCSI driver provides a
** pointer to a control block.
**----------------------------------------------------------------
*/
struct scsi_cmnd *cmd; /* SCSI command */
u_char cdb_buf[16]; /* Copy of CDB */
u_char sense_buf[64];
int data_len; /* Total data length */
/*----------------------------------------------------------------
** Message areas.
** We prepare a message to be sent after selection.
** We may use a second one if the command is rescheduled
** due to GETCC or QFULL.
** Contents are IDENTIFY and SIMPLE_TAG.
** While negotiating sync or wide transfer,
** a SDTR or WDTR message is appended.
**----------------------------------------------------------------
*/
u_char scsi_smsg [8];
u_char scsi_smsg2[8];
/*----------------------------------------------------------------
** Other fields.
**----------------------------------------------------------------
*/
u_long p_ccb; /* BUS address of this CCB */
u_char sensecmd[6]; /* Sense command */
u_char tag; /* Tag for this transfer */
/* 255 means no tag */
u_char target;
u_char lun;
u_char queued;
u_char auto_sense;
struct ccb * link_ccb; /* Host adapter CCB chain */
struct list_head link_ccbq; /* Link to unit CCB queue */
u32 startp; /* Initial data pointer */
u_long magic; /* Free / busy CCB flag */
};
#define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
/*========================================================================
**
** Declaration of structs: NCR device descriptor
**
**========================================================================
*/
struct ncb {
/*----------------------------------------------------------------
** The global header.
** It is accessible to both the host and the script processor.
** Must be cache line size aligned (32 for x86) in order to
** allow cache line bursting when it is copied to/from CCB.
**----------------------------------------------------------------
*/
struct head header;
/*----------------------------------------------------------------
** CCBs management queues.
**----------------------------------------------------------------
*/
struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
/* when lcb is not allocated. */
struct scsi_cmnd *done_list; /* Commands waiting for done() */
/* callback to be invoked. */
spinlock_t smp_lock; /* Lock for SMP threading */
/*----------------------------------------------------------------
** Chip and controller indentification.
**----------------------------------------------------------------
*/
int unit; /* Unit number */
char inst_name[16]; /* ncb instance name */
/*----------------------------------------------------------------
** Initial value of some IO register bits.
** These values are assumed to have been set by BIOS, and may
** be used for probing adapter implementation differences.
**----------------------------------------------------------------
*/
u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
/*----------------------------------------------------------------
** Actual initial value of IO register bits used by the
** driver. They are loaded at initialisation according to
** features that are to be enabled.
**----------------------------------------------------------------
*/
u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
rv_ctest4, rv_ctest5, rv_stest2;
/*----------------------------------------------------------------
** Targets management.
** During reselection the ncr jumps to jump_tcb.
** The SFBR register is loaded with the encoded target id.
** For i = 0 to 3
** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
**
** Recent chips will prefetch the 4 JUMPS using only 1 burst.
** It is kind of hashcoding.
**----------------------------------------------------------------
*/
struct link jump_tcb[4]; /* JUMPs for reselection */
struct tcb target[MAX_TARGET]; /* Target data */
/*----------------------------------------------------------------
** Virtual and physical bus addresses of the chip.
**----------------------------------------------------------------
*/
void __iomem *vaddr; /* Virtual and bus address of */
unsigned long paddr; /* chip's IO registers. */
unsigned long paddr2; /* On-chip RAM bus address. */
volatile /* Pointer to volatile for */
struct ncr_reg __iomem *reg; /* memory mapped IO. */
/*----------------------------------------------------------------
** SCRIPTS virtual and physical bus addresses.
** 'script' is loaded in the on-chip RAM if present.
** 'scripth' stays in main memory.
**----------------------------------------------------------------
*/
struct script *script0; /* Copies of script and scripth */
struct scripth *scripth0; /* relocated for this ncb. */
struct scripth *scripth; /* Actual scripth virt. address */
u_long p_script; /* Actual script and scripth */
u_long p_scripth; /* bus addresses. */
/*----------------------------------------------------------------
** General controller parameters and configuration.
**----------------------------------------------------------------
*/
struct device *dev;
u_char revision_id; /* PCI device revision id */
u32 irq; /* IRQ level */
u32 features; /* Chip features map */
u_char myaddr; /* SCSI id of the adapter */
u_char maxburst; /* log base 2 of dwords burst */
u_char maxwide; /* Maximum transfer width */
u_char minsync; /* Minimum sync period factor */
u_char maxsync; /* Maximum sync period factor */
u_char maxoffs; /* Max scsi offset */
u_char multiplier; /* Clock multiplier (1,2,4) */
u_char clock_divn; /* Number of clock divisors */
u_long clock_khz; /* SCSI clock frequency in KHz */
/*----------------------------------------------------------------
** Start queue management.
** It is filled up by the host processor and accessed by the
** SCRIPTS processor in order to start SCSI commands.
**----------------------------------------------------------------
*/
u16 squeueput; /* Next free slot of the queue */
u16 actccbs; /* Number of allocated CCBs */
u16 queuedccbs; /* Number of CCBs in start queue*/
u16 queuedepth; /* Start queue depth */
/*----------------------------------------------------------------
** Timeout handler.
**----------------------------------------------------------------
*/
struct timer_list timer; /* Timer handler link header */
u_long lasttime;
u_long settle_time; /* Resetting the SCSI BUS */
/*----------------------------------------------------------------
** Debugging and profiling.
**----------------------------------------------------------------
*/
struct ncr_reg regdump; /* Register dump */
u_long regtime; /* Time it has been done */
/*----------------------------------------------------------------
** Miscellaneous buffers accessed by the scripts-processor.
** They shall be DWORD aligned, because they may be read or
** written with a SCR_COPY script command.
**----------------------------------------------------------------
*/
u_char msgout[8]; /* Buffer for MESSAGE OUT */
u_char msgin [8]; /* Buffer for MESSAGE IN */
u32 lastmsg; /* Last SCSI message sent */
u_char scratch; /* Scratch for SCSI receive */
/*----------------------------------------------------------------
** Miscellaneous configuration and status parameters.
**----------------------------------------------------------------
*/
u_char disc; /* Diconnection allowed */
u_char scsi_mode; /* Current SCSI BUS mode */
u_char order; /* Tag order to use */
u_char verbose; /* Verbosity for this controller*/
int ncr_cache; /* Used for cache test at init. */
u_long p_ncb; /* BUS address of this NCB */
/*----------------------------------------------------------------
** Command completion handling.
**----------------------------------------------------------------
*/
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
struct ccb *(ccb_done[MAX_DONE]);
int ccb_done_ic;
#endif
/*----------------------------------------------------------------
** Fields that should be removed or changed.
**----------------------------------------------------------------
*/
struct ccb *ccb; /* Global CCB */
struct usrcmd user; /* Command from user */
volatile u_char release_stage; /* Synchronisation stage on release */
};
#define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
#define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
/*==========================================================
**
**
** Script for NCR-Processor.
**
** Use ncr_script_fill() to create the variable parts.
** Use ncr_script_copy_and_bind() to make a copy and
** bind to physical addresses.
**
**
**==========================================================
**
** We have to know the offsets of all labels before
** we reach them (for forward jumps).
** Therefore we declare a struct here.
** If you make changes inside the script,
** DONT FORGET TO CHANGE THE LENGTHS HERE!
**
**----------------------------------------------------------
*/
/*
** For HP Zalon/53c720 systems, the Zalon interface
** between CPU and 53c720 does prefetches, which causes
** problems with self modifying scripts. The problem
** is overcome by calling a dummy subroutine after each
** modification, to force a refetch of the script on
** return from the subroutine.
*/
#ifdef CONFIG_NCR53C8XX_PREFETCH
#define PREFETCH_FLUSH_CNT 2
#define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
#else
#define PREFETCH_FLUSH_CNT 0
#define PREFETCH_FLUSH
#endif
/*
** Script fragments which are loaded into the on-chip RAM
** of 825A, 875 and 895 chips.
*/
struct script {
ncrcmd start [ 5];
ncrcmd startpos [ 1];
ncrcmd select [ 6];
ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT];
ncrcmd loadpos [ 4];
ncrcmd send_ident [ 9];
ncrcmd prepare [ 6];
ncrcmd prepare2 [ 7];
ncrcmd command [ 6];
ncrcmd dispatch [ 32];
ncrcmd clrack [ 4];
ncrcmd no_data [ 17];
ncrcmd status [ 8];
ncrcmd msg_in [ 2];
ncrcmd msg_in2 [ 16];
ncrcmd msg_bad [ 4];
ncrcmd setmsg [ 7];
ncrcmd cleanup [ 6];
ncrcmd complete [ 9];
ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT];
ncrcmd cleanup0 [ 1];
#ifndef SCSI_NCR_CCB_DONE_SUPPORT
ncrcmd signal [ 12];
#else
ncrcmd signal [ 9];
ncrcmd done_pos [ 1];
ncrcmd done_plug [ 2];
ncrcmd done_end [ 7];
#endif
ncrcmd save_dp [ 7];
ncrcmd restore_dp [ 5];
ncrcmd disconnect [ 10];
ncrcmd msg_out [ 9];
ncrcmd msg_out_done [ 7];
ncrcmd idle [ 2];
ncrcmd reselect [ 8];
ncrcmd reselected [ 8];
ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT];
ncrcmd loadpos1 [ 4];
ncrcmd resel_lun [ 6];
ncrcmd resel_tag [ 6];
ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT];
ncrcmd nexus_indirect [ 4];
ncrcmd resel_notag [ 4];
ncrcmd data_in [MAX_SCATTERL * 4];
ncrcmd data_in2 [ 4];
ncrcmd data_out [MAX_SCATTERL * 4];
ncrcmd data_out2 [ 4];
};
/*
** Script fragments which stay in main memory for all chips.
*/
struct scripth {
ncrcmd tryloop [MAX_START*2];
ncrcmd tryloop2 [ 2];
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
ncrcmd done_queue [MAX_DONE*5];
ncrcmd done_queue2 [ 2];
#endif
ncrcmd select_no_atn [ 8];
ncrcmd cancel [ 4];
ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT];
ncrcmd skip2 [ 19];
ncrcmd par_err_data_in [ 6];
ncrcmd par_err_other [ 4];
ncrcmd msg_reject [ 8];
ncrcmd msg_ign_residue [ 24];
ncrcmd msg_extended [ 10];
ncrcmd msg_ext_2 [ 10];
ncrcmd msg_wdtr [ 14];
ncrcmd send_wdtr [ 7];
ncrcmd msg_ext_3 [ 10];
ncrcmd msg_sdtr [ 14];
ncrcmd send_sdtr [ 7];
ncrcmd nego_bad_phase [ 4];
ncrcmd msg_out_abort [ 10];
ncrcmd hdata_in [MAX_SCATTERH * 4];
ncrcmd hdata_in2 [ 2];
ncrcmd hdata_out [MAX_SCATTERH * 4];
ncrcmd hdata_out2 [ 2];
ncrcmd reset [ 4];
ncrcmd aborttag [ 4];
ncrcmd abort [ 2];
ncrcmd abort_resel [ 20];
ncrcmd resend_ident [ 4];
ncrcmd clratn_go_on [ 3];
ncrcmd nxtdsp_go_on [ 1];
ncrcmd sdata_in [ 8];
ncrcmd data_io [ 18];
ncrcmd bad_identify [ 12];
ncrcmd bad_i_t_l [ 4];
ncrcmd bad_i_t_l_q [ 4];
ncrcmd bad_target [ 8];
ncrcmd bad_status [ 8];
ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT];
ncrcmd start_ram0 [ 4];
ncrcmd sto_restart [ 5];
ncrcmd wait_dma [ 2];
ncrcmd snooptest [ 9];
ncrcmd snoopend [ 2];
};
/*==========================================================
**
**
** Function headers.
**
**
**==========================================================
*/
static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
static void ncr_complete (struct ncb *np, struct ccb *cp);
static void ncr_exception (struct ncb *np);
static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
static void ncr_init_tcb (struct ncb *np, u_char tn);
static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
static void ncr_getclock (struct ncb *np, int mult);
static void ncr_selectclock (struct ncb *np, u_char scntl3);
static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
static void ncr_chip_reset (struct ncb *np, int delay);
static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
static int ncr_int_sbmc (struct ncb *np);
static int ncr_int_par (struct ncb *np);
static void ncr_int_ma (struct ncb *np);
static void ncr_int_sir (struct ncb *np);
static void ncr_int_sto (struct ncb *np);
static void ncr_negotiate (struct ncb* np, struct tcb* tp);
static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
static void ncr_script_copy_and_bind
(struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
static void ncr_script_fill (struct script * scr, struct scripth * scripth);
static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
static int ncr_snooptest (struct ncb *np);
static void ncr_timeout (struct ncb *np);
static void ncr_wakeup (struct ncb *np, u_long code);
static void ncr_wakeup_done (struct ncb *np);
static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
static void process_waiting_list(struct ncb *np, int sts);
#define remove_from_waiting_list(np, cmd) \
retrieve_from_waiting_list(1, (np), (cmd))
#define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
#define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
static inline char *ncr_name (struct ncb *np)
{
return np->inst_name;
}
/*==========================================================
**
**
** Scripts for NCR-Processor.
**
** Use ncr_script_bind for binding to physical addresses.
**
**
**==========================================================
**
** NADDR generates a reference to a field of the controller data.
** PADDR generates a reference to another part of the script.
** RADDR generates a reference to a script processor register.
** FADDR generates a reference to a script processor register
** with offset.
**
**----------------------------------------------------------
*/
#define RELOC_SOFTC 0x40000000
#define RELOC_LABEL 0x50000000
#define RELOC_REGISTER 0x60000000
#if 0
#define RELOC_KVAR 0x70000000
#endif
#define RELOC_LABELH 0x80000000
#define RELOC_MASK 0xf0000000
#define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
#define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
#define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
#define RADDR(label) (RELOC_REGISTER | REG(label))
#define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
#if 0
#define KVAR(which) (RELOC_KVAR | (which))
#endif
#if 0
#define SCRIPT_KVAR_JIFFIES (0)
#define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES
#define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES
/*
* Kernel variables referenced in the scripts.
* THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
*/
static void *script_kvars[] __initdata =
{ (void *)&jiffies };
#endif
static struct script script0 __initdata = {
/*--------------------------< START >-----------------------*/ {
/*
** This NOP will be patched with LED ON
** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
*/
SCR_NO_OP,
0,
/*
** Clear SIGP.
*/
SCR_FROM_REG (ctest2),
0,
/*
** Then jump to a certain point in tryloop.
** Due to the lack of indirect addressing the code
** is self modifying here.
*/
SCR_JUMP,
}/*-------------------------< STARTPOS >--------------------*/,{
PADDRH(tryloop),
}/*-------------------------< SELECT >----------------------*/,{
/*
** DSA contains the address of a scheduled
** data structure.
**
** SCRATCHA contains the address of the script,
** which starts the next entry.
**
** Set Initiator mode.
**
** (Target mode is left as an exercise for the reader)
*/
SCR_CLR (SCR_TRG),
0,
SCR_LOAD_REG (HS_REG, HS_SELECTING),
0,
/*
** And try to select this target.
*/
SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
PADDR (reselect),
}/*-------------------------< SELECT2 >----------------------*/,{
/*
** Now there are 4 possibilities:
**
** (1) The ncr loses arbitration.
** This is ok, because it will try again,
** when the bus becomes idle.
** (But beware of the timeout function!)
**
** (2) The ncr is reselected.
** Then the script processor takes the jump
** to the RESELECT label.
**
** (3) The ncr wins arbitration.
** Then it will execute SCRIPTS instruction until
** the next instruction that checks SCSI phase.
** Then will stop and wait for selection to be
** complete or selection time-out to occur.
** As a result the SCRIPTS instructions until
** LOADPOS + 2 should be executed in parallel with
** the SCSI core performing selection.
*/
/*
** The MESSAGE_REJECT problem seems to be due to a selection
** timing problem.
** Wait immediately for the selection to complete.
** (2.5x behaves so)
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
0,
/*
** Next time use the next slot.
*/
SCR_COPY (4),
RADDR (temp),
PADDR (startpos),
/*
** The ncr doesn't have an indirect load
** or store command. So we have to
** copy part of the control block to a
** fixed place, where we can access it.
**
** We patch the address part of a
** COPY command with the DSA-register.
*/
SCR_COPY_F (4),
RADDR (dsa),
PADDR (loadpos),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
/*
** then we do the actual copy.
*/
SCR_COPY (sizeof (struct head)),
/*
** continued after the next label ...
*/
}/*-------------------------< LOADPOS >---------------------*/,{
0,
NADDR (header),
/*
** Wait for the next phase or the selection
** to complete or time-out.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDR (prepare),
}/*-------------------------< SEND_IDENT >----------------------*/,{
/*
** Selection complete.
** Send the IDENTIFY and SIMPLE_TAG messages
** (and the EXTENDED_SDTR message)
*/
SCR_MOVE_TBL ^ SCR_MSG_OUT,
offsetof (struct dsb, smsg),
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
PADDRH (resend_ident),
SCR_LOAD_REG (scratcha, 0x80),
0,
SCR_COPY (1),
RADDR (scratcha),
NADDR (lastmsg),
}/*-------------------------< PREPARE >----------------------*/,{
/*
** load the savep (saved pointer) into
** the TEMP register (actual pointer)
*/
SCR_COPY (4),
NADDR (header.savep),
RADDR (temp),
/*
** Initialize the status registers
*/
SCR_COPY (4),
NADDR (header.status),
RADDR (scr0),
}/*-------------------------< PREPARE2 >---------------------*/,{
/*
** Initialize the msgout buffer with a NOOP message.
*/
SCR_LOAD_REG (scratcha, NOP),
0,
SCR_COPY (1),
RADDR (scratcha),
NADDR (msgout),
#if 0
SCR_COPY (1),
RADDR (scratcha),
NADDR (msgin),
#endif
/*
** Anticipate the COMMAND phase.
** This is the normal case for initial selection.
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
PADDR (dispatch),
}/*-------------------------< COMMAND >--------------------*/,{
/*
** ... and send the command
*/
SCR_MOVE_TBL ^ SCR_COMMAND,
offsetof (struct dsb, cmd),
/*
** If status is still HS_NEGOTIATE, negotiation failed.
** We check this here, since we want to do that
** only once.
*/
SCR_FROM_REG (HS_REG),
0,
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
SIR_NEGO_FAILED,
}/*-----------------------< DISPATCH >----------------------*/,{
/*
** MSG_IN is the only phase that shall be
** entered at least once for each (re)selection.
** So we test it first.
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
PADDR (msg_in),
SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
0,
/*
** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
** Possible data corruption during Memory Write and Invalidate.
** This work-around resets the addressing logic prior to the
** start of the first MOVE of a DATA IN phase.
** (See Documentation/scsi/ncr53c8xx.txt for more information)
*/
SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
20,
SCR_COPY (4),
RADDR (scratcha),
RADDR (scratcha),
SCR_RETURN,
0,
SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
PADDR (status),
SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
PADDR (command),
SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
PADDR (msg_out),
/*
** Discard one illegal phase byte, if required.
*/
SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
0,
SCR_COPY (1),
RADDR (scratcha),
NADDR (xerr_st),
SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
8,
SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
NADDR (scratch),
SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
NADDR (scratch),
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< CLRACK >----------------------*/,{
/*
** Terminate possible pending message phase.
*/
SCR_CLR (SCR_ACK),
0,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< NO_DATA >--------------------*/,{
/*
** The target wants to tranfer too much data
** or in the wrong direction.
** Remember that in extended error.
*/
SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
0,
SCR_COPY (1),
RADDR (scratcha),
NADDR (xerr_st),
/*
** Discard one data byte, if required.
*/
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
8,
SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
NADDR (scratch),
SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
NADDR (scratch),
/*
** .. and repeat as required.
*/
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDR (no_data),
}/*-------------------------< STATUS >--------------------*/,{
/*
** get the status
*/
SCR_MOVE_ABS (1) ^ SCR_STATUS,
NADDR (scratch),
/*
** save status to scsi_status.
** mark as complete.
*/
SCR_TO_REG (SS_REG),
0,
SCR_LOAD_REG (HS_REG, HS_COMPLETE),
0,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< MSG_IN >--------------------*/,{
/*
** Get the first byte of the message
** and save it to SCRATCHA.
**
** The script processor doesn't negate the
** ACK signal after this transfer.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[0]),
}/*-------------------------< MSG_IN2 >--------------------*/,{
/*
** Handle this message.
*/
SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
PADDR (complete),
SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
PADDR (disconnect),
SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
PADDR (save_dp),
SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
PADDR (restore_dp),
SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
PADDRH (msg_extended),
SCR_JUMP ^ IFTRUE (DATA (NOP)),
PADDR (clrack),
SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
PADDRH (msg_reject),
SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
PADDRH (msg_ign_residue),
/*
** Rest of the messages left as
** an exercise ...
**
** Unimplemented messages:
** fall through to MSG_BAD.
*/
}/*-------------------------< MSG_BAD >------------------*/,{
/*
** unimplemented message - reject it.
*/
SCR_INT,
SIR_REJECT_SENT,
SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
0,
}/*-------------------------< SETMSG >----------------------*/,{
SCR_COPY (1),
RADDR (scratcha),
NADDR (msgout),
SCR_SET (SCR_ATN),
0,
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< CLEANUP >-------------------*/,{
/*
** dsa: Pointer to ccb
** or xxxxxxFF (no ccb)
**
** HS_REG: Host-Status (<>0!)
*/
SCR_FROM_REG (dsa),
0,
SCR_JUMP ^ IFTRUE (DATA (0xff)),
PADDR (start),
/*
** dsa is valid.
** complete the cleanup.
*/
SCR_JUMP,
PADDR (cleanup_ok),
}/*-------------------------< COMPLETE >-----------------*/,{
/*
** Complete message.
**
** Copy TEMP register to LASTP in header.
*/
SCR_COPY (4),
RADDR (temp),
NADDR (header.lastp),
/*
** When we terminate the cycle by clearing ACK,
** the target may disconnect immediately.
**
** We don't want to be told of an
** "unexpected disconnect",
** so we disable this feature.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
/*
** Terminate cycle ...
*/
SCR_CLR (SCR_ACK|SCR_ATN),
0,
/*
** ... and wait for the disconnect.
*/
SCR_WAIT_DISC,
0,
}/*-------------------------< CLEANUP_OK >----------------*/,{
/*
** Save host status to header.
*/
SCR_COPY (4),
RADDR (scr0),
NADDR (header.status),
/*
** and copy back the header to the ccb.
*/
SCR_COPY_F (4),
RADDR (dsa),
PADDR (cleanup0),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
SCR_COPY (sizeof (struct head)),
NADDR (header),
}/*-------------------------< CLEANUP0 >--------------------*/,{
0,
}/*-------------------------< SIGNAL >----------------------*/,{
/*
** if job not completed ...
*/
SCR_FROM_REG (HS_REG),
0,
/*
** ... start the next command.
*/
SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
PADDR(start),
/*
** If command resulted in not GOOD status,
** call the C code if needed.
*/
SCR_FROM_REG (SS_REG),
0,
SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
PADDRH (bad_status),
#ifndef SCSI_NCR_CCB_DONE_SUPPORT
/*
** ... signal completion to the host
*/
SCR_INT,
SIR_INTFLY,
/*
** Auf zu neuen Schandtaten!
*/
SCR_JUMP,
PADDR(start),
#else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
/*
** ... signal completion to the host
*/
SCR_JUMP,
}/*------------------------< DONE_POS >---------------------*/,{
PADDRH (done_queue),
}/*------------------------< DONE_PLUG >--------------------*/,{
SCR_INT,
SIR_DONE_OVERFLOW,
}/*------------------------< DONE_END >---------------------*/,{
SCR_INT,
SIR_INTFLY,
SCR_COPY (4),
RADDR (temp),
PADDR (done_pos),
SCR_JUMP,
PADDR (start),
#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
}/*-------------------------< SAVE_DP >------------------*/,{
/*
** SAVE_DP message:
** Copy TEMP register to SAVEP in header.
*/
SCR_COPY (4),
RADDR (temp),
NADDR (header.savep),
SCR_CLR (SCR_ACK),
0,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< RESTORE_DP >---------------*/,{
/*
** RESTORE_DP message:
** Copy SAVEP in header to TEMP register.
*/
SCR_COPY (4),
NADDR (header.savep),
RADDR (temp),
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< DISCONNECT >---------------*/,{
/*
** DISCONNECTing ...
**
** disable the "unexpected disconnect" feature,
** and remove the ACK signal.
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_CLR (SCR_ACK|SCR_ATN),
0,
/*
** Wait for the disconnect.
*/
SCR_WAIT_DISC,
0,
/*
** Status is: DISCONNECTED.
*/
SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
0,
SCR_JUMP,
PADDR (cleanup_ok),
}/*-------------------------< MSG_OUT >-------------------*/,{
/*
** The target requests a message.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_COPY (1),
NADDR (msgout),
NADDR (lastmsg),
/*
** If it was no ABORT message ...
*/
SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
PADDRH (msg_out_abort),
/*
** ... wait for the next phase
** if it's a message out, send it again, ...
*/
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
PADDR (msg_out),
}/*-------------------------< MSG_OUT_DONE >--------------*/,{
/*
** ... else clear the message ...
*/
SCR_LOAD_REG (scratcha, NOP),
0,
SCR_COPY (4),
RADDR (scratcha),
NADDR (msgout),
/*
** ... and process the next phase
*/
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< IDLE >------------------------*/,{
/*
** Nothing to do?
** Wait for reselect.
** This NOP will be patched with LED OFF
** SCR_REG_REG (gpreg, SCR_OR, 0x01)
*/
SCR_NO_OP,
0,
}/*-------------------------< RESELECT >--------------------*/,{
/*
** make the DSA invalid.
*/
SCR_LOAD_REG (dsa, 0xff),
0,
SCR_CLR (SCR_TRG),
0,
SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
0,
/*
** Sleep waiting for a reselection.
** If SIGP is set, special treatment.
**
** Zu allem bereit ..
*/
SCR_WAIT_RESEL,
PADDR(start),
}/*-------------------------< RESELECTED >------------------*/,{
/*
** This NOP will be patched with LED ON
** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
*/
SCR_NO_OP,
0,
/*
** ... zu nichts zu gebrauchen ?
**
** load the target id into the SFBR
** and jump to the control block.
**
** Look at the declarations of
** - struct ncb
** - struct tcb
** - struct lcb
** - struct ccb
** to understand what's going on.
*/
SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
0,
SCR_TO_REG (sdid),
0,
SCR_JUMP,
NADDR (jump_tcb),
}/*-------------------------< RESEL_DSA >-------------------*/,{
/*
** Ack the IDENTIFY or TAG previously received.
*/
SCR_CLR (SCR_ACK),
0,
/*
** The ncr doesn't have an indirect load
** or store command. So we have to
** copy part of the control block to a
** fixed place, where we can access it.
**
** We patch the address part of a
** COPY command with the DSA-register.
*/
SCR_COPY_F (4),
RADDR (dsa),
PADDR (loadpos1),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
/*
** then we do the actual copy.
*/
SCR_COPY (sizeof (struct head)),
/*
** continued after the next label ...
*/
}/*-------------------------< LOADPOS1 >-------------------*/,{
0,
NADDR (header),
/*
** The DSA contains the data structure address.
*/
SCR_JUMP,
PADDR (prepare),
}/*-------------------------< RESEL_LUN >-------------------*/,{
/*
** come back to this point
** to get an IDENTIFY message
** Wait for a msg_in phase.
*/
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
SIR_RESEL_NO_MSG_IN,
/*
** message phase.
** Read the data directly from the BUS DATA lines.
** This helps to support very old SCSI devices that
** may reselect without sending an IDENTIFY.
*/
SCR_FROM_REG (sbdl),
0,
/*
** It should be an Identify message.
*/
SCR_RETURN,
0,
}/*-------------------------< RESEL_TAG >-------------------*/,{
/*
** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
** Agressive optimization, is'nt it?
** No need to test the SIMPLE TAG message, since the
** driver only supports conformant devices for tags. ;-)
*/
SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
NADDR (msgin),
/*
** Read the TAG from the SIDL.
** Still an aggressive optimization. ;-)
** Compute the CCB indirect jump address which
** is (#TAG*2 & 0xfc) due to tag numbering using
** 1,3,5..MAXTAGS*2+1 actual values.
*/
SCR_REG_SFBR (sidl, SCR_SHL, 0),
0,
SCR_SFBR_REG (temp, SCR_AND, 0xfc),
0,
}/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
SCR_COPY_F (4),
RADDR (temp),
PADDR (nexus_indirect),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
SCR_COPY (4),
}/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
0,
RADDR (temp),
SCR_RETURN,
0,
}/*-------------------------< RESEL_NOTAG >-------------------*/,{
/*
** No tag expected.
** Read an throw away the IDENTIFY.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin),
SCR_JUMP,
PADDR (jump_to_nexus),
}/*-------------------------< DATA_IN >--------------------*/,{
/*
** Because the size depends on the
** #define MAX_SCATTERL parameter,
** it is filled in at runtime.
**
** ##===========< i=0; i<MAX_SCATTERL >=========
** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
** || PADDR (dispatch),
** || SCR_MOVE_TBL ^ SCR_DATA_IN,
** || offsetof (struct dsb, data[ i]),
** ##==========================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< DATA_IN2 >-------------------*/,{
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDR (no_data),
}/*-------------------------< DATA_OUT >--------------------*/,{
/*
** Because the size depends on the
** #define MAX_SCATTERL parameter,
** it is filled in at runtime.
**
** ##===========< i=0; i<MAX_SCATTERL >=========
** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
** || PADDR (dispatch),
** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
** || offsetof (struct dsb, data[ i]),
** ##==========================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< DATA_OUT2 >-------------------*/,{
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDR (no_data),
}/*--------------------------------------------------------*/
};
static struct scripth scripth0 __initdata = {
/*-------------------------< TRYLOOP >---------------------*/{
/*
** Start the next entry.
** Called addresses point to the launch script in the CCB.
** They are patched by the main processor.
**
** Because the size depends on the
** #define MAX_START parameter, it is filled
** in at runtime.
**
**-----------------------------------------------------------
**
** ##===========< I=0; i<MAX_START >===========
** || SCR_CALL,
** || PADDR (idle),
** ##==========================================
**
**-----------------------------------------------------------
*/
0
}/*------------------------< TRYLOOP2 >---------------------*/,{
SCR_JUMP,
PADDRH(tryloop),
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
}/*------------------------< DONE_QUEUE >-------------------*/,{
/*
** Copy the CCB address to the next done entry.
** Because the size depends on the
** #define MAX_DONE parameter, it is filled
** in at runtime.
**
**-----------------------------------------------------------
**
** ##===========< I=0; i<MAX_DONE >===========
** || SCR_COPY (sizeof(struct ccb *),
** || NADDR (header.cp),
** || NADDR (ccb_done[i]),
** || SCR_CALL,
** || PADDR (done_end),
** ##==========================================
**
**-----------------------------------------------------------
*/
0
}/*------------------------< DONE_QUEUE2 >------------------*/,{
SCR_JUMP,
PADDRH (done_queue),
#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
}/*------------------------< SELECT_NO_ATN >-----------------*/,{
/*
** Set Initiator mode.
** And try to select this target without ATN.
*/
SCR_CLR (SCR_TRG),
0,
SCR_LOAD_REG (HS_REG, HS_SELECTING),
0,
SCR_SEL_TBL ^ offsetof (struct dsb, select),
PADDR (reselect),
SCR_JUMP,
PADDR (select2),
}/*-------------------------< CANCEL >------------------------*/,{
SCR_LOAD_REG (scratcha, HS_ABORTED),
0,
SCR_JUMPR,
8,
}/*-------------------------< SKIP >------------------------*/,{
SCR_LOAD_REG (scratcha, 0),
0,
/*
** This entry has been canceled.
** Next time use the next slot.
*/
SCR_COPY (4),
RADDR (temp),
PADDR (startpos),
/*
** The ncr doesn't have an indirect load
** or store command. So we have to
** copy part of the control block to a
** fixed place, where we can access it.
**
** We patch the address part of a
** COPY command with the DSA-register.
*/
SCR_COPY_F (4),
RADDR (dsa),
PADDRH (skip2),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
/*
** then we do the actual copy.
*/
SCR_COPY (sizeof (struct head)),
/*
** continued after the next label ...
*/
}/*-------------------------< SKIP2 >---------------------*/,{
0,
NADDR (header),
/*
** Initialize the status registers
*/
SCR_COPY (4),
NADDR (header.status),
RADDR (scr0),
/*
** Force host status.
*/
SCR_FROM_REG (scratcha),
0,
SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
16,
SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
0,
SCR_JUMPR,
8,
SCR_TO_REG (HS_REG),
0,
SCR_LOAD_REG (SS_REG, S_GOOD),
0,
SCR_JUMP,
PADDR (cleanup_ok),
},/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
/*
** Ignore all data in byte, until next phase
*/
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
PADDRH (par_err_other),
SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
NADDR (scratch),
SCR_JUMPR,
-24,
},/*-------------------------< PAR_ERR_OTHER >------------------*/{
/*
** count it.
*/
SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
0,
/*
** jump to dispatcher.
*/
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< MSG_REJECT >---------------*/,{
/*
** If a negotiation was in progress,
** negotiation failed.
** Otherwise, let the C code print
** some message.
*/
SCR_FROM_REG (HS_REG),
0,
SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
SIR_REJECT_RECEIVED,
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
SIR_NEGO_FAILED,
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
/*
** Terminate cycle
*/
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get residue size.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[1]),
/*
** Size is 0 .. ignore message.
*/
SCR_JUMP ^ IFTRUE (DATA (0)),
PADDR (clrack),
/*
** Size is not 1 .. have to interrupt.
*/
SCR_JUMPR ^ IFFALSE (DATA (1)),
40,
/*
** Check for residue byte in swide register
*/
SCR_FROM_REG (scntl2),
0,
SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
16,
/*
** There IS data in the swide register.
** Discard it.
*/
SCR_REG_REG (scntl2, SCR_OR, WSR),
0,
SCR_JUMP,
PADDR (clrack),
/*
** Load again the size to the sfbr register.
*/
SCR_FROM_REG (scratcha),
0,
SCR_INT,
SIR_IGN_RESIDUE,
SCR_JUMP,
PADDR (clrack),
}/*-------------------------< MSG_EXTENDED >-------------*/,{
/*
** Terminate cycle
*/
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get length.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[1]),
/*
*/
SCR_JUMP ^ IFTRUE (DATA (3)),
PADDRH (msg_ext_3),
SCR_JUMP ^ IFFALSE (DATA (2)),
PADDR (msg_bad),
}/*-------------------------< MSG_EXT_2 >----------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get extended message code.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[2]),
SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
PADDRH (msg_wdtr),
/*
** unknown extended message
*/
SCR_JUMP,
PADDR (msg_bad)
}/*-------------------------< MSG_WDTR >-----------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get data bus width
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[3]),
/*
** let the host do the real work.
*/
SCR_INT,
SIR_NEGO_WIDE,
/*
** let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDRH (nego_bad_phase),
}/*-------------------------< SEND_WDTR >----------------*/,{
/*
** Send the EXTENDED_WDTR
*/
SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_COPY (1),
NADDR (msgout),
NADDR (lastmsg),
SCR_JUMP,
PADDR (msg_out_done),
}/*-------------------------< MSG_EXT_3 >----------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get extended message code.
*/
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin[2]),
SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
PADDRH (msg_sdtr),
/*
** unknown extended message
*/
SCR_JUMP,
PADDR (msg_bad)
}/*-------------------------< MSG_SDTR >-----------------*/,{
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
PADDR (dispatch),
/*
** get period and offset
*/
SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
NADDR (msgin[3]),
/*
** let the host do the real work.
*/
SCR_INT,
SIR_NEGO_SYNC,
/*
** let the target fetch our answer.
*/
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
PADDRH (nego_bad_phase),
}/*-------------------------< SEND_SDTR >-------------*/,{
/*
** Send the EXTENDED_SDTR
*/
SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_COPY (1),
NADDR (msgout),
NADDR (lastmsg),
SCR_JUMP,
PADDR (msg_out_done),
}/*-------------------------< NEGO_BAD_PHASE >------------*/,{
SCR_INT,
SIR_NEGO_PROTO,
SCR_JUMP,
PADDR (dispatch),
}/*-------------------------< MSG_OUT_ABORT >-------------*/,{
/*
** After ABORT message,
**
** expect an immediate disconnect, ...
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_CLR (SCR_ACK|SCR_ATN),
0,
SCR_WAIT_DISC,
0,
/*
** ... and set the status to "ABORTED"
*/
SCR_LOAD_REG (HS_REG, HS_ABORTED),
0,
SCR_JUMP,
PADDR (cleanup),
}/*-------------------------< HDATA_IN >-------------------*/,{
/*
** Because the size depends on the
** #define MAX_SCATTERH parameter,
** it is filled in at runtime.
**
** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
** || PADDR (dispatch),
** || SCR_MOVE_TBL ^ SCR_DATA_IN,
** || offsetof (struct dsb, data[ i]),
** ##===================================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< HDATA_IN2 >------------------*/,{
SCR_JUMP,
PADDR (data_in),
}/*-------------------------< HDATA_OUT >-------------------*/,{
/*
** Because the size depends on the
** #define MAX_SCATTERH parameter,
** it is filled in at runtime.
**
** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
** || PADDR (dispatch),
** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
** || offsetof (struct dsb, data[ i]),
** ##===================================================
**
**---------------------------------------------------------
*/
0
}/*-------------------------< HDATA_OUT2 >------------------*/,{
SCR_JUMP,
PADDR (data_out),
}/*-------------------------< RESET >----------------------*/,{
/*
** Send a TARGET_RESET message if bad IDENTIFY
** received on reselection.
*/
SCR_LOAD_REG (scratcha, ABORT_TASK),
0,
SCR_JUMP,
PADDRH (abort_resel),
}/*-------------------------< ABORTTAG >-------------------*/,{
/*
** Abort a wrong tag received on reselection.
*/
SCR_LOAD_REG (scratcha, ABORT_TASK),
0,
SCR_JUMP,
PADDRH (abort_resel),
}/*-------------------------< ABORT >----------------------*/,{
/*
** Abort a reselection when no active CCB.
*/
SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
0,
}/*-------------------------< ABORT_RESEL >----------------*/,{
SCR_COPY (1),
RADDR (scratcha),
NADDR (msgout),
SCR_SET (SCR_ATN),
0,
SCR_CLR (SCR_ACK),
0,
/*
** and send it.
** we expect an immediate disconnect
*/
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
0,
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
NADDR (msgout),
SCR_COPY (1),
NADDR (msgout),
NADDR (lastmsg),
SCR_CLR (SCR_ACK|SCR_ATN),
0,
SCR_WAIT_DISC,
0,
SCR_JUMP,
PADDR (start),
}/*-------------------------< RESEND_IDENT >-------------------*/,{
/*
** The target stays in MSG OUT phase after having acked
** Identify [+ Tag [+ Extended message ]]. Targets shall
** behave this way on parity error.
** We must send it again all the messages.
*/
SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
SCR_JUMP,
PADDR (send_ident),
}/*-------------------------< CLRATN_GO_ON >-------------------*/,{
SCR_CLR (SCR_ATN),
0,
SCR_JUMP,
}/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
0,
}/*-------------------------< SDATA_IN >-------------------*/,{
SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
PADDR (dispatch),
SCR_MOVE_TBL ^ SCR_DATA_IN,
offsetof (struct dsb, sense),
SCR_CALL,
PADDR (dispatch),
SCR_JUMP,
PADDR (no_data),
}/*-------------------------< DATA_IO >--------------------*/,{
/*
** We jump here if the data direction was unknown at the
** time we had to queue the command to the scripts processor.
** Pointers had been set as follow in this situation:
** savep --> DATA_IO
** lastp --> start pointer when DATA_IN
** goalp --> goal pointer when DATA_IN
** wlastp --> start pointer when DATA_OUT
** wgoalp --> goal pointer when DATA_OUT
** This script sets savep/lastp/goalp according to the
** direction chosen by the target.
*/
SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
32,
/*
** Direction is DATA IN.
** Warning: we jump here, even when phase is DATA OUT.
*/
SCR_COPY (4),
NADDR (header.lastp),
NADDR (header.savep),
/*
** Jump to the SCRIPTS according to actual direction.
*/
SCR_COPY (4),
NADDR (header.savep),
RADDR (temp),
SCR_RETURN,
0,
/*
** Direction is DATA OUT.
*/
SCR_COPY (4),
NADDR (header.wlastp),
NADDR (header.lastp),
SCR_COPY (4),
NADDR (header.wgoalp),
NADDR (header.goalp),
SCR_JUMPR,
-64,
}/*-------------------------< BAD_IDENTIFY >---------------*/,{
/*
** If message phase but not an IDENTIFY,
** get some help from the C code.
** Old SCSI device may behave so.
*/
SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
16,
SCR_INT,
SIR_RESEL_NO_IDENTIFY,
SCR_JUMP,
PADDRH (reset),
/*
** Message is an IDENTIFY, but lun is unknown.
** Read the message, since we got it directly
** from the SCSI BUS data lines.
** Signal problem to C code for logging the event.
** Send an ABORT_TASK_SET to clear all pending tasks.
*/
SCR_INT,
SIR_RESEL_BAD_LUN,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin),
SCR_JUMP,
PADDRH (abort),
}/*-------------------------< BAD_I_T_L >------------------*/,{
/*
** We donnot have a task for that I_T_L.
** Signal problem to C code for logging the event.
** Send an ABORT_TASK_SET message.
*/
SCR_INT,
SIR_RESEL_BAD_I_T_L,
SCR_JUMP,
PADDRH (abort),
}/*-------------------------< BAD_I_T_L_Q >----------------*/,{
/*
** We donnot have a task that matches the tag.
** Signal problem to C code for logging the event.
** Send an ABORT_TASK message.
*/
SCR_INT,
SIR_RESEL_BAD_I_T_L_Q,
SCR_JUMP,
PADDRH (aborttag),
}/*-------------------------< BAD_TARGET >-----------------*/,{
/*
** We donnot know the target that reselected us.
** Grab the first message if any (IDENTIFY).
** Signal problem to C code for logging the event.
** TARGET_RESET message.
*/
SCR_INT,
SIR_RESEL_BAD_TARGET,
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
8,
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
NADDR (msgin),
SCR_JUMP,
PADDRH (reset),
}/*-------------------------< BAD_STATUS >-----------------*/,{
/*
** If command resulted in either QUEUE FULL,
** CHECK CONDITION or COMMAND TERMINATED,
** call the C code.
*/
SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
SIR_BAD_STATUS,
SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
SIR_BAD_STATUS,
SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
SIR_BAD_STATUS,
SCR_RETURN,
0,
}/*-------------------------< START_RAM >-------------------*/,{
/*
** Load the script into on-chip RAM,
** and jump to start point.
*/
SCR_COPY_F (4),
RADDR (scratcha),
PADDRH (start_ram0),
/*
** Flush script prefetch if required
*/
PREFETCH_FLUSH
SCR_COPY (sizeof (struct script)),
}/*-------------------------< START_RAM0 >--------------------*/,{
0,
PADDR (start),
SCR_JUMP,
PADDR (start),
}/*-------------------------< STO_RESTART >-------------------*/,{
/*
**
** Repair start queue (e.g. next time use the next slot)
** and jump to start point.
*/
SCR_COPY (4),
RADDR (temp),
PADDR (startpos),
SCR_JUMP,
PADDR (start),
}/*-------------------------< WAIT_DMA >-------------------*/,{
/*
** For HP Zalon/53c720 systems, the Zalon interface
** between CPU and 53c720 does prefetches, which causes
** problems with self modifying scripts. The problem
** is overcome by calling a dummy subroutine after each
** modification, to force a refetch of the script on
** return from the subroutine.
*/
SCR_RETURN,
0,
}/*-------------------------< SNOOPTEST >-------------------*/,{
/*
** Read the variable.
*/
SCR_COPY (4),
NADDR(ncr_cache),
RADDR (scratcha),
/*
** Write the variable.
*/
SCR_COPY (4),
RADDR (temp),
NADDR(ncr_cache),
/*
** Read back the variable.
*/
SCR_COPY (4),
NADDR(ncr_cache),
RADDR (temp),
}/*-------------------------< SNOOPEND >-------------------*/,{
/*
** And stop.
*/
SCR_INT,
99,
}/*--------------------------------------------------------*/
};
/*==========================================================
**
**
** Fill in #define dependent parts of the script
**
**
**==========================================================
*/
void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
{
int i;
ncrcmd *p;
p = scrh->tryloop;
for (i=0; i<MAX_START; i++) {
*p++ =SCR_CALL;
*p++ =PADDR (idle);
}
BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
p = scrh->done_queue;
for (i = 0; i<MAX_DONE; i++) {
*p++ =SCR_COPY (sizeof(struct ccb *));
*p++ =NADDR (header.cp);
*p++ =NADDR (ccb_done[i]);
*p++ =SCR_CALL;
*p++ =PADDR (done_end);
}
BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
p = scrh->hdata_in;
for (i=0; i<MAX_SCATTERH; i++) {
*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
*p++ =PADDR (dispatch);
*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
*p++ =offsetof (struct dsb, data[i]);
}
BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
p = scr->data_in;
for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
*p++ =PADDR (dispatch);
*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
*p++ =offsetof (struct dsb, data[i]);
}
BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
p = scrh->hdata_out;
for (i=0; i<MAX_SCATTERH; i++) {
*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
*p++ =PADDR (dispatch);
*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
*p++ =offsetof (struct dsb, data[i]);
}
BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
p = scr->data_out;
for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
*p++ =PADDR (dispatch);
*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
*p++ =offsetof (struct dsb, data[i]);
}
BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
}
/*==========================================================
**
**
** Copy and rebind a script.
**
**
**==========================================================
*/
static void __init
ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
{
ncrcmd opcode, new, old, tmp1, tmp2;
ncrcmd *start, *end;
int relocs;
int opchanged = 0;
start = src;
end = src + len/4;
while (src < end) {
opcode = *src++;
*dst++ = cpu_to_scr(opcode);
/*
** If we forget to change the length
** in struct script, a field will be
** padded with 0. This is an illegal
** command.
*/
if (opcode == 0) {
printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
ncr_name(np), (int) (src-start-1));
mdelay(1000);
}
if (DEBUG_FLAGS & DEBUG_SCRIPT)
printk (KERN_DEBUG "%p: <%x>\n",
(src-1), (unsigned)opcode);
/*
** We don't have to decode ALL commands
*/
switch (opcode >> 28) {
case 0xc:
/*
** COPY has TWO arguments.
*/
relocs = 2;
tmp1 = src[0];
#ifdef RELOC_KVAR
if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
tmp1 = 0;
#endif
tmp2 = src[1];
#ifdef RELOC_KVAR
if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
tmp2 = 0;
#endif
if ((tmp1 ^ tmp2) & 3) {
printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
ncr_name(np), (int) (src-start-1));
mdelay(1000);
}
/*
** If PREFETCH feature not enabled, remove
** the NO FLUSH bit if present.
*/
if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
++opchanged;
}
break;
case 0x0:
/*
** MOVE (absolute address)
*/
relocs = 1;
break;
case 0x8:
/*
** JUMP / CALL
** don't relocate if relative :-)
*/
if (opcode & 0x00800000)
relocs = 0;
else
relocs = 1;
break;
case 0x4:
case 0x5:
case 0x6:
case 0x7:
relocs = 1;
break;
default:
relocs = 0;
break;
}
if (relocs) {
while (relocs--) {
old = *src++;
switch (old & RELOC_MASK) {
case RELOC_REGISTER:
new = (old & ~RELOC_MASK) + np->paddr;
break;
case RELOC_LABEL:
new = (old & ~RELOC_MASK) + np->p_script;
break;
case RELOC_LABELH:
new = (old & ~RELOC_MASK) + np->p_scripth;
break;
case RELOC_SOFTC:
new = (old & ~RELOC_MASK) + np->p_ncb;
break;
#ifdef RELOC_KVAR
case RELOC_KVAR:
if (((old & ~RELOC_MASK) <
SCRIPT_KVAR_FIRST) ||
((old & ~RELOC_MASK) >
SCRIPT_KVAR_LAST))
panic("ncr KVAR out of range");
new = vtophys(script_kvars[old &
~RELOC_MASK]);
break;
#endif
case 0:
/* Don't relocate a 0 address. */
if (old == 0) {
new = old;
break;
}
/* fall through */
default:
panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
break;
}
*dst++ = cpu_to_scr(new);
}
} else
*dst++ = cpu_to_scr(*src++);
}
}
/*
** Linux host data structure
*/
struct host_data {
struct ncb *ncb;
};
#define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
{
PRINT_ADDR(cp->cmd, "%s: ", label);
spi_print_msg(msg);
printk("\n");
}
/*==========================================================
**
** NCR chip clock divisor table.
** Divisors are multiplied by 10,000,000 in order to make
** calculations more simple.
**
**==========================================================
*/
#define _5M 5000000
static u_long div_10M[] =
{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
/*===============================================================
**
** Prepare io register values used by ncr_init() according
** to selected and supported features.
**
** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
** transfers. 32,64,128 are only supported by 875 and 895 chips.
** We use log base 2 (burst length) as internal code, with
** value 0 meaning "burst disabled".
**
**===============================================================
*/
/*
* Burst length from burst code.
*/
#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
/*
* Burst code from io register bits. Burst enable is ctest0 for c720
*/
#define burst_code(dmode, ctest0) \
(ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
/*
* Set initial io register bits from burst code.
*/
static inline void ncr_init_burst(struct ncb *np, u_char bc)
{
u_char *be = &np->rv_ctest0;
*be &= ~0x80;
np->rv_dmode &= ~(0x3 << 6);
np->rv_ctest5 &= ~0x4;
if (!bc) {
*be |= 0x80;
} else {
--bc;
np->rv_dmode |= ((bc & 0x3) << 6);
np->rv_ctest5 |= (bc & 0x4);
}
}
static void __init ncr_prepare_setting(struct ncb *np)
{
u_char burst_max;
u_long period;
int i;
/*
** Save assumed BIOS setting
*/
np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
np->sv_scntl3 = INB(nc_scntl3) & 0x07;
np->sv_dmode = INB(nc_dmode) & 0xce;
np->sv_dcntl = INB(nc_dcntl) & 0xa8;
np->sv_ctest0 = INB(nc_ctest0) & 0x84;
np->sv_ctest3 = INB(nc_ctest3) & 0x01;
np->sv_ctest4 = INB(nc_ctest4) & 0x80;
np->sv_ctest5 = INB(nc_ctest5) & 0x24;
np->sv_gpcntl = INB(nc_gpcntl);
np->sv_stest2 = INB(nc_stest2) & 0x20;
np->sv_stest4 = INB(nc_stest4);
/*
** Wide ?
*/
np->maxwide = (np->features & FE_WIDE)? 1 : 0;
/*
* Guess the frequency of the chip's clock.
*/
if (np->features & FE_ULTRA)
np->clock_khz = 80000;
else
np->clock_khz = 40000;
/*
* Get the clock multiplier factor.
*/
if (np->features & FE_QUAD)
np->multiplier = 4;
else if (np->features & FE_DBLR)
np->multiplier = 2;
else
np->multiplier = 1;
/*
* Measure SCSI clock frequency for chips
* it may vary from assumed one.
*/
if (np->features & FE_VARCLK)
ncr_getclock(np, np->multiplier);
/*
* Divisor to be used for async (timer pre-scaler).
*/
i = np->clock_divn - 1;
while (--i >= 0) {
if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
++i;
break;
}
}
np->rv_scntl3 = i+1;
/*
* Minimum synchronous period factor supported by the chip.
* Btw, 'period' is in tenths of nanoseconds.
*/
period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
if (period <= 250) np->minsync = 10;
else if (period <= 303) np->minsync = 11;
else if (period <= 500) np->minsync = 12;
else np->minsync = (period + 40 - 1) / 40;
/*
* Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
*/
if (np->minsync < 25 && !(np->features & FE_ULTRA))
np->minsync = 25;
/*
* Maximum synchronous period factor supported by the chip.
*/
period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
np->maxsync = period > 2540 ? 254 : period / 10;
/*
** Prepare initial value of other IO registers
*/
#if defined SCSI_NCR_TRUST_BIOS_SETTING
np->rv_scntl0 = np->sv_scntl0;
np->rv_dmode = np->sv_dmode;
np->rv_dcntl = np->sv_dcntl;
np->rv_ctest0 = np->sv_ctest0;
np->rv_ctest3 = np->sv_ctest3;
np->rv_ctest4 = np->sv_ctest4;
np->rv_ctest5 = np->sv_ctest5;
burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
#else
/*
** Select burst length (dwords)
*/
burst_max = driver_setup.burst_max;
if (burst_max == 255)
burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
if (burst_max > 7)
burst_max = 7;
if (burst_max > np->maxburst)
burst_max = np->maxburst;
/*
** Select all supported special features
*/
if (np->features & FE_ERL)
np->rv_dmode |= ERL; /* Enable Read Line */
if (np->features & FE_BOF)
np->rv_dmode |= BOF; /* Burst Opcode Fetch */
if (np->features & FE_ERMP)
np->rv_dmode |= ERMP; /* Enable Read Multiple */
if (np->features & FE_PFEN)
np->rv_dcntl |= PFEN; /* Prefetch Enable */
if (np->features & FE_CLSE)
np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
if (np->features & FE_WRIE)
np->rv_ctest3 |= WRIE; /* Write and Invalidate */
if (np->features & FE_DFS)
np->rv_ctest5 |= DFS; /* Dma Fifo Size */
if (np->features & FE_MUX)
np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
if (np->features & FE_EA)
np->rv_dcntl |= EA; /* Enable ACK */
if (np->features & FE_EHP)
np->rv_ctest0 |= EHP; /* Even host parity */
/*
** Select some other
*/
if (driver_setup.master_parity)
np->rv_ctest4 |= MPEE; /* Master parity checking */
if (driver_setup.scsi_parity)
np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
/*
** Get SCSI addr of host adapter (set by bios?).
*/
if (np->myaddr == 255) {
np->myaddr = INB(nc_scid) & 0x07;
if (!np->myaddr)
np->myaddr = SCSI_NCR_MYADDR;
}
#endif /* SCSI_NCR_TRUST_BIOS_SETTING */
/*
* Prepare initial io register bits for burst length
*/
ncr_init_burst(np, burst_max);
/*
** Set SCSI BUS mode.
**
** - ULTRA2 chips (895/895A/896) report the current
** BUS mode through the STEST4 IO register.
** - For previous generation chips (825/825A/875),
** user has to tell us how to check against HVD,
** since a 100% safe algorithm is not possible.
*/
np->scsi_mode = SMODE_SE;
if (np->features & FE_DIFF) {
switch(driver_setup.diff_support) {
case 4: /* Trust previous settings if present, then GPIO3 */
if (np->sv_scntl3) {
if (np->sv_stest2 & 0x20)
np->scsi_mode = SMODE_HVD;
break;
}
case 3: /* SYMBIOS controllers report HVD through GPIO3 */
if (INB(nc_gpreg) & 0x08)
break;
case 2: /* Set HVD unconditionally */
np->scsi_mode = SMODE_HVD;
case 1: /* Trust previous settings for HVD */
if (np->sv_stest2 & 0x20)
np->scsi_mode = SMODE_HVD;
break;
default:/* Don't care about HVD */
break;
}
}
if (np->scsi_mode == SMODE_HVD)
np->rv_stest2 |= 0x20;
/*
** Set LED support from SCRIPTS.
** Ignore this feature for boards known to use a
** specific GPIO wiring and for the 895A or 896
** that drive the LED directly.
** Also probe initial setting of GPIO0 as output.
*/
if ((driver_setup.led_pin) &&
!(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
np->features |= FE_LED0;
/*
** Set irq mode.
*/
switch(driver_setup.irqm & 3) {
case 2:
np->rv_dcntl |= IRQM;
break;
case 1:
np->rv_dcntl |= (np->sv_dcntl & IRQM);
break;
default:
break;
}
/*
** Configure targets according to driver setup.
** Allow to override sync, wide and NOSCAN from
** boot command line.
*/
for (i = 0 ; i < MAX_TARGET ; i++) {
struct tcb *tp = &np->target[i];
tp->usrsync = driver_setup.default_sync;
tp->usrwide = driver_setup.max_wide;
tp->usrtags = MAX_TAGS;
tp->period = 0xffff;
if (!driver_setup.disconnection)
np->target[i].usrflag = UF_NODISC;
}
/*
** Announce all that stuff to user.
*/
printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
np->myaddr,
np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
(np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
(np->rv_stest2 & 0x20) ? ", Differential" : "");
if (bootverbose > 1) {
printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
}
if (bootverbose && np->paddr2)
printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
ncr_name(np), np->paddr2);
}
/*==========================================================
**
**
** Done SCSI commands list management.
**
** We donnot enter the scsi_done() callback immediately
** after a command has been seen as completed but we
** insert it into a list which is flushed outside any kind
** of driver critical section.
** This allows to do minimal stuff under interrupt and
** inside critical sections and to also avoid locking up
** on recursive calls to driver entry points under SMP.
** In fact, the only kernel point which is entered by the
** driver with a driver lock set is kmalloc(GFP_ATOMIC)
** that shall not reenter the driver under any circumstances,
** AFAIK.
**
**==========================================================
*/
static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
{
unmap_scsi_data(np, cmd);
cmd->host_scribble = (char *) np->done_list;
np->done_list = cmd;
}
static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
{
struct scsi_cmnd *cmd;
while (lcmd) {
cmd = lcmd;
lcmd = (struct scsi_cmnd *) cmd->host_scribble;
cmd->scsi_done(cmd);
}
}
/*==========================================================
**
**
** Prepare the next negotiation message if needed.
**
** Fill in the part of message buffer that contains the
** negotiation and the nego_status field of the CCB.
** Returns the size of the message in bytes.
**
**
**==========================================================
*/
static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
{
struct tcb *tp = &np->target[cp->target];
int msglen = 0;
int nego = 0;
struct scsi_target *starget = tp->starget;
/* negotiate wide transfers ? */
if (!tp->widedone) {
if (spi_support_wide(starget)) {
nego = NS_WIDE;
} else
tp->widedone=1;
}
/* negotiate synchronous transfers? */
if (!nego && !tp->period) {
if (spi_support_sync(starget)) {
nego = NS_SYNC;
} else {
tp->period =0xffff;
dev_info(&starget->dev, "target did not report SYNC.\n");
}
}
switch (nego) {
case NS_SYNC:
msglen += spi_populate_sync_msg(msgptr + msglen,
tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
break;
case NS_WIDE:
msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
break;
}
cp->nego_status = nego;
if (nego) {
tp->nego_cp = cp;
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, nego == NS_WIDE ?
"wide msgout":"sync_msgout", msgptr);
}
}
return msglen;
}
/*==========================================================
**
**
** Start execution of a SCSI command.
** This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct tcb *tp = &np->target[sdev->id];
struct lcb *lp = tp->lp[sdev->lun];
struct ccb *cp;
int segments;
u_char idmsg, *msgptr;
u32 msglen;
int direction;
u32 lastp, goalp;
/*---------------------------------------------
**
** Some shortcuts ...
**
**---------------------------------------------
*/
if ((sdev->id == np->myaddr ) ||
(sdev->id >= MAX_TARGET) ||
(sdev->lun >= MAX_LUN )) {
return(DID_BAD_TARGET);
}
/*---------------------------------------------
**
** Complete the 1st TEST UNIT READY command
** with error condition if the device is
** flagged NOSCAN, in order to speed up
** the boot.
**
**---------------------------------------------
*/
if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
(tp->usrflag & UF_NOSCAN)) {
tp->usrflag &= ~UF_NOSCAN;
return DID_BAD_TARGET;
}
if (DEBUG_FLAGS & DEBUG_TINY) {
PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
}
/*---------------------------------------------------
**
** Assign a ccb / bind cmd.
** If resetting, shorten settle_time if necessary
** in order to avoid spurious timeouts.
** If resetting or no free ccb,
** insert cmd into the waiting list.
**
**----------------------------------------------------
*/
if (np->settle_time && cmd->timeout_per_command >= HZ) {
u_long tlimit = jiffies + cmd->timeout_per_command - HZ;
if (time_after(np->settle_time, tlimit))
np->settle_time = tlimit;
}
if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
insert_into_waiting_list(np, cmd);
return(DID_OK);
}
cp->cmd = cmd;
/*----------------------------------------------------
**
** Build the identify / tag / sdtr message
**
**----------------------------------------------------
*/
idmsg = IDENTIFY(0, sdev->lun);
if (cp ->tag != NO_TAG ||
(cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
idmsg |= 0x40;
msgptr = cp->scsi_smsg;
msglen = 0;
msgptr[msglen++] = idmsg;
if (cp->tag != NO_TAG) {
char order = np->order;
/*
** Force ordered tag if necessary to avoid timeouts
** and to preserve interactivity.
*/
if (lp && time_after(jiffies, lp->tags_stime)) {
if (lp->tags_smap) {
order = ORDERED_QUEUE_TAG;
if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
PRINT_ADDR(cmd,
"ordered tag forced.\n");
}
}
lp->tags_stime = jiffies + 3*HZ;
lp->tags_smap = lp->tags_umap;
}
if (order == 0) {
/*
** Ordered write ops, unordered read ops.
*/
switch (cmd->cmnd[0]) {
case 0x08: /* READ_SMALL (6) */
case 0x28: /* READ_BIG (10) */
case 0xa8: /* READ_HUGE (12) */
order = SIMPLE_QUEUE_TAG;
break;
default:
order = ORDERED_QUEUE_TAG;
}
}
msgptr[msglen++] = order;
/*
** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
** since we may have to deal with devices that have
** problems with #TAG 0 or too great #TAG numbers.
*/
msgptr[msglen++] = (cp->tag << 1) + 1;
}
/*----------------------------------------------------
**
** Build the data descriptors
**
**----------------------------------------------------
*/
direction = cmd->sc_data_direction;
if (direction != DMA_NONE) {
segments = ncr_scatter(np, cp, cp->cmd);
if (segments < 0) {
ncr_free_ccb(np, cp);
return(DID_ERROR);
}
}
else {
cp->data_len = 0;
segments = 0;
}
/*---------------------------------------------------
**
** negotiation required?
**
** (nego_status is filled by ncr_prepare_nego())
**
**---------------------------------------------------
*/
cp->nego_status = 0;
if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
}
/*----------------------------------------------------
**
** Determine xfer direction.
**
**----------------------------------------------------
*/
if (!cp->data_len)
direction = DMA_NONE;
/*
** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
** but prepare alternate pointers for TO_DEVICE in case
** of our speculation will be just wrong.
** SCRIPTS will swap values if needed.
*/
switch(direction) {
case DMA_BIDIRECTIONAL:
case DMA_TO_DEVICE:
goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
if (segments <= MAX_SCATTERL)
lastp = goalp - 8 - (segments * 16);
else {
lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
lastp -= (segments - MAX_SCATTERL) * 16;
}
if (direction != DMA_BIDIRECTIONAL)
break;
cp->phys.header.wgoalp = cpu_to_scr(goalp);
cp->phys.header.wlastp = cpu_to_scr(lastp);
/* fall through */
case DMA_FROM_DEVICE:
goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
if (segments <= MAX_SCATTERL)
lastp = goalp - 8 - (segments * 16);
else {
lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
lastp -= (segments - MAX_SCATTERL) * 16;
}
break;
default:
case DMA_NONE:
lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
break;
}
/*
** Set all pointers values needed by SCRIPTS.
** If direction is unknown, start at data_io.
*/
cp->phys.header.lastp = cpu_to_scr(lastp);
cp->phys.header.goalp = cpu_to_scr(goalp);
if (direction == DMA_BIDIRECTIONAL)
cp->phys.header.savep =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
else
cp->phys.header.savep= cpu_to_scr(lastp);
/*
** Save the initial data pointer in order to be able
** to redo the command.
*/
cp->startp = cp->phys.header.savep;
/*----------------------------------------------------
**
** fill in ccb
**
**----------------------------------------------------
**
**
** physical -> virtual backlink
** Generic SCSI command
*/
/*
** Startqueue
*/
cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
/*
** select
*/
cp->phys.select.sel_id = sdev_id(sdev);
cp->phys.select.sel_scntl3 = tp->wval;
cp->phys.select.sel_sxfer = tp->sval;
/*
** message
*/
cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
cp->phys.smsg.size = cpu_to_scr(msglen);
/*
** command
*/
memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
/*
** status
*/
cp->actualquirks = 0;
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
cp->scsi_status = S_ILLEGAL;
cp->parity_status = 0;
cp->xerr_status = XE_OK;
#if 0
cp->sync_status = tp->sval;
cp->wide_status = tp->wval;
#endif
/*----------------------------------------------------
**
** Critical region: start this job.
**
**----------------------------------------------------
*/
/* activate this job. */
cp->magic = CCB_MAGIC;
/*
** insert next CCBs into start queue.
** 2 max at a time is enough to flush the CCB wait queue.
*/
cp->auto_sense = 0;
if (lp)
ncr_start_next_ccb(np, lp, 2);
else
ncr_put_start_queue(np, cp);
/* Command is successfully queued. */
return DID_OK;
}
/*==========================================================
**
**
** Insert a CCB into the start queue and wake up the
** SCRIPTS processor.
**
**
**==========================================================
*/
static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
{
struct list_head *qp;
struct ccb *cp;
if (lp->held_ccb)
return;
while (maxn-- && lp->queuedccbs < lp->queuedepth) {
qp = ncr_list_pop(&lp->wait_ccbq);
if (!qp)
break;
++lp->queuedccbs;
cp = list_entry(qp, struct ccb, link_ccbq);
list_add_tail(qp, &lp->busy_ccbq);
lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
cpu_to_scr(CCB_PHYS (cp, restart));
ncr_put_start_queue(np, cp);
}
}
static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
{
u16 qidx;
/*
** insert into start queue.
*/
if (!np->squeueput) np->squeueput = 1;
qidx = np->squeueput + 2;
if (qidx >= MAX_START + MAX_START) qidx = 1;
np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
MEMORY_BARRIER();
np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
np->squeueput = qidx;
++np->queuedccbs;
cp->queued = 1;
if (DEBUG_FLAGS & DEBUG_QUEUE)
printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
/*
** Script processor may be waiting for reselect.
** Wake it up.
*/
MEMORY_BARRIER();
OUTB (nc_istat, SIGP);
}
static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
{
u32 term;
int retv = 0;
np->settle_time = jiffies + settle_delay * HZ;
if (bootverbose > 1)
printk("%s: resetting, "
"command processing suspended for %d seconds\n",
ncr_name(np), settle_delay);
ncr_chip_reset(np, 100);
udelay(2000); /* The 895 needs time for the bus mode to settle */
if (enab_int)
OUTW (nc_sien, RST);
/*
** Enable Tolerant, reset IRQD if present and
** properly set IRQ mode, prior to resetting the bus.
*/
OUTB (nc_stest3, TE);
OUTB (nc_scntl1, CRST);
udelay(200);
if (!driver_setup.bus_check)
goto out;
/*
** Check for no terminators or SCSI bus shorts to ground.
** Read SCSI data bus, data parity bits and control signals.
** We are expecting RESET to be TRUE and other signals to be
** FALSE.
*/
term = INB(nc_sstat0);
term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
if (!(np->features & FE_WIDE))
term &= 0x3ffff;
if (term != (2<<7)) {
printk("%s: suspicious SCSI data while resetting the BUS.\n",
ncr_name(np));
printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
"0x%lx, expecting 0x%lx\n",
ncr_name(np),
(np->features & FE_WIDE) ? "dp1,d15-8," : "",
(u_long)term, (u_long)(2<<7));
if (driver_setup.bus_check == 1)
retv = 1;
}
out:
OUTB (nc_scntl1, 0);
return retv;
}
/*
* Start reset process.
* If reset in progress do nothing.
* The interrupt handler will reinitialize the chip.
* The timeout handler will wait for settle_time before
* clearing it and so resuming command processing.
*/
static void ncr_start_reset(struct ncb *np)
{
if (!np->settle_time) {
ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
}
}
/*==========================================================
**
**
** Reset the SCSI BUS.
** This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
{
/* struct scsi_device *device = cmd->device; */
struct ccb *cp;
int found;
/*
* Return immediately if reset is in progress.
*/
if (np->settle_time) {
return FAILED;
}
/*
* Start the reset process.
* The script processor is then assumed to be stopped.
* Commands will now be queued in the waiting list until a settle
* delay of 2 seconds will be completed.
*/
ncr_start_reset(np);
/*
* First, look in the wakeup list
*/
for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
/*
** look for the ccb of this command.
*/
if (cp->host_status == HS_IDLE) continue;
if (cp->cmd == cmd) {
found = 1;
break;
}
}
/*
* Then, look in the waiting list
*/
if (!found && retrieve_from_waiting_list(0, np, cmd))
found = 1;
/*
* Wake-up all awaiting commands with DID_RESET.
*/
reset_waiting_list(np);
/*
* Wake-up all pending commands with HS_RESET -> DID_RESET.
*/
ncr_wakeup(np, HS_RESET);
/*
* If the involved command was not in a driver queue, and the
* scsi driver told us reset is synchronous, and the command is not
* currently in the waiting list, complete it with DID_RESET status,
* in order to keep it alive.
*/
if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
cmd->result = ScsiResult(DID_RESET, 0);
ncr_queue_done_cmd(np, cmd);
}
return SUCCESS;
}
#if 0 /* unused and broken.. */
/*==========================================================
**
**
** Abort an SCSI command.
** This is called from the generic SCSI driver.
**
**
**==========================================================
*/
static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
{
/* struct scsi_device *device = cmd->device; */
struct ccb *cp;
int found;
int retv;
/*
* First, look for the scsi command in the waiting list
*/
if (remove_from_waiting_list(np, cmd)) {
cmd->result = ScsiResult(DID_ABORT, 0);
ncr_queue_done_cmd(np, cmd);
return SCSI_ABORT_SUCCESS;
}
/*
* Then, look in the wakeup list
*/
for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
/*
** look for the ccb of this command.
*/
if (cp->host_status == HS_IDLE) continue;
if (cp->cmd == cmd) {
found = 1;
break;
}
}
if (!found) {
return SCSI_ABORT_NOT_RUNNING;
}
if (np->settle_time) {
return SCSI_ABORT_SNOOZE;
}
/*
** If the CCB is active, patch schedule jumps for the
** script to abort the command.
*/
switch(cp->host_status) {
case HS_BUSY:
case HS_NEGOTIATE:
printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
cp->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
retv = SCSI_ABORT_PENDING;
break;
case HS_DISCONNECT:
cp->restart.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
retv = SCSI_ABORT_PENDING;
break;
default:
retv = SCSI_ABORT_NOT_RUNNING;
break;
}
/*
** If there are no requests, the script
** processor will sleep on SEL_WAIT_RESEL.
** Let's wake it up, since it may have to work.
*/
OUTB (nc_istat, SIGP);
return retv;
}
#endif
static void ncr_detach(struct ncb *np)
{
struct ccb *cp;
struct tcb *tp;
struct lcb *lp;
int target, lun;
int i;
char inst_name[16];
/* Local copy so we don't access np after freeing it! */
strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
printk("%s: releasing host resources\n", ncr_name(np));
/*
** Stop the ncr_timeout process
** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
*/
#ifdef DEBUG_NCR53C8XX
printk("%s: stopping the timer\n", ncr_name(np));
#endif
np->release_stage = 1;
for (i = 50 ; i && np->release_stage != 2 ; i--)
mdelay(100);
if (np->release_stage != 2)
printk("%s: the timer seems to be already stopped\n", ncr_name(np));
else np->release_stage = 2;
/*
** Disable chip interrupts
*/
#ifdef DEBUG_NCR53C8XX
printk("%s: disabling chip interrupts\n", ncr_name(np));
#endif
OUTW (nc_sien , 0);
OUTB (nc_dien , 0);
/*
** Reset NCR chip
** Restore bios setting for automatic clock detection.
*/
printk("%s: resetting chip\n", ncr_name(np));
ncr_chip_reset(np, 100);
OUTB(nc_dmode, np->sv_dmode);
OUTB(nc_dcntl, np->sv_dcntl);
OUTB(nc_ctest0, np->sv_ctest0);
OUTB(nc_ctest3, np->sv_ctest3);
OUTB(nc_ctest4, np->sv_ctest4);
OUTB(nc_ctest5, np->sv_ctest5);
OUTB(nc_gpcntl, np->sv_gpcntl);
OUTB(nc_stest2, np->sv_stest2);
ncr_selectclock(np, np->sv_scntl3);
/*
** Free allocated ccb(s)
*/
while ((cp=np->ccb->link_ccb) != NULL) {
np->ccb->link_ccb = cp->link_ccb;
if (cp->host_status) {
printk("%s: shall free an active ccb (host_status=%d)\n",
ncr_name(np), cp->host_status);
}
#ifdef DEBUG_NCR53C8XX
printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
#endif
m_free_dma(cp, sizeof(*cp), "CCB");
}
/* Free allocated tp(s) */
for (target = 0; target < MAX_TARGET ; target++) {
tp=&np->target[target];
for (lun = 0 ; lun < MAX_LUN ; lun++) {
lp = tp->lp[lun];
if (lp) {
#ifdef DEBUG_NCR53C8XX
printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
#endif
if (lp->jump_ccb != &lp->jump_ccb_0)
m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
m_free_dma(lp, sizeof(*lp), "LCB");
}
}
}
if (np->scripth0)
m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
if (np->script0)
m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
if (np->ccb)
m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
m_free_dma(np, sizeof(struct ncb), "NCB");
printk("%s: host resources successfully released\n", inst_name);
}
/*==========================================================
**
**
** Complete execution of a SCSI command.
** Signal completion to the generic SCSI driver.
**
**
**==========================================================
*/
void ncr_complete (struct ncb *np, struct ccb *cp)
{
struct scsi_cmnd *cmd;
struct tcb *tp;
struct lcb *lp;
/*
** Sanity check
*/
if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
return;
/*
** Print minimal debug information.
*/
if (DEBUG_FLAGS & DEBUG_TINY)
printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
cp->host_status,cp->scsi_status);
/*
** Get command, target and lun pointers.
*/
cmd = cp->cmd;
cp->cmd = NULL;
tp = &np->target[cmd->device->id];
lp = tp->lp[cmd->device->lun];
/*
** We donnot queue more than 1 ccb per target
** with negotiation at any time. If this ccb was
** used for negotiation, clear this info in the tcb.
*/
if (cp == tp->nego_cp)
tp->nego_cp = NULL;
/*
** If auto-sense performed, change scsi status.
*/
if (cp->auto_sense) {
cp->scsi_status = cp->auto_sense;
}
/*
** If we were recovering from queue full or performing
** auto-sense, requeue skipped CCBs to the wait queue.
*/
if (lp && lp->held_ccb) {
if (cp == lp->held_ccb) {
list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
lp->held_ccb = NULL;
}
}
/*
** Check for parity errors.
*/
if (cp->parity_status > 1) {
PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
}
/*
** Check for extended errors.
*/
if (cp->xerr_status != XE_OK) {
switch (cp->xerr_status) {
case XE_EXTRA_DATA:
PRINT_ADDR(cmd, "extraneous data discarded.\n");
break;
case XE_BAD_PHASE:
PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
break;
default:
PRINT_ADDR(cmd, "extended error %d.\n",
cp->xerr_status);
break;
}
if (cp->host_status==HS_COMPLETE)
cp->host_status = HS_FAIL;
}
/*
** Print out any error for debugging purpose.
*/
if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
"scsi_status=%x\n", cmd->cmnd[0],
cp->host_status, cp->scsi_status);
}
}
/*
** Check the status.
*/
if ( (cp->host_status == HS_COMPLETE)
&& (cp->scsi_status == S_GOOD ||
cp->scsi_status == S_COND_MET)) {
/*
* All went well (GOOD status).
* CONDITION MET status is returned on
* `Pre-Fetch' or `Search data' success.
*/
cmd->result = ScsiResult(DID_OK, cp->scsi_status);
/*
** @RESID@
** Could dig out the correct value for resid,
** but it would be quite complicated.
*/
/* if (cp->phys.header.lastp != cp->phys.header.goalp) */
/*
** Allocate the lcb if not yet.
*/
if (!lp)
ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
tp->bytes += cp->data_len;
tp->transfers ++;
/*
** If tags was reduced due to queue full,
** increase tags if 1000 good status received.
*/
if (lp && lp->usetags && lp->numtags < lp->maxtags) {
++lp->num_good;
if (lp->num_good >= 1000) {
lp->num_good = 0;
++lp->numtags;
ncr_setup_tags (np, cmd->device);
}
}
} else if ((cp->host_status == HS_COMPLETE)
&& (cp->scsi_status == S_CHECK_COND)) {
/*
** Check condition code
*/
cmd->result = ScsiResult(DID_OK, S_CHECK_COND);
/*
** Copy back sense data to caller's buffer.
*/
memcpy(cmd->sense_buffer, cp->sense_buf,
min(sizeof(cmd->sense_buffer), sizeof(cp->sense_buf)));
if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
u_char * p = (u_char*) & cmd->sense_buffer;
int i;
PRINT_ADDR(cmd, "sense data:");
for (i=0; i<14; i++) printk (" %x", *p++);
printk (".\n");
}
} else if ((cp->host_status == HS_COMPLETE)
&& (cp->scsi_status == S_CONFLICT)) {
/*
** Reservation Conflict condition code
*/
cmd->result = ScsiResult(DID_OK, S_CONFLICT);
} else if ((cp->host_status == HS_COMPLETE)
&& (cp->scsi_status == S_BUSY ||
cp->scsi_status == S_QUEUE_FULL)) {
/*
** Target is busy.
*/
cmd->result = ScsiResult(DID_OK, cp->scsi_status);
} else if ((cp->host_status == HS_SEL_TIMEOUT)
|| (cp->host_status == HS_TIMEOUT)) {
/*
** No response
*/
cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
} else if (cp->host_status == HS_RESET) {
/*
** SCSI bus reset
*/
cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
} else if (cp->host_status == HS_ABORTED) {
/*
** Transfer aborted
*/
cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
} else {
/*
** Other protocol messes
*/
PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
cp->host_status, cp->scsi_status, cp);
cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
}
/*
** trace output
*/
if (tp->usrflag & UF_TRACE) {
u_char * p;
int i;
PRINT_ADDR(cmd, " CMD:");
p = (u_char*) &cmd->cmnd[0];
for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
if (cp->host_status==HS_COMPLETE) {
switch (cp->scsi_status) {
case S_GOOD:
printk (" GOOD");
break;
case S_CHECK_COND:
printk (" SENSE:");
p = (u_char*) &cmd->sense_buffer;
for (i=0; i<14; i++)
printk (" %x", *p++);
break;
default:
printk (" STAT: %x\n", cp->scsi_status);
break;
}
} else printk (" HOSTERROR: %x", cp->host_status);
printk ("\n");
}
/*
** Free this ccb
*/
ncr_free_ccb (np, cp);
/*
** requeue awaiting scsi commands for this lun.
*/
if (lp && lp->queuedccbs < lp->queuedepth &&
!list_empty(&lp->wait_ccbq))
ncr_start_next_ccb(np, lp, 2);
/*
** requeue awaiting scsi commands for this controller.
*/
if (np->waiting_list)
requeue_waiting_list(np);
/*
** signal completion to generic driver.
*/
ncr_queue_done_cmd(np, cmd);
}
/*==========================================================
**
**
** Signal all (or one) control block done.
**
**
**==========================================================
*/
/*
** This CCB has been skipped by the NCR.
** Queue it in the corresponding unit queue.
*/
static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
{
struct tcb *tp = &np->target[cp->target];
struct lcb *lp = tp->lp[cp->lun];
if (lp && cp != np->ccb) {
cp->host_status &= ~HS_SKIPMASK;
cp->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
if (cp->queued) {
--lp->queuedccbs;
}
}
if (cp->queued) {
--np->queuedccbs;
cp->queued = 0;
}
}
/*
** The NCR has completed CCBs.
** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
*/
void ncr_wakeup_done (struct ncb *np)
{
struct ccb *cp;
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
int i, j;
i = np->ccb_done_ic;
while (1) {
j = i+1;
if (j >= MAX_DONE)
j = 0;
cp = np->ccb_done[j];
if (!CCB_DONE_VALID(cp))
break;
np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
np->scripth->done_queue[5*j + 4] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
MEMORY_BARRIER();
np->scripth->done_queue[5*i + 4] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
if (cp->host_status & HS_DONEMASK)
ncr_complete (np, cp);
else if (cp->host_status & HS_SKIPMASK)
ncr_ccb_skipped (np, cp);
i = j;
}
np->ccb_done_ic = i;
#else
cp = np->ccb;
while (cp) {
if (cp->host_status & HS_DONEMASK)
ncr_complete (np, cp);
else if (cp->host_status & HS_SKIPMASK)
ncr_ccb_skipped (np, cp);
cp = cp->link_ccb;
}
#endif
}
/*
** Complete all active CCBs.
*/
void ncr_wakeup (struct ncb *np, u_long code)
{
struct ccb *cp = np->ccb;
while (cp) {
if (cp->host_status != HS_IDLE) {
cp->host_status = code;
ncr_complete (np, cp);
}
cp = cp->link_ccb;
}
}
/*
** Reset ncr chip.
*/
/* Some initialisation must be done immediately following reset, for 53c720,
* at least. EA (dcntl bit 5) isn't set here as it is set once only in
* the _detect function.
*/
static void ncr_chip_reset(struct ncb *np, int delay)
{
OUTB (nc_istat, SRST);
udelay(delay);
OUTB (nc_istat, 0 );
if (np->features & FE_EHP)
OUTB (nc_ctest0, EHP);
if (np->features & FE_MUX)
OUTB (nc_ctest4, MUX);
}
/*==========================================================
**
**
** Start NCR chip.
**
**
**==========================================================
*/
void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
{
int i;
/*
** Reset chip if asked, otherwise just clear fifos.
*/
if (reset) {
OUTB (nc_istat, SRST);
udelay(100);
}
else {
OUTB (nc_stest3, TE|CSF);
OUTONB (nc_ctest3, CLF);
}
/*
** Message.
*/
if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
/*
** Clear Start Queue
*/
np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
for (i = 1; i < MAX_START + MAX_START; i += 2)
np->scripth0->tryloop[i] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
/*
** Start at first entry.
*/
np->squeueput = 0;
np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
/*
** Clear Done Queue
*/
for (i = 0; i < MAX_DONE; i++) {
np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
np->scripth0->done_queue[5*i + 4] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
}
#endif
/*
** Start at first entry.
*/
np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
np->ccb_done_ic = MAX_DONE-1;
np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
/*
** Wakeup all pending jobs.
*/
ncr_wakeup (np, code);
/*
** Init chip.
*/
/*
** Remove reset; big delay because the 895 needs time for the
** bus mode to settle
*/
ncr_chip_reset(np, 2000);
OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
/* full arb., ena parity, par->ATN */
OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
OUTB (nc_istat , SIGP ); /* Signal Process */
OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
OUTB (nc_stest3, TE); /* TolerANT enable */
OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
/*
** Disable disconnects.
*/
np->disc = 0;
/*
** Enable GPIO0 pin for writing if LED support.
*/
if (np->features & FE_LED0) {
OUTOFFB (nc_gpcntl, 0x01);
}
/*
** enable ints
*/
OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
/*
** Fill in target structure.
** Reinitialize usrsync.
** Reinitialize usrwide.
** Prepare sync negotiation according to actual SCSI bus mode.
*/
for (i=0;i<MAX_TARGET;i++) {
struct tcb *tp = &np->target[i];
tp->sval = 0;
tp->wval = np->rv_scntl3;
if (tp->usrsync != 255) {
if (tp->usrsync <= np->maxsync) {
if (tp->usrsync < np->minsync) {
tp->usrsync = np->minsync;
}
}
else
tp->usrsync = 255;
}
if (tp->usrwide > np->maxwide)
tp->usrwide = np->maxwide;
}
/*
** Start script processor.
*/
if (np->paddr2) {
if (bootverbose)
printk ("%s: Downloading SCSI SCRIPTS.\n",
ncr_name(np));
OUTL (nc_scratcha, vtobus(np->script0));
OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
}
else
OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
}
/*==========================================================
**
** Prepare the negotiation values for wide and
** synchronous transfers.
**
**==========================================================
*/
static void ncr_negotiate (struct ncb* np, struct tcb* tp)
{
/*
** minsync unit is 4ns !
*/
u_long minsync = tp->usrsync;
/*
** SCSI bus mode limit
*/
if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
if (minsync < 12) minsync = 12;
}
/*
** our limit ..
*/
if (minsync < np->minsync)
minsync = np->minsync;
/*
** divider limit
*/
if (minsync > np->maxsync)
minsync = 255;
if (tp->maxoffs > np->maxoffs)
tp->maxoffs = np->maxoffs;
tp->minsync = minsync;
tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
/*
** period=0: has to negotiate sync transfer
*/
tp->period=0;
/*
** widedone=0: has to negotiate wide transfer
*/
tp->widedone=0;
}
/*==========================================================
**
** Get clock factor and sync divisor for a given
** synchronous factor period.
** Returns the clock factor (in sxfer) and scntl3
** synchronous divisor field.
**
**==========================================================
*/
static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
{
u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
int div = np->clock_divn; /* Number of divisors supported */
u_long fak; /* Sync factor in sxfer */
u_long per; /* Period in tenths of ns */
u_long kpc; /* (per * clk) */
/*
** Compute the synchronous period in tenths of nano-seconds
*/
if (sfac <= 10) per = 250;
else if (sfac == 11) per = 303;
else if (sfac == 12) per = 500;
else per = 40 * sfac;
/*
** Look for the greatest clock divisor that allows an
** input speed faster than the period.
*/
kpc = per * clk;
while (--div >= 0)
if (kpc >= (div_10M[div] << 2)) break;
/*
** Calculate the lowest clock factor that allows an output
** speed not faster than the period.
*/
fak = (kpc - 1) / div_10M[div] + 1;
#if 0 /* This optimization does not seem very useful */
per = (fak * div_10M[div]) / clk;
/*
** Why not to try the immediate lower divisor and to choose
** the one that allows the fastest output speed ?
** We don't want input speed too much greater than output speed.
*/
if (div >= 1 && fak < 8) {
u_long fak2, per2;
fak2 = (kpc - 1) / div_10M[div-1] + 1;
per2 = (fak2 * div_10M[div-1]) / clk;
if (per2 < per && fak2 <= 8) {
fak = fak2;
per = per2;
--div;
}
}
#endif
if (fak < 4) fak = 4; /* Should never happen, too bad ... */
/*
** Compute and return sync parameters for the ncr
*/
*fakp = fak - 4;
*scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
}
/*==========================================================
**
** Set actual values, sync status and patch all ccbs of
** a target according to new sync/wide agreement.
**
**==========================================================
*/
static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
{
struct ccb *cp;
struct tcb *tp = &np->target[target];
/*
** set actual value and sync_status
*/
OUTB (nc_sxfer, tp->sval);
np->sync_st = tp->sval;
OUTB (nc_scntl3, tp->wval);
np->wide_st = tp->wval;
/*
** patch ALL ccbs of this target.
*/
for (cp = np->ccb; cp; cp = cp->link_ccb) {
if (!cp->cmd) continue;
if (scmd_id(cp->cmd) != target) continue;
#if 0
cp->sync_status = tp->sval;
cp->wide_status = tp->wval;
#endif
cp->phys.select.sel_scntl3 = tp->wval;
cp->phys.select.sel_sxfer = tp->sval;
}
}
/*==========================================================
**
** Switch sync mode for current job and it's target
**
**==========================================================
*/
static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
{
struct scsi_cmnd *cmd = cp->cmd;
struct tcb *tp;
u_char target = INB (nc_sdid) & 0x0f;
u_char idiv;
BUG_ON(target != (scmd_id(cmd) & 0xf));
tp = &np->target[target];
if (!scntl3 || !(sxfer & 0x1f))
scntl3 = np->rv_scntl3;
scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
/*
** Deduce the value of controller sync period from scntl3.
** period is in tenths of nano-seconds.
*/
idiv = ((scntl3 >> 4) & 0x7);
if ((sxfer & 0x1f) && idiv)
tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
else
tp->period = 0xffff;
/* Stop there if sync parameters are unchanged */
if (tp->sval == sxfer && tp->wval == scntl3)
return;
tp->sval = sxfer;
tp->wval = scntl3;
if (sxfer & 0x01f) {
/* Disable extended Sreq/Sack filtering */
if (tp->period <= 2000)
OUTOFFB(nc_stest2, EXT);
}
spi_display_xfer_agreement(tp->starget);
/*
** set actual value and sync_status
** patch ALL ccbs of this target.
*/
ncr_set_sync_wide_status(np, target);
}
/*==========================================================
**
** Switch wide mode for current job and it's target
** SCSI specs say: a SCSI device that accepts a WDTR
** message shall reset the synchronous agreement to
** asynchronous mode.
**
**==========================================================
*/
static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
{
struct scsi_cmnd *cmd = cp->cmd;
u16 target = INB (nc_sdid) & 0x0f;
struct tcb *tp;
u_char scntl3;
u_char sxfer;
BUG_ON(target != (scmd_id(cmd) & 0xf));
tp = &np->target[target];
tp->widedone = wide+1;
scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
sxfer = ack ? 0 : tp->sval;
/*
** Stop there if sync/wide parameters are unchanged
*/
if (tp->sval == sxfer && tp->wval == scntl3) return;
tp->sval = sxfer;
tp->wval = scntl3;
/*
** Bells and whistles ;-)
*/
if (bootverbose >= 2) {
dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
(scntl3 & EWS) ? "en" : "dis");
}
/*
** set actual value and sync_status
** patch ALL ccbs of this target.
*/
ncr_set_sync_wide_status(np, target);
}
/*==========================================================
**
** Switch tagged mode for a target.
**
**==========================================================
*/
static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
{
unsigned char tn = sdev->id, ln = sdev->lun;
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
u_char reqtags, maxdepth;
/*
** Just in case ...
*/
if ((!tp) || (!lp) || !sdev)
return;
/*
** If SCSI device queue depth is not yet set, leave here.
*/
if (!lp->scdev_depth)
return;
/*
** Donnot allow more tags than the SCSI driver can queue
** for this device.
** Donnot allow more tags than we can handle.
*/
maxdepth = lp->scdev_depth;
if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
if (lp->numtags > maxdepth) lp->numtags = maxdepth;
/*
** only devices conformant to ANSI Version >= 2
** only devices capable of tagged commands
** only if enabled by user ..
*/
if (sdev->tagged_supported && lp->numtags > 1) {
reqtags = lp->numtags;
} else {
reqtags = 1;
}
/*
** Update max number of tags
*/
lp->numtags = reqtags;
if (lp->numtags > lp->maxtags)
lp->maxtags = lp->numtags;
/*
** If we want to switch tag mode, we must wait
** for no CCB to be active.
*/
if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
if (lp->queuedepth == reqtags) /* Already announced */
return;
lp->queuedepth = reqtags;
}
else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
lp->queuedepth = reqtags;
return;
}
else { /* Want to switch tag mode */
if (lp->busyccbs) /* If not yet safe, return */
return;
lp->queuedepth = reqtags;
lp->usetags = reqtags > 1 ? 1 : 0;
}
/*
** Patch the lun mini-script, according to tag mode.
*/
lp->jump_tag.l_paddr = lp->usetags?
cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
/*
** Announce change to user.
*/
if (bootverbose) {
if (lp->usetags) {
dev_info(&sdev->sdev_gendev,
"tagged command queue depth set to %d\n",
reqtags);
} else {
dev_info(&sdev->sdev_gendev,
"tagged command queueing disabled\n");
}
}
}
/*==========================================================
**
**
** ncr timeout handler.
**
**
**==========================================================
**
** Misused to keep the driver running when
** interrupts are not configured correctly.
**
**----------------------------------------------------------
*/
static void ncr_timeout (struct ncb *np)
{
u_long thistime = jiffies;
/*
** If release process in progress, let's go
** Set the release stage from 1 to 2 to synchronize
** with the release process.
*/
if (np->release_stage) {
if (np->release_stage == 1) np->release_stage = 2;
return;
}
np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
add_timer(&np->timer);
/*
** If we are resetting the ncr, wait for settle_time before
** clearing it. Then command processing will be resumed.
*/
if (np->settle_time) {
if (np->settle_time <= thistime) {
if (bootverbose > 1)
printk("%s: command processing resumed\n", ncr_name(np));
np->settle_time = 0;
np->disc = 1;
requeue_waiting_list(np);
}
return;
}
/*
** Since the generic scsi driver only allows us 0.5 second
** to perform abort of a command, we must look at ccbs about
** every 0.25 second.
*/
if (np->lasttime + 4*HZ < thistime) {
/*
** block ncr interrupts
*/
np->lasttime = thistime;
}
#ifdef SCSI_NCR_BROKEN_INTR
if (INB(nc_istat) & (INTF|SIP|DIP)) {
/*
** Process pending interrupts.
*/
if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
ncr_exception (np);
if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
}
#endif /* SCSI_NCR_BROKEN_INTR */
}
/*==========================================================
**
** log message for real hard errors
**
** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
**
** exception register:
** ds: dstat
** si: sist
**
** SCSI bus lines:
** so: control lines as driver by NCR.
** si: control lines as seen by NCR.
** sd: scsi data lines as seen by NCR.
**
** wide/fastmode:
** sxfer: (see the manual)
** scntl3: (see the manual)
**
** current script command:
** dsp: script address (relative to start of script).
** dbc: first word of script command.
**
** First 16 register of the chip:
** r0..rf
**
**==========================================================
*/
static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
{
u32 dsp;
int script_ofs;
int script_size;
char *script_name;
u_char *script_base;
int i;
dsp = INL (nc_dsp);
if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
script_ofs = dsp - np->p_script;
script_size = sizeof(struct script);
script_base = (u_char *) np->script0;
script_name = "script";
}
else if (np->p_scripth < dsp &&
dsp <= np->p_scripth + sizeof(struct scripth)) {
script_ofs = dsp - np->p_scripth;
script_size = sizeof(struct scripth);
script_base = (u_char *) np->scripth0;
script_name = "scripth";
} else {
script_ofs = dsp;
script_size = 0;
script_base = NULL;
script_name = "mem";
}
printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
(unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
(unsigned)INL (nc_dbc));
if (((script_ofs & 3) == 0) &&
(unsigned)script_ofs < script_size) {
printk ("%s: script cmd = %08x\n", ncr_name(np),
scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
}
printk ("%s: regdump:", ncr_name(np));
for (i=0; i<16;i++)
printk (" %02x", (unsigned)INB_OFF(i));
printk (".\n");
}
/*============================================================
**
** ncr chip exception handler.
**
**============================================================
**
** In normal cases, interrupt conditions occur one at a
** time. The ncr is able to stack in some extra registers
** other interrupts that will occur after the first one.
** But, several interrupts may occur at the same time.
**
** We probably should only try to deal with the normal
** case, but it seems that multiple interrupts occur in
** some cases that are not abnormal at all.
**
** The most frequent interrupt condition is Phase Mismatch.
** We should want to service this interrupt quickly.
** A SCSI parity error may be delivered at the same time.
** The SIR interrupt is not very frequent in this driver,
** since the INTFLY is likely used for command completion
** signaling.
** The Selection Timeout interrupt may be triggered with
** IID and/or UDC.
** The SBMC interrupt (SCSI Bus Mode Change) may probably
** occur at any time.
**
** This handler try to deal as cleverly as possible with all
** the above.
**
**============================================================
*/
void ncr_exception (struct ncb *np)
{
u_char istat, dstat;
u16 sist;
int i;
/*
** interrupt on the fly ?
** Since the global header may be copied back to a CCB
** using a posted PCI memory write, the last operation on
** the istat register is a READ in order to flush posted
** PCI write commands.
*/
istat = INB (nc_istat);
if (istat & INTF) {
OUTB (nc_istat, (istat & SIGP) | INTF);
istat = INB (nc_istat);
if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
ncr_wakeup_done (np);
}
if (!(istat & (SIP|DIP)))
return;
if (istat & CABRT)
OUTB (nc_istat, CABRT);
/*
** Steinbach's Guideline for Systems Programming:
** Never test for an error condition you don't know how to handle.
*/
sist = (istat & SIP) ? INW (nc_sist) : 0;
dstat = (istat & DIP) ? INB (nc_dstat) : 0;
if (DEBUG_FLAGS & DEBUG_TINY)
printk ("<%d|%x:%x|%x:%x>",
(int)INB(nc_scr0),
dstat,sist,
(unsigned)INL(nc_dsp),
(unsigned)INL(nc_dbc));
/*========================================================
** First, interrupts we want to service cleanly.
**
** Phase mismatch is the most frequent interrupt, and
** so we have to service it as quickly and as cleanly
** as possible.
** Programmed interrupts are rarely used in this driver,
** but we must handle them cleanly anyway.
** We try to deal with PAR and SBMC combined with
** some other interrupt(s).
**=========================================================
*/
if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
!(dstat & (MDPE|BF|ABRT|IID))) {
if ((sist & SBMC) && ncr_int_sbmc (np))
return;
if ((sist & PAR) && ncr_int_par (np))
return;
if (sist & MA) {
ncr_int_ma (np);
return;
}
if (dstat & SIR) {
ncr_int_sir (np);
return;
}
/*
** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
*/
if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
printk( "%s: unknown interrupt(s) ignored, "
"ISTAT=%x DSTAT=%x SIST=%x\n",
ncr_name(np), istat, dstat, sist);
return;
}
OUTONB_STD ();
return;
}
/*========================================================
** Now, interrupts that need some fixing up.
** Order and multiple interrupts is so less important.
**
** If SRST has been asserted, we just reset the chip.
**
** Selection is intirely handled by the chip. If the
** chip says STO, we trust it. Seems some other
** interrupts may occur at the same time (UDC, IID), so
** we ignore them. In any case we do enough fix-up
** in the service routine.
** We just exclude some fatal dma errors.
**=========================================================
*/
if (sist & RST) {
ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
return;
}
if ((sist & STO) &&
!(dstat & (MDPE|BF|ABRT))) {
/*
** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
*/
OUTONB (nc_ctest3, CLF);
ncr_int_sto (np);
return;
}
/*=========================================================
** Now, interrupts we are not able to recover cleanly.
** (At least for the moment).
**
** Do the register dump.
** Log message for real hard errors.
** Clear all fifos.
** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
** BUS and the chip.
** We are more soft for UDC.
**=========================================================
*/
if (time_after(jiffies, np->regtime)) {
np->regtime = jiffies + 10*HZ;
for (i = 0; i<sizeof(np->regdump); i++)
((char*)&np->regdump)[i] = INB_OFF(i);
np->regdump.nc_dstat = dstat;
np->regdump.nc_sist = sist;
}
ncr_log_hard_error(np, sist, dstat);
printk ("%s: have to clear fifos.\n", ncr_name (np));
OUTB (nc_stest3, TE|CSF);
OUTONB (nc_ctest3, CLF);
if ((sist & (SGE)) ||
(dstat & (MDPE|BF|ABRT|IID))) {
ncr_start_reset(np);
return;
}
if (sist & HTH) {
printk ("%s: handshake timeout\n", ncr_name(np));
ncr_start_reset(np);
return;
}
if (sist & UDC) {
printk ("%s: unexpected disconnect\n", ncr_name(np));
OUTB (HS_PRT, HS_UNEXPECTED);
OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
return;
}
/*=========================================================
** We just miss the cause of the interrupt. :(
** Print a message. The timeout will do the real work.
**=========================================================
*/
printk ("%s: unknown interrupt\n", ncr_name(np));
}
/*==========================================================
**
** ncr chip exception handler for selection timeout
**
**==========================================================
**
** There seems to be a bug in the 53c810.
** Although a STO-Interrupt is pending,
** it continues executing script commands.
** But it will fail and interrupt (IID) on
** the next instruction where it's looking
** for a valid phase.
**
**----------------------------------------------------------
*/
void ncr_int_sto (struct ncb *np)
{
u_long dsa;
struct ccb *cp;
if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
/*
** look for ccb and set the status.
*/
dsa = INL (nc_dsa);
cp = np->ccb;
while (cp && (CCB_PHYS (cp, phys) != dsa))
cp = cp->link_ccb;
if (cp) {
cp-> host_status = HS_SEL_TIMEOUT;
ncr_complete (np, cp);
}
/*
** repair start queue and jump to start point.
*/
OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
return;
}
/*==========================================================
**
** ncr chip exception handler for SCSI bus mode change
**
**==========================================================
**
** spi2-r12 11.2.3 says a transceiver mode change must
** generate a reset event and a device that detects a reset
** event shall initiate a hard reset. It says also that a
** device that detects a mode change shall set data transfer
** mode to eight bit asynchronous, etc...
** So, just resetting should be enough.
**
**
**----------------------------------------------------------
*/
static int ncr_int_sbmc (struct ncb *np)
{
u_char scsi_mode = INB (nc_stest4) & SMODE;
if (scsi_mode != np->scsi_mode) {
printk("%s: SCSI bus mode change from %x to %x.\n",
ncr_name(np), np->scsi_mode, scsi_mode);
np->scsi_mode = scsi_mode;
/*
** Suspend command processing for 1 second and
** reinitialize all except the chip.
*/
np->settle_time = jiffies + HZ;
ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
return 1;
}
return 0;
}
/*==========================================================
**
** ncr chip exception handler for SCSI parity error.
**
**==========================================================
**
**
**----------------------------------------------------------
*/
static int ncr_int_par (struct ncb *np)
{
u_char hsts = INB (HS_PRT);
u32 dbc = INL (nc_dbc);
u_char sstat1 = INB (nc_sstat1);
int phase = -1;
int msg = -1;
u32 jmp;
printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
ncr_name(np), hsts, dbc, sstat1);
/*
* Ignore the interrupt if the NCR is not connected
* to the SCSI bus, since the right work should have
* been done on unexpected disconnection handling.
*/
if (!(INB (nc_scntl1) & ISCON))
return 0;
/*
* If the nexus is not clearly identified, reset the bus.
* We will try to do better later.
*/
if (hsts & HS_INVALMASK)
goto reset_all;
/*
* If the SCSI parity error occurs in MSG IN phase, prepare a
* MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
* ERROR message and let the device decide to retry the command
* or to terminate with check condition. If we were in MSG IN
* phase waiting for the response of a negotiation, we will
* get SIR_NEGO_FAILED at dispatch.
*/
if (!(dbc & 0xc0000000))
phase = (dbc >> 24) & 7;
if (phase == 7)
msg = MSG_PARITY_ERROR;
else
msg = INITIATOR_ERROR;
/*
* If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
* script that will ignore all data in bytes until phase
* change, since we are not sure the chip will wait the phase
* change prior to delivering the interrupt.
*/
if (phase == 1)
jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
else
jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
np->msgout[0] = msg;
OUTL_DSP (jmp);
return 1;
reset_all:
ncr_start_reset(np);
return 1;
}
/*==========================================================
**
**
** ncr chip exception handler for phase errors.
**
**
**==========================================================
**
** We have to construct a new transfer descriptor,
** to transfer the rest of the current block.
**
**----------------------------------------------------------
*/
static void ncr_int_ma (struct ncb *np)
{
u32 dbc;
u32 rest;
u32 dsp;
u32 dsa;
u32 nxtdsp;
u32 newtmp;
u32 *vdsp;
u32 oadr, olen;
u32 *tblp;
ncrcmd *newcmd;
u_char cmd, sbcl;
struct ccb *cp;
dsp = INL (nc_dsp);
dbc = INL (nc_dbc);
sbcl = INB (nc_sbcl);
cmd = dbc >> 24;
rest = dbc & 0xffffff;
/*
** Take into account dma fifo and various buffers and latches,
** only if the interrupted phase is an OUTPUT phase.
*/
if ((cmd & 1) == 0) {
u_char ctest5, ss0, ss2;
u16 delta;
ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
if (ctest5 & DFS)
delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
else
delta=(INB (nc_dfifo) - rest) & 0x7f;
/*
** The data in the dma fifo has not been transferred to
** the target -> add the amount to the rest
** and clear the data.
** Check the sstat2 register in case of wide transfer.
*/
rest += delta;
ss0 = INB (nc_sstat0);
if (ss0 & OLF) rest++;
if (ss0 & ORF) rest++;
if (INB(nc_scntl3) & EWS) {
ss2 = INB (nc_sstat2);
if (ss2 & OLF1) rest++;
if (ss2 & ORF1) rest++;
}
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
(unsigned) rest, (unsigned) delta, ss0);
} else {
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
}
/*
** Clear fifos.
*/
OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
/*
** locate matching cp.
** if the interrupted phase is DATA IN or DATA OUT,
** trust the global header.
*/
dsa = INL (nc_dsa);
if (!(cmd & 6)) {
cp = np->header.cp;
if (CCB_PHYS(cp, phys) != dsa)
cp = NULL;
} else {
cp = np->ccb;
while (cp && (CCB_PHYS (cp, phys) != dsa))
cp = cp->link_ccb;
}
/*
** try to find the interrupted script command,
** and the address at which to continue.
*/
vdsp = NULL;
nxtdsp = 0;
if (dsp > np->p_script &&
dsp <= np->p_script + sizeof(struct script)) {
vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
nxtdsp = dsp;
}
else if (dsp > np->p_scripth &&
dsp <= np->p_scripth + sizeof(struct scripth)) {
vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
nxtdsp = dsp;
}
else if (cp) {
if (dsp == CCB_PHYS (cp, patch[2])) {
vdsp = &cp->patch[0];
nxtdsp = scr_to_cpu(vdsp[3]);
}
else if (dsp == CCB_PHYS (cp, patch[6])) {
vdsp = &cp->patch[4];
nxtdsp = scr_to_cpu(vdsp[3]);
}
}
/*
** log the information
*/
if (DEBUG_FLAGS & DEBUG_PHASE) {
printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
cp, np->header.cp,
(unsigned)dsp,
(unsigned)nxtdsp, vdsp, cmd);
}
/*
** cp=0 means that the DSA does not point to a valid control
** block. This should not happen since we donnot use multi-byte
** move while we are being reselected ot after command complete.
** We are not able to recover from such a phase error.
*/
if (!cp) {
printk ("%s: SCSI phase error fixup: "
"CCB already dequeued (0x%08lx)\n",
ncr_name (np), (u_long) np->header.cp);
goto reset_all;
}
/*
** get old startaddress and old length.
*/
oadr = scr_to_cpu(vdsp[1]);
if (cmd & 0x10) { /* Table indirect */
tblp = (u32 *) ((char*) &cp->phys + oadr);
olen = scr_to_cpu(tblp[0]);
oadr = scr_to_cpu(tblp[1]);
} else {
tblp = (u32 *) 0;
olen = scr_to_cpu(vdsp[0]) & 0xffffff;
}
if (DEBUG_FLAGS & DEBUG_PHASE) {
printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
tblp,
(unsigned) olen,
(unsigned) oadr);
}
/*
** check cmd against assumed interrupted script command.
*/
if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
goto reset_all;
}
/*
** cp != np->header.cp means that the header of the CCB
** currently being processed has not yet been copied to
** the global header area. That may happen if the device did
** not accept all our messages after having been selected.
*/
if (cp != np->header.cp) {
printk ("%s: SCSI phase error fixup: "
"CCB address mismatch (0x%08lx != 0x%08lx)\n",
ncr_name (np), (u_long) cp, (u_long) np->header.cp);
}
/*
** if old phase not dataphase, leave here.
*/
if (cmd & 0x06) {
PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
cmd&7, sbcl&7, (unsigned)olen,
(unsigned)oadr, (unsigned)rest);
goto unexpected_phase;
}
/*
** choose the correct patch area.
** if savep points to one, choose the other.
*/
newcmd = cp->patch;
newtmp = CCB_PHYS (cp, patch);
if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
newcmd = &cp->patch[4];
newtmp = CCB_PHYS (cp, patch[4]);
}
/*
** fillin the commands
*/
newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
newcmd[1] = cpu_to_scr(oadr + olen - rest);
newcmd[2] = cpu_to_scr(SCR_JUMP);
newcmd[3] = cpu_to_scr(nxtdsp);
if (DEBUG_FLAGS & DEBUG_PHASE) {
PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
(int) (newcmd - cp->patch),
(unsigned)scr_to_cpu(newcmd[0]),
(unsigned)scr_to_cpu(newcmd[1]),
(unsigned)scr_to_cpu(newcmd[2]),
(unsigned)scr_to_cpu(newcmd[3]));
}
/*
** fake the return address (to the patch).
** and restart script processor at dispatcher.
*/
OUTL (nc_temp, newtmp);
OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
return;
/*
** Unexpected phase changes that occurs when the current phase
** is not a DATA IN or DATA OUT phase are due to error conditions.
** Such event may only happen when the SCRIPTS is using a
** multibyte SCSI MOVE.
**
** Phase change Some possible cause
**
** COMMAND --> MSG IN SCSI parity error detected by target.
** COMMAND --> STATUS Bad command or refused by target.
** MSG OUT --> MSG IN Message rejected by target.
** MSG OUT --> COMMAND Bogus target that discards extended
** negotiation messages.
**
** The code below does not care of the new phase and so
** trusts the target. Why to annoy it ?
** If the interrupted phase is COMMAND phase, we restart at
** dispatcher.
** If a target does not get all the messages after selection,
** the code assumes blindly that the target discards extended
** messages and clears the negotiation status.
** If the target does not want all our response to negotiation,
** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
** bloat for such a should_not_happen situation).
** In all other situation, we reset the BUS.
** Are these assumptions reasonnable ? (Wait and see ...)
*/
unexpected_phase:
dsp -= 8;
nxtdsp = 0;
switch (cmd & 7) {
case 2: /* COMMAND phase */
nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
break;
#if 0
case 3: /* STATUS phase */
nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
break;
#endif
case 6: /* MSG OUT phase */
np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
cp->host_status = HS_BUSY;
nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
}
else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
}
break;
#if 0
case 7: /* MSG IN phase */
nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
break;
#endif
}
if (nxtdsp) {
OUTL_DSP (nxtdsp);
return;
}
reset_all:
ncr_start_reset(np);
}
static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
{
struct scsi_cmnd *cmd = cp->cmd;
struct tcb *tp = &np->target[cmd->device->id];
struct lcb *lp = tp->lp[cmd->device->lun];
struct list_head *qp;
struct ccb * cp2;
int disc_cnt = 0;
int busy_cnt = 0;
u32 startp;
u_char s_status = INB (SS_PRT);
/*
** Let the SCRIPTS processor skip all not yet started CCBs,
** and count disconnected CCBs. Since the busy queue is in
** the same order as the chip start queue, disconnected CCBs
** are before cp and busy ones after.
*/
if (lp) {
qp = lp->busy_ccbq.prev;
while (qp != &lp->busy_ccbq) {
cp2 = list_entry(qp, struct ccb, link_ccbq);
qp = qp->prev;
++busy_cnt;
if (cp2 == cp)
break;
cp2->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
}
lp->held_ccb = cp; /* Requeue when this one completes */
disc_cnt = lp->queuedccbs - busy_cnt;
}
switch(s_status) {
default: /* Just for safety, should never happen */
case S_QUEUE_FULL:
/*
** Decrease number of tags to the number of
** disconnected commands.
*/
if (!lp)
goto out;
if (bootverbose >= 1) {
PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
"CCBs\n", busy_cnt, disc_cnt);
}
if (disc_cnt < lp->numtags) {
lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
lp->num_good = 0;
ncr_setup_tags (np, cmd->device);
}
/*
** Requeue the command to the start queue.
** If any disconnected commands,
** Clear SIGP.
** Jump to reselect.
*/
cp->phys.header.savep = cp->startp;
cp->host_status = HS_BUSY;
cp->scsi_status = S_ILLEGAL;
ncr_put_start_queue(np, cp);
if (disc_cnt)
INB (nc_ctest2); /* Clear SIGP */
OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
return;
case S_TERMINATED:
case S_CHECK_COND:
/*
** If we were requesting sense, give up.
*/
if (cp->auto_sense)
goto out;
/*
** Device returned CHECK CONDITION status.
** Prepare all needed data strutures for getting
** sense data.
**
** identify message
*/
cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
cp->phys.smsg.size = cpu_to_scr(1);
/*
** sense command
*/
cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
cp->phys.cmd.size = cpu_to_scr(6);
/*
** patch requested size into sense command
*/
cp->sensecmd[0] = 0x03;
cp->sensecmd[1] = cmd->device->lun << 5;
cp->sensecmd[4] = sizeof(cp->sense_buf);
/*
** sense data
*/
memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
/*
** requeue the command.
*/
startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
cp->phys.header.savep = startp;
cp->phys.header.goalp = startp + 24;
cp->phys.header.lastp = startp;
cp->phys.header.wgoalp = startp + 24;
cp->phys.header.wlastp = startp;
cp->host_status = HS_BUSY;
cp->scsi_status = S_ILLEGAL;
cp->auto_sense = s_status;
cp->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
/*
** Select without ATN for quirky devices.
*/
if (cmd->device->select_no_atn)
cp->start.schedule.l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
ncr_put_start_queue(np, cp);
OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
return;
}
out:
OUTONB_STD ();
return;
}
/*==========================================================
**
**
** ncr chip exception handler for programmed interrupts.
**
**
**==========================================================
*/
void ncr_int_sir (struct ncb *np)
{
u_char scntl3;
u_char chg, ofs, per, fak, wide;
u_char num = INB (nc_dsps);
struct ccb *cp=NULL;
u_long dsa = INL (nc_dsa);
u_char target = INB (nc_sdid) & 0x0f;
struct tcb *tp = &np->target[target];
struct scsi_target *starget = tp->starget;
if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
switch (num) {
case SIR_INTFLY:
/*
** This is used for HP Zalon/53c720 where INTFLY
** operation is currently broken.
*/
ncr_wakeup_done(np);
#ifdef SCSI_NCR_CCB_DONE_SUPPORT
OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
#else
OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
#endif
return;
case SIR_RESEL_NO_MSG_IN:
case SIR_RESEL_NO_IDENTIFY:
/*
** If devices reselecting without sending an IDENTIFY
** message still exist, this should help.
** We just assume lun=0, 1 CCB, no tag.
*/
if (tp->lp[0]) {
OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
return;
}
case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
printk ("%s:%d: SIR %d, "
"incorrect nexus identification on reselection\n",
ncr_name (np), target, num);
goto out;
case SIR_DONE_OVERFLOW:
printk ("%s:%d: SIR %d, "
"CCB done queue overflow\n",
ncr_name (np), target, num);
goto out;
case SIR_BAD_STATUS:
cp = np->header.cp;
if (!cp || CCB_PHYS (cp, phys) != dsa)
goto out;
ncr_sir_to_redo(np, num, cp);
return;
default:
/*
** lookup the ccb
*/
cp = np->ccb;
while (cp && (CCB_PHYS (cp, phys) != dsa))
cp = cp->link_ccb;
BUG_ON(!cp);
BUG_ON(cp != np->header.cp);
if (!cp || cp != np->header.cp)
goto out;
}
switch (num) {
/*-----------------------------------------------------------------------------
**
** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
** ("Everything you've always wanted to know about transfer mode
** negotiation")
**
** We try to negotiate sync and wide transfer only after
** a successful inquire command. We look at byte 7 of the
** inquire data to determine the capabilities of the target.
**
** When we try to negotiate, we append the negotiation message
** to the identify and (maybe) simple tag message.
** The host status field is set to HS_NEGOTIATE to mark this
** situation.
**
** If the target doesn't answer this message immediately
** (as required by the standard), the SIR_NEGO_FAIL interrupt
** will be raised eventually.
** The handler removes the HS_NEGOTIATE status, and sets the
** negotiated value to the default (async / nowide).
**
** If we receive a matching answer immediately, we check it
** for validity, and set the values.
**
** If we receive a Reject message immediately, we assume the
** negotiation has failed, and fall back to standard values.
**
** If we receive a negotiation message while not in HS_NEGOTIATE
** state, it's a target initiated negotiation. We prepare a
** (hopefully) valid answer, set our parameters, and send back
** this answer to the target.
**
** If the target doesn't fetch the answer (no message out phase),
** we assume the negotiation has failed, and fall back to default
** settings.
**
** When we set the values, we adjust them in all ccbs belonging
** to this target, in the controller's register, and in the "phys"
** field of the controller's struct ncb.
**
** Possible cases: hs sir msg_in value send goto
** We try to negotiate:
** -> target doesn't msgin NEG FAIL noop defa. - dispatch
** -> target rejected our msg NEG FAIL reject defa. - dispatch
** -> target answered (ok) NEG SYNC sdtr set - clrack
** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
** -> target answered (ok) NEG WIDE wdtr set - clrack
** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
** -> any other msgin NEG FAIL noop defa. - dispatch
**
** Target tries to negotiate:
** -> incoming message --- SYNC sdtr set SDTR -
** -> incoming message --- WIDE wdtr set WDTR -
** We sent our answer:
** -> target doesn't msgout --- PROTO ? defa. - dispatch
**
**-----------------------------------------------------------------------------
*/
case SIR_NEGO_FAILED:
/*-------------------------------------------------------
**
** Negotiation failed.
** Target doesn't send an answer message,
** or target rejected our message.
**
** Remove negotiation request.
**
**-------------------------------------------------------
*/
OUTB (HS_PRT, HS_BUSY);
/* fall through */
case SIR_NEGO_PROTO:
/*-------------------------------------------------------
**
** Negotiation failed.
** Target doesn't fetch the answer message.
**
**-------------------------------------------------------
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
"status=%x.\n", num, cp->nego_status);
}
/*
** any error in negotiation:
** fall back to default mode.
*/
switch (cp->nego_status) {
case NS_SYNC:
spi_period(starget) = 0;
spi_offset(starget) = 0;
ncr_setsync (np, cp, 0, 0xe0);
break;
case NS_WIDE:
spi_width(starget) = 0;
ncr_setwide (np, cp, 0, 0);
break;
}
np->msgin [0] = NOP;
np->msgout[0] = NOP;
cp->nego_status = 0;
break;
case SIR_NEGO_SYNC:
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, "sync msgin", np->msgin);
}
chg = 0;
per = np->msgin[3];
ofs = np->msgin[4];
if (ofs==0) per=255;
/*
** if target sends SDTR message,
** it CAN transfer synch.
*/
if (ofs && starget)
spi_support_sync(starget) = 1;
/*
** check values against driver limits.
*/
if (per < np->minsync)
{chg = 1; per = np->minsync;}
if (per < tp->minsync)
{chg = 1; per = tp->minsync;}
if (ofs > tp->maxoffs)
{chg = 1; ofs = tp->maxoffs;}
/*
** Check against controller limits.
*/
fak = 7;
scntl3 = 0;
if (ofs != 0) {
ncr_getsync(np, per, &fak, &scntl3);
if (fak > 7) {
chg = 1;
ofs = 0;
}
}
if (ofs == 0) {
fak = 7;
per = 0;
scntl3 = 0;
tp->minsync = 0;
}
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
"fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
}
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
switch (cp->nego_status) {
case NS_SYNC:
/* This was an answer message */
if (chg) {
/* Answer wasn't acceptable. */
spi_period(starget) = 0;
spi_offset(starget) = 0;
ncr_setsync(np, cp, 0, 0xe0);
OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
} else {
/* Answer is ok. */
spi_period(starget) = per;
spi_offset(starget) = ofs;
ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
}
return;
case NS_WIDE:
spi_width(starget) = 0;
ncr_setwide(np, cp, 0, 0);
break;
}
}
/*
** It was a request. Set value and
** prepare an answer message
*/
spi_period(starget) = per;
spi_offset(starget) = ofs;
ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
spi_populate_sync_msg(np->msgout, per, ofs);
cp->nego_status = NS_SYNC;
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, "sync msgout", np->msgout);
}
if (!ofs) {
OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
return;
}
np->msgin [0] = NOP;
break;
case SIR_NEGO_WIDE:
/*
** Wide request message received.
*/
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, "wide msgin", np->msgin);
}
/*
** get requested values.
*/
chg = 0;
wide = np->msgin[3];
/*
** if target sends WDTR message,
** it CAN transfer wide.
*/
if (wide && starget)
spi_support_wide(starget) = 1;
/*
** check values against driver limits.
*/
if (wide > tp->usrwide)
{chg = 1; wide = tp->usrwide;}
if (DEBUG_FLAGS & DEBUG_NEGO) {
PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
chg);
}
if (INB (HS_PRT) == HS_NEGOTIATE) {
OUTB (HS_PRT, HS_BUSY);
switch (cp->nego_status) {
case NS_WIDE:
/*
** This was an answer message
*/
if (chg) {
/* Answer wasn't acceptable. */
spi_width(starget) = 0;
ncr_setwide(np, cp, 0, 1);
OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
} else {
/* Answer is ok. */
spi_width(starget) = wide;
ncr_setwide(np, cp, wide, 1);
OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
}
return;
case NS_SYNC:
spi_period(starget) = 0;
spi_offset(starget) = 0;
ncr_setsync(np, cp, 0, 0xe0);
break;
}
}
/*
** It was a request, set value and
** prepare an answer message
*/
spi_width(starget) = wide;
ncr_setwide(np, cp, wide, 1);
spi_populate_width_msg(np->msgout, wide);
np->msgin [0] = NOP;
cp->nego_status = NS_WIDE;
if (DEBUG_FLAGS & DEBUG_NEGO) {
ncr_print_msg(cp, "wide msgout", np->msgin);
}
break;
/*--------------------------------------------------------------------
**
** Processing of special messages
**
**--------------------------------------------------------------------
*/
case SIR_REJECT_RECEIVED:
/*-----------------------------------------------
**
** We received a MESSAGE_REJECT.
**
**-----------------------------------------------
*/
PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
(unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
break;
case SIR_REJECT_SENT:
/*-----------------------------------------------
**
** We received an unknown message
**
**-----------------------------------------------
*/
ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
break;
/*--------------------------------------------------------------------
**
** Processing of special messages
**
**--------------------------------------------------------------------
*/
case SIR_IGN_RESIDUE:
/*-----------------------------------------------
**
** We received an IGNORE RESIDUE message,
** which couldn't be handled by the script.
**
**-----------------------------------------------
*/
PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
"implemented.\n");
break;
#if 0
case SIR_MISSING_SAVE:
/*-----------------------------------------------
**
** We received an DISCONNECT message,
** but the datapointer wasn't saved before.
**
**-----------------------------------------------
*/
PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
"not saved: data=%x save=%x goal=%x.\n",
(unsigned) INL (nc_temp),
(unsigned) scr_to_cpu(np->header.savep),
(unsigned) scr_to_cpu(np->header.goalp));
break;
#endif
}
out:
OUTONB_STD ();
}
/*==========================================================
**
**
** Acquire a control block
**
**
**==========================================================
*/
static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
{
u_char tn = cmd->device->id;
u_char ln = cmd->device->lun;
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
u_char tag = NO_TAG;
struct ccb *cp = NULL;
/*
** Lun structure available ?
*/
if (lp) {
struct list_head *qp;
/*
** Keep from using more tags than we can handle.
*/
if (lp->usetags && lp->busyccbs >= lp->maxnxs)
return NULL;
/*
** Allocate a new CCB if needed.
*/
if (list_empty(&lp->free_ccbq))
ncr_alloc_ccb(np, tn, ln);
/*
** Look for free CCB
*/
qp = ncr_list_pop(&lp->free_ccbq);
if (qp) {
cp = list_entry(qp, struct ccb, link_ccbq);
if (cp->magic) {
PRINT_ADDR(cmd, "ccb free list corrupted "
"(@%p)\n", cp);
cp = NULL;
} else {
list_add_tail(qp, &lp->wait_ccbq);
++lp->busyccbs;
}
}
/*
** If a CCB is available,
** Get a tag for this nexus if required.
*/
if (cp) {
if (lp->usetags)
tag = lp->cb_tags[lp->ia_tag];
}
else if (lp->actccbs > 0)
return NULL;
}
/*
** if nothing available, take the default.
*/
if (!cp)
cp = np->ccb;
/*
** Wait until available.
*/
#if 0
while (cp->magic) {
if (flags & SCSI_NOSLEEP) break;
if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
break;
}
#endif
if (cp->magic)
return NULL;
cp->magic = 1;
/*
** Move to next available tag if tag used.
*/
if (lp) {
if (tag != NO_TAG) {
++lp->ia_tag;
if (lp->ia_tag == MAX_TAGS)
lp->ia_tag = 0;
lp->tags_umap |= (((tagmap_t) 1) << tag);
}
}
/*
** Remember all informations needed to free this CCB.
*/
cp->tag = tag;
cp->target = tn;
cp->lun = ln;
if (DEBUG_FLAGS & DEBUG_TAGS) {
PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
}
return cp;
}
/*==========================================================
**
**
** Release one control block
**
**
**==========================================================
*/
static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
{
struct tcb *tp = &np->target[cp->target];
struct lcb *lp = tp->lp[cp->lun];
if (DEBUG_FLAGS & DEBUG_TAGS) {
PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
}
/*
** If lun control block available,
** decrement active commands and increment credit,
** free the tag if any and remove the JUMP for reselect.
*/
if (lp) {
if (cp->tag != NO_TAG) {
lp->cb_tags[lp->if_tag++] = cp->tag;
if (lp->if_tag == MAX_TAGS)
lp->if_tag = 0;
lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
lp->tags_smap &= lp->tags_umap;
lp->jump_ccb[cp->tag] =
cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
} else {
lp->jump_ccb[0] =
cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
}
}
/*
** Make this CCB available.
*/
if (lp) {
if (cp != np->ccb)
list_move(&cp->link_ccbq, &lp->free_ccbq);
--lp->busyccbs;
if (cp->queued) {
--lp->queuedccbs;
}
}
cp -> host_status = HS_IDLE;
cp -> magic = 0;
if (cp->queued) {
--np->queuedccbs;
cp->queued = 0;
}
#if 0
if (cp == np->ccb)
wakeup ((caddr_t) cp);
#endif
}
#define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
/*------------------------------------------------------------------------
** Initialize the fixed part of a CCB structure.
**------------------------------------------------------------------------
**------------------------------------------------------------------------
*/
static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
{
ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
/*
** Remember virtual and bus address of this ccb.
*/
cp->p_ccb = vtobus(cp);
cp->phys.header.cp = cp;
/*
** This allows list_del to work for the default ccb.
*/
INIT_LIST_HEAD(&cp->link_ccbq);
/*
** Initialyze the start and restart launch script.
**
** COPY(4) @(...p_phys), @(dsa)
** JUMP @(sched_point)
*/
cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
}
/*------------------------------------------------------------------------
** Allocate a CCB and initialize its fixed part.
**------------------------------------------------------------------------
**------------------------------------------------------------------------
*/
static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
{
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
struct ccb *cp = NULL;
/*
** Allocate memory for this CCB.
*/
cp = m_calloc_dma(sizeof(struct ccb), "CCB");
if (!cp)
return;
/*
** Count it and initialyze it.
*/
lp->actccbs++;
np->actccbs++;
memset(cp, 0, sizeof (*cp));
ncr_init_ccb(np, cp);
/*
** Chain into wakeup list and free ccb queue and take it
** into account for tagged commands.
*/
cp->link_ccb = np->ccb->link_ccb;
np->ccb->link_ccb = cp;
list_add(&cp->link_ccbq, &lp->free_ccbq);
}
/*==========================================================
**
**
** Allocation of resources for Targets/Luns/Tags.
**
**
**==========================================================
*/
/*------------------------------------------------------------------------
** Target control block initialisation.
**------------------------------------------------------------------------
** This data structure is fully initialized after a SCSI command
** has been successfully completed for this target.
** It contains a SCRIPT that is called on target reselection.
**------------------------------------------------------------------------
*/
static void ncr_init_tcb (struct ncb *np, u_char tn)
{
struct tcb *tp = &np->target[tn];
ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
int th = tn & 3;
int i;
/*
** Jump to next tcb if SFBR does not match this target.
** JUMP IF (SFBR != #target#), @(next tcb)
*/
tp->jump_tcb.l_cmd =
cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
/*
** Load the synchronous transfer register.
** COPY @(tp->sval), @(sxfer)
*/
tp->getscr[0] = cpu_to_scr(copy_1);
tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
#ifdef SCSI_NCR_BIG_ENDIAN
tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
#else
tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
#endif
/*
** Load the timing register.
** COPY @(tp->wval), @(scntl3)
*/
tp->getscr[3] = cpu_to_scr(copy_1);
tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
#ifdef SCSI_NCR_BIG_ENDIAN
tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
#else
tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
#endif
/*
** Get the IDENTIFY message and the lun.
** CALL @script(resel_lun)
*/
tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
/*
** Look for the lun control block of this nexus.
** For i = 0 to 3
** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
*/
for (i = 0 ; i < 4 ; i++) {
tp->jump_lcb[i].l_cmd =
cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
tp->jump_lcb[i].l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
}
/*
** Link this target control block to the JUMP chain.
*/
np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
/*
** These assert's should be moved at driver initialisations.
*/
#ifdef SCSI_NCR_BIG_ENDIAN
BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
offsetof(struct tcb , sval )) &3) != 3);
BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
offsetof(struct tcb , wval )) &3) != 3);
#else
BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
offsetof(struct tcb , sval )) &3) != 0);
BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
offsetof(struct tcb , wval )) &3) != 0);
#endif
}
/*------------------------------------------------------------------------
** Lun control block allocation and initialization.
**------------------------------------------------------------------------
** This data structure is allocated and initialized after a SCSI
** command has been successfully completed for this target/lun.
**------------------------------------------------------------------------
*/
static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
{
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
int lh = ln & 3;
/*
** Already done, return.
*/
if (lp)
return lp;
/*
** Allocate the lcb.
*/
lp = m_calloc_dma(sizeof(struct lcb), "LCB");
if (!lp)
goto fail;
memset(lp, 0, sizeof(*lp));
tp->lp[ln] = lp;
/*
** Initialize the target control block if not yet.
*/
if (!tp->jump_tcb.l_cmd)
ncr_init_tcb(np, tn);
/*
** Initialize the CCB queue headers.
*/
INIT_LIST_HEAD(&lp->free_ccbq);
INIT_LIST_HEAD(&lp->busy_ccbq);
INIT_LIST_HEAD(&lp->wait_ccbq);
INIT_LIST_HEAD(&lp->skip_ccbq);
/*
** Set max CCBs to 1 and use the default 1 entry
** jump table by default.
*/
lp->maxnxs = 1;
lp->jump_ccb = &lp->jump_ccb_0;
lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
/*
** Initilialyze the reselect script:
**
** Jump to next lcb if SFBR does not match this lun.
** Load TEMP with the CCB direct jump table bus address.
** Get the SIMPLE TAG message and the tag.
**
** JUMP IF (SFBR != #lun#), @(next lcb)
** COPY @(lp->p_jump_ccb), @(temp)
** JUMP @script(resel_notag)
*/
lp->jump_lcb.l_cmd =
cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
/*
** Link this lun control block to the JUMP chain.
*/
tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
/*
** Initialize command queuing control.
*/
lp->busyccbs = 1;
lp->queuedccbs = 1;
lp->queuedepth = 1;
fail:
return lp;
}
/*------------------------------------------------------------------------
** Lun control block setup on INQUIRY data received.
**------------------------------------------------------------------------
** We only support WIDE, SYNC for targets and CMDQ for logical units.
** This setup is done on each INQUIRY since we are expecting user
** will play with CHANGE DEFINITION commands. :-)
**------------------------------------------------------------------------
*/
static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
{
unsigned char tn = sdev->id, ln = sdev->lun;
struct tcb *tp = &np->target[tn];
struct lcb *lp = tp->lp[ln];
/* If no lcb, try to allocate it. */
if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
goto fail;
/*
** If unit supports tagged commands, allocate the
** CCB JUMP table if not yet.
*/
if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
int i;
lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
if (!lp->jump_ccb) {
lp->jump_ccb = &lp->jump_ccb_0;
goto fail;
}
lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
for (i = 0 ; i < 64 ; i++)
lp->jump_ccb[i] =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
for (i = 0 ; i < MAX_TAGS ; i++)
lp->cb_tags[i] = i;
lp->maxnxs = MAX_TAGS;
lp->tags_stime = jiffies + 3*HZ;
ncr_setup_tags (np, sdev);
}
fail:
return lp;
}
/*==========================================================
**
**
** Build Scatter Gather Block
**
**
**==========================================================
**
** The transfer area may be scattered among
** several non adjacent physical pages.
**
** We may use MAX_SCATTER blocks.
**
**----------------------------------------------------------
*/
/*
** We try to reduce the number of interrupts caused
** by unexpected phase changes due to disconnects.
** A typical harddisk may disconnect before ANY block.
** If we wanted to avoid unexpected phase changes at all
** we had to use a break point every 512 bytes.
** Of course the number of scatter/gather blocks is
** limited.
** Under Linux, the scatter/gatter blocks are provided by
** the generic driver. We just have to copy addresses and
** sizes to the data segment array.
*/
static int ncr_scatter_no_sglist(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
{
struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER - 1];
int segment;
cp->data_len = cmd->request_bufflen;
if (cmd->request_bufflen) {
dma_addr_t baddr = map_scsi_single_data(np, cmd);
if (baddr) {
ncr_build_sge(np, data, baddr, cmd->request_bufflen);
segment = 1;
} else {
segment = -2;
}
} else {
segment = 0;
}
return segment;
}
static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
{
int segment = 0;
int use_sg = (int) cmd->use_sg;
cp->data_len = 0;
if (!use_sg)
segment = ncr_scatter_no_sglist(np, cp, cmd);
else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
struct scatterlist *scatter = (struct scatterlist *)cmd->request_buffer;
struct scr_tblmove *data;
if (use_sg > MAX_SCATTER) {
unmap_scsi_data(np, cmd);
return -1;
}
data = &cp->phys.data[MAX_SCATTER - use_sg];
for (segment = 0; segment < use_sg; segment++) {
dma_addr_t baddr = sg_dma_address(&scatter[segment]);
unsigned int len = sg_dma_len(&scatter[segment]);
ncr_build_sge(np, &data[segment], baddr, len);
cp->data_len += len;
}
} else {
segment = -2;
}
return segment;
}
/*==========================================================
**
**
** Test the bus snoop logic :-(
**
** Has to be called with interrupts disabled.
**
**
**==========================================================
*/
static int __init ncr_regtest (struct ncb* np)
{
register volatile u32 data;
/*
** ncr registers may NOT be cached.
** write 0xffffffff to a read only register area,
** and try to read it back.
*/
data = 0xffffffff;
OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
#if 1
if (data == 0xffffffff) {
#else
if ((data & 0xe2f0fffd) != 0x02000080) {
#endif
printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
(unsigned) data);
return (0x10);
}
return (0);
}
static int __init ncr_snooptest (struct ncb* np)
{
u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
int i, err=0;
if (np->reg) {
err |= ncr_regtest (np);
if (err)
return (err);
}
/* init */
pc = NCB_SCRIPTH_PHYS (np, snooptest);
host_wr = 1;
ncr_wr = 2;
/*
** Set memory and register.
*/
np->ncr_cache = cpu_to_scr(host_wr);
OUTL (nc_temp, ncr_wr);
/*
** Start script (exchange values)
*/
OUTL_DSP (pc);
/*
** Wait 'til done (with timeout)
*/
for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
if (INB(nc_istat) & (INTF|SIP|DIP))
break;
/*
** Save termination position.
*/
pc = INL (nc_dsp);
/*
** Read memory and register.
*/
host_rd = scr_to_cpu(np->ncr_cache);
ncr_rd = INL (nc_scratcha);
ncr_bk = INL (nc_temp);
/*
** Reset ncr chip
*/
ncr_chip_reset(np, 100);
/*
** check for timeout
*/
if (i>=NCR_SNOOP_TIMEOUT) {
printk ("CACHE TEST FAILED: timeout.\n");
return (0x20);
}
/*
** Check termination position.
*/
if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
printk ("CACHE TEST FAILED: script execution failed.\n");
printk ("start=%08lx, pc=%08lx, end=%08lx\n",
(u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
(u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
return (0x40);
}
/*
** Show results.
*/
if (host_wr != ncr_rd) {
printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
(int) host_wr, (int) ncr_rd);
err |= 1;
}
if (host_rd != ncr_wr) {
printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
(int) ncr_wr, (int) host_rd);
err |= 2;
}
if (ncr_bk != ncr_wr) {
printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
(int) ncr_wr, (int) ncr_bk);
err |= 4;
}
return (err);
}
/*==========================================================
**
** Determine the ncr's clock frequency.
** This is essential for the negotiation
** of the synchronous transfer rate.
**
**==========================================================
**
** Note: we have to return the correct value.
** THERE IS NO SAFE DEFAULT VALUE.
**
** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
** 53C860 and 53C875 rev. 1 support fast20 transfers but
** do not have a clock doubler and so are provided with a
** 80 MHz clock. All other fast20 boards incorporate a doubler
** and so should be delivered with a 40 MHz clock.
** The future fast40 chips (895/895) use a 40 Mhz base clock
** and provide a clock quadrupler (160 Mhz). The code below
** tries to deal as cleverly as possible with all this stuff.
**
**----------------------------------------------------------
*/
/*
* Select NCR SCSI clock frequency
*/
static void ncr_selectclock(struct ncb *np, u_char scntl3)
{
if (np->multiplier < 2) {
OUTB(nc_scntl3, scntl3);
return;
}
if (bootverbose >= 2)
printk ("%s: enabling clock multiplier\n", ncr_name(np));
OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
int i = 20;
while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
udelay(20);
if (!i)
printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
} else /* Wait 20 micro-seconds for doubler */
udelay(20);
OUTB(nc_stest3, HSC); /* Halt the scsi clock */
OUTB(nc_scntl3, scntl3);
OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
OUTB(nc_stest3, 0x00); /* Restart scsi clock */
}
/*
* calculate NCR SCSI clock frequency (in KHz)
*/
static unsigned __init ncrgetfreq (struct ncb *np, int gen)
{
unsigned ms = 0;
char count = 0;
/*
* Measure GEN timer delay in order
* to calculate SCSI clock frequency
*
* This code will never execute too
* many loop iterations (if DELAY is
* reasonably correct). It could get
* too low a delay (too high a freq.)
* if the CPU is slow executing the
* loop for some reason (an NMI, for
* example). For this reason we will
* if multiple measurements are to be
* performed trust the higher delay
* (lower frequency returned).
*/
OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
OUTW (nc_sien , 0); /* mask all scsi interrupts */
(void) INW (nc_sist); /* clear pending scsi interrupt */
OUTB (nc_dien , 0); /* mask all dma interrupts */
(void) INW (nc_sist); /* another one, just to be sure :) */
OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
OUTB (nc_stime1, 0); /* disable general purpose timer */
OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
for (count = 0; count < 10; count ++)
udelay(100); /* count ms */
}
OUTB (nc_stime1, 0); /* disable general purpose timer */
/*
* set prescaler to divide by whatever 0 means
* 0 ought to choose divide by 2, but appears
* to set divide by 3.5 mode in my 53c810 ...
*/
OUTB (nc_scntl3, 0);
if (bootverbose >= 2)
printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
/*
* adjust for prescaler, and convert into KHz
*/
return ms ? ((1 << gen) * 4340) / ms : 0;
}
/*
* Get/probe NCR SCSI clock frequency
*/
static void __init ncr_getclock (struct ncb *np, int mult)
{
unsigned char scntl3 = INB(nc_scntl3);
unsigned char stest1 = INB(nc_stest1);
unsigned f1;
np->multiplier = 1;
f1 = 40000;
/*
** True with 875 or 895 with clock multiplier selected
*/
if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
if (bootverbose >= 2)
printk ("%s: clock multiplier found\n", ncr_name(np));
np->multiplier = mult;
}
/*
** If multiplier not found or scntl3 not 7,5,3,
** reset chip and get frequency from general purpose timer.
** Otherwise trust scntl3 BIOS setting.
*/
if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
unsigned f2;
ncr_chip_reset(np, 5);
(void) ncrgetfreq (np, 11); /* throw away first result */
f1 = ncrgetfreq (np, 11);
f2 = ncrgetfreq (np, 11);
if(bootverbose)
printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
if (f1 > f2) f1 = f2; /* trust lower result */
if (f1 < 45000) f1 = 40000;
else if (f1 < 55000) f1 = 50000;
else f1 = 80000;
if (f1 < 80000 && mult > 1) {
if (bootverbose >= 2)
printk ("%s: clock multiplier assumed\n", ncr_name(np));
np->multiplier = mult;
}
} else {
if ((scntl3 & 7) == 3) f1 = 40000;
else if ((scntl3 & 7) == 5) f1 = 80000;
else f1 = 160000;
f1 /= np->multiplier;
}
/*
** Compute controller synchronous parameters.
*/
f1 *= np->multiplier;
np->clock_khz = f1;
}
/*===================== LINUX ENTRY POINTS SECTION ==========================*/
static int ncr53c8xx_slave_alloc(struct scsi_device *device)
{
struct Scsi_Host *host = device->host;
struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
struct tcb *tp = &np->target[device->id];
tp->starget = device->sdev_target;
return 0;
}
static int ncr53c8xx_slave_configure(struct scsi_device *device)
{
struct Scsi_Host *host = device->host;
struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
struct tcb *tp = &np->target[device->id];
struct lcb *lp = tp->lp[device->lun];
int numtags, depth_to_use;
ncr_setup_lcb(np, device);
/*
** Select queue depth from driver setup.
** Donnot use more than configured by user.
** Use at least 2.
** Donnot use more than our maximum.
*/
numtags = device_queue_depth(np->unit, device->id, device->lun);
if (numtags > tp->usrtags)
numtags = tp->usrtags;
if (!device->tagged_supported)
numtags = 1;
depth_to_use = numtags;
if (depth_to_use < 2)
depth_to_use = 2;
if (depth_to_use > MAX_TAGS)
depth_to_use = MAX_TAGS;
scsi_adjust_queue_depth(device,
(device->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
/*
** Since the queue depth is not tunable under Linux,
** we need to know this value in order not to
** announce stupid things to user.
**
** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
** In fact we just tuned it, or did I miss
** something important? :)
*/
if (lp) {
lp->numtags = lp->maxtags = numtags;
lp->scdev_depth = depth_to_use;
}
ncr_setup_tags (np, device);
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
np->unit, device->id, device->lun, depth_to_use);
#endif
if (spi_support_sync(device->sdev_target) &&
!spi_initial_dv(device->sdev_target))
spi_dv_device(device);
return 0;
}
static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *))
{
struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
unsigned long flags;
int sts;
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx_queue_command\n");
#endif
cmd->scsi_done = done;
cmd->host_scribble = NULL;
cmd->__data_mapped = 0;
cmd->__data_mapping = 0;
spin_lock_irqsave(&np->smp_lock, flags);
if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
cmd->result = ScsiResult(sts, 0);
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx : command not queued - result=%d\n", sts);
#endif
}
#ifdef DEBUG_NCR53C8XX
else
printk("ncr53c8xx : command successfully queued\n");
#endif
spin_unlock_irqrestore(&np->smp_lock, flags);
if (sts != DID_OK) {
unmap_scsi_data(np, cmd);
done(cmd);
sts = 0;
}
return sts;
}
irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
{
unsigned long flags;
struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
struct host_data *host_data = (struct host_data *)shost->hostdata;
struct ncb *np = host_data->ncb;
struct scsi_cmnd *done_list;
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx : interrupt received\n");
#endif
if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
spin_lock_irqsave(&np->smp_lock, flags);
ncr_exception(np);
done_list = np->done_list;
np->done_list = NULL;
spin_unlock_irqrestore(&np->smp_lock, flags);
if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
if (done_list)
ncr_flush_done_cmds(done_list);
return IRQ_HANDLED;
}
static void ncr53c8xx_timeout(unsigned long npref)
{
struct ncb *np = (struct ncb *) npref;
unsigned long flags;
struct scsi_cmnd *done_list;
spin_lock_irqsave(&np->smp_lock, flags);
ncr_timeout(np);
done_list = np->done_list;
np->done_list = NULL;
spin_unlock_irqrestore(&np->smp_lock, flags);
if (done_list)
ncr_flush_done_cmds(done_list);
}
static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
{
struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
int sts;
unsigned long flags;
struct scsi_cmnd *done_list;
/*
* If the mid-level driver told us reset is synchronous, it seems
* that we must call the done() callback for the involved command,
* even if this command was not queued to the low-level driver,
* before returning SUCCESS.
*/
spin_lock_irqsave(&np->smp_lock, flags);
sts = ncr_reset_bus(np, cmd, 1);
done_list = np->done_list;
np->done_list = NULL;
spin_unlock_irqrestore(&np->smp_lock, flags);
ncr_flush_done_cmds(done_list);
return sts;
}
#if 0 /* unused and broken */
static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
{
struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
int sts;
unsigned long flags;
struct scsi_cmnd *done_list;
#if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS
printk("ncr53c8xx_abort: pid=%lu serial_number=%ld\n",
cmd->pid, cmd->serial_number);
#else
printk("ncr53c8xx_abort: command pid %lu\n", cmd->pid);
#endif
NCR_LOCK_NCB(np, flags);
sts = ncr_abort_command(np, cmd);
out:
done_list = np->done_list;
np->done_list = NULL;
NCR_UNLOCK_NCB(np, flags);
ncr_flush_done_cmds(done_list);
return sts;
}
#endif
/*
** Scsi command waiting list management.
**
** It may happen that we cannot insert a scsi command into the start queue,
** in the following circumstances.
** Too few preallocated ccb(s),
** maxtags < cmd_per_lun of the Linux host control block,
** etc...
** Such scsi commands are inserted into a waiting list.
** When a scsi command complete, we try to requeue the commands of the
** waiting list.
*/
#define next_wcmd host_scribble
static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
{
struct scsi_cmnd *wcmd;
#ifdef DEBUG_WAITING_LIST
printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
#endif
cmd->next_wcmd = NULL;
if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
else {
while ((wcmd->next_wcmd) != 0)
wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
wcmd->next_wcmd = (char *) cmd;
}
}
static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
{
struct scsi_cmnd **pcmd = &np->waiting_list;
while (*pcmd) {
if (cmd == *pcmd) {
if (to_remove) {
*pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
cmd->next_wcmd = NULL;
}
#ifdef DEBUG_WAITING_LIST
printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
#endif
return cmd;
}
pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
}
return NULL;
}
static void process_waiting_list(struct ncb *np, int sts)
{
struct scsi_cmnd *waiting_list, *wcmd;
waiting_list = np->waiting_list;
np->waiting_list = NULL;
#ifdef DEBUG_WAITING_LIST
if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
#endif
while ((wcmd = waiting_list) != 0) {
waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
wcmd->next_wcmd = NULL;
if (sts == DID_OK) {
#ifdef DEBUG_WAITING_LIST
printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
#endif
sts = ncr_queue_command(np, wcmd);
}
if (sts != DID_OK) {
#ifdef DEBUG_WAITING_LIST
printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
#endif
wcmd->result = ScsiResult(sts, 0);
ncr_queue_done_cmd(np, wcmd);
}
}
}
#undef next_wcmd
static ssize_t show_ncr53c8xx_revision(struct class_device *dev, char *buf)
{
struct Scsi_Host *host = class_to_shost(dev);
struct host_data *host_data = (struct host_data *)host->hostdata;
return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
}
static struct class_device_attribute ncr53c8xx_revision_attr = {
.attr = { .name = "revision", .mode = S_IRUGO, },
.show = show_ncr53c8xx_revision,
};
static struct class_device_attribute *ncr53c8xx_host_attrs[] = {
&ncr53c8xx_revision_attr,
NULL
};
/*==========================================================
**
** Boot command line.
**
**==========================================================
*/
#ifdef MODULE
char *ncr53c8xx; /* command line passed by insmod */
module_param(ncr53c8xx, charp, 0);
#endif
#ifndef MODULE
static int __init ncr53c8xx_setup(char *str)
{
return sym53c8xx__setup(str);
}
__setup("ncr53c8xx=", ncr53c8xx_setup);
#endif
/*
* Host attach and initialisations.
*
* Allocate host data and ncb structure.
* Request IO region and remap MMIO region.
* Do chip initialization.
* If all is OK, install interrupt handling and
* start the timer daemon.
*/
struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
int unit, struct ncr_device *device)
{
struct host_data *host_data;
struct ncb *np = NULL;
struct Scsi_Host *instance = NULL;
u_long flags = 0;
int i;
if (!tpnt->name)
tpnt->name = SCSI_NCR_DRIVER_NAME;
if (!tpnt->shost_attrs)
tpnt->shost_attrs = ncr53c8xx_host_attrs;
tpnt->queuecommand = ncr53c8xx_queue_command;
tpnt->slave_configure = ncr53c8xx_slave_configure;
tpnt->slave_alloc = ncr53c8xx_slave_alloc;
tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
tpnt->this_id = 7;
tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE;
tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
tpnt->use_clustering = ENABLE_CLUSTERING;
if (device->differential)
driver_setup.diff_support = device->differential;
printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
unit, device->chip.revision_id, device->slot.irq);
instance = scsi_host_alloc(tpnt, sizeof(*host_data));
if (!instance)
goto attach_error;
host_data = (struct host_data *) instance->hostdata;
np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
if (!np)
goto attach_error;
spin_lock_init(&np->smp_lock);
np->dev = device->dev;
np->p_ncb = vtobus(np);
host_data->ncb = np;
np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
if (!np->ccb)
goto attach_error;
/* Store input information in the host data structure. */
np->unit = unit;
np->verbose = driver_setup.verbose;
sprintf(np->inst_name, "ncr53c720-%d", np->unit);
np->revision_id = device->chip.revision_id;
np->features = device->chip.features;
np->clock_divn = device->chip.nr_divisor;
np->maxoffs = device->chip.offset_max;
np->maxburst = device->chip.burst_max;
np->myaddr = device->host_id;
/* Allocate SCRIPTS areas. */
np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
if (!np->script0)
goto attach_error;
np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
if (!np->scripth0)
goto attach_error;
init_timer(&np->timer);
np->timer.data = (unsigned long) np;
np->timer.function = ncr53c8xx_timeout;
/* Try to map the controller chip to virtual and physical memory. */
np->paddr = device->slot.base;
np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
if (device->slot.base_v)
np->vaddr = device->slot.base_v;
else
np->vaddr = ioremap(device->slot.base_c, 128);
if (!np->vaddr) {
printk(KERN_ERR
"%s: can't map memory mapped IO region\n",ncr_name(np));
goto attach_error;
} else {
if (bootverbose > 1)
printk(KERN_INFO
"%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
}
/* Make the controller's registers available. Now the INB INW INL
* OUTB OUTW OUTL macros can be used safely.
*/
np->reg = (struct ncr_reg __iomem *)np->vaddr;
/* Do chip dependent initialization. */
ncr_prepare_setting(np);
if (np->paddr2 && sizeof(struct script) > 4096) {
np->paddr2 = 0;
printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
ncr_name(np));
}
instance->max_channel = 0;
instance->this_id = np->myaddr;
instance->max_id = np->maxwide ? 16 : 8;
instance->max_lun = SCSI_NCR_MAX_LUN;
instance->base = (unsigned long) np->reg;
instance->irq = device->slot.irq;
instance->unique_id = device->slot.base;
instance->dma_channel = 0;
instance->cmd_per_lun = MAX_TAGS;
instance->can_queue = (MAX_START-4);
/* This can happen if you forget to call ncr53c8xx_init from
* your module_init */
BUG_ON(!ncr53c8xx_transport_template);
instance->transportt = ncr53c8xx_transport_template;
/* Patch script to physical addresses */
ncr_script_fill(&script0, &scripth0);
np->scripth = np->scripth0;
np->p_scripth = vtobus(np->scripth);
np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
(ncrcmd *) np->script0, sizeof(struct script));
ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
(ncrcmd *) np->scripth0, sizeof(struct scripth));
np->ccb->p_ccb = vtobus (np->ccb);
/* Patch the script for LED support. */
if (np->features & FE_LED0) {
np->script0->idle[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
np->script0->reselected[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
np->script0->start[0] =
cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
}
/*
* Look for the target control block of this nexus.
* For i = 0 to 3
* JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
*/
for (i = 0 ; i < 4 ; i++) {
np->jump_tcb[i].l_cmd =
cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
np->jump_tcb[i].l_paddr =
cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
}
ncr_chip_reset(np, 100);
/* Now check the cache handling of the chipset. */
if (ncr_snooptest(np)) {
printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
goto attach_error;
}
/* Install the interrupt handler. */
np->irq = device->slot.irq;
/* Initialize the fixed part of the default ccb. */
ncr_init_ccb(np, np->ccb);
/*
* After SCSI devices have been opened, we cannot reset the bus
* safely, so we do it here. Interrupt handler does the real work.
* Process the reset exception if interrupts are not enabled yet.
* Then enable disconnects.
*/
spin_lock_irqsave(&np->smp_lock, flags);
if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
spin_unlock_irqrestore(&np->smp_lock, flags);
goto attach_error;
}
ncr_exception(np);
np->disc = 1;
/*
* The middle-level SCSI driver does not wait for devices to settle.
* Wait synchronously if more than 2 seconds.
*/
if (driver_setup.settle_delay > 2) {
printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
ncr_name(np), driver_setup.settle_delay);
mdelay(1000 * driver_setup.settle_delay);
}
/* start the timeout daemon */
np->lasttime=0;
ncr_timeout (np);
/* use SIMPLE TAG messages by default */
#ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
np->order = SIMPLE_QUEUE_TAG;
#endif
spin_unlock_irqrestore(&np->smp_lock, flags);
return instance;
attach_error:
if (!instance)
return NULL;
printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
if (!np)
goto unregister;
if (np->scripth0)
m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
if (np->script0)
m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
if (np->ccb)
m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
m_free_dma(np, sizeof(struct ncb), "NCB");
host_data->ncb = NULL;
unregister:
scsi_host_put(instance);
return NULL;
}
int ncr53c8xx_release(struct Scsi_Host *host)
{
struct host_data *host_data;
#ifdef DEBUG_NCR53C8XX
printk("ncr53c8xx: release\n");
#endif
if (!host)
return 1;
host_data = (struct host_data *)host->hostdata;
if (host_data && host_data->ncb)
ncr_detach(host_data->ncb);
return 1;
}
static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
struct tcb *tp = &np->target[starget->id];
if (period > np->maxsync)
period = np->maxsync;
else if (period < np->minsync)
period = np->minsync;
tp->usrsync = period;
ncr_negotiate(np, tp);
}
static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
struct tcb *tp = &np->target[starget->id];
if (offset > np->maxoffs)
offset = np->maxoffs;
else if (offset < 0)
offset = 0;
tp->maxoffs = offset;
ncr_negotiate(np, tp);
}
static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
struct tcb *tp = &np->target[starget->id];
if (width > np->maxwide)
width = np->maxwide;
else if (width < 0)
width = 0;
tp->usrwide = width;
ncr_negotiate(np, tp);
}
static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
{
struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
enum spi_signal_type type;
switch (np->scsi_mode) {
case SMODE_SE:
type = SPI_SIGNAL_SE;
break;
case SMODE_HVD:
type = SPI_SIGNAL_HVD;
break;
default:
type = SPI_SIGNAL_UNKNOWN;
break;
}
spi_signalling(shost) = type;
}
static struct spi_function_template ncr53c8xx_transport_functions = {
.set_period = ncr53c8xx_set_period,
.show_period = 1,
.set_offset = ncr53c8xx_set_offset,
.show_offset = 1,
.set_width = ncr53c8xx_set_width,
.show_width = 1,
.get_signalling = ncr53c8xx_get_signalling,
};
int __init ncr53c8xx_init(void)
{
ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
if (!ncr53c8xx_transport_template)
return -ENODEV;
return 0;
}
void ncr53c8xx_exit(void)
{
spi_release_transport(ncr53c8xx_transport_template);
}