f40f50d3bb
This updates my proc: readdir race fix (take 3) patch to account for the changes made by: Sukadev Bhattiprolu <sukadev@us.ibm.com> to introduce struct pspace. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
385 lines
9.5 KiB
C
385 lines
9.5 KiB
C
/*
|
|
* Generic pidhash and scalable, time-bounded PID allocator
|
|
*
|
|
* (C) 2002-2003 William Irwin, IBM
|
|
* (C) 2004 William Irwin, Oracle
|
|
* (C) 2002-2004 Ingo Molnar, Red Hat
|
|
*
|
|
* pid-structures are backing objects for tasks sharing a given ID to chain
|
|
* against. There is very little to them aside from hashing them and
|
|
* parking tasks using given ID's on a list.
|
|
*
|
|
* The hash is always changed with the tasklist_lock write-acquired,
|
|
* and the hash is only accessed with the tasklist_lock at least
|
|
* read-acquired, so there's no additional SMP locking needed here.
|
|
*
|
|
* We have a list of bitmap pages, which bitmaps represent the PID space.
|
|
* Allocating and freeing PIDs is completely lockless. The worst-case
|
|
* allocation scenario when all but one out of 1 million PIDs possible are
|
|
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
|
|
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/pspace.h>
|
|
|
|
#define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
|
|
static struct hlist_head *pid_hash;
|
|
static int pidhash_shift;
|
|
static kmem_cache_t *pid_cachep;
|
|
|
|
int pid_max = PID_MAX_DEFAULT;
|
|
|
|
#define RESERVED_PIDS 300
|
|
|
|
int pid_max_min = RESERVED_PIDS + 1;
|
|
int pid_max_max = PID_MAX_LIMIT;
|
|
|
|
#define BITS_PER_PAGE (PAGE_SIZE*8)
|
|
#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
|
|
|
|
static inline int mk_pid(struct pspace *pspace, struct pidmap *map, int off)
|
|
{
|
|
return (map - pspace->pidmap)*BITS_PER_PAGE + off;
|
|
}
|
|
|
|
#define find_next_offset(map, off) \
|
|
find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
|
|
|
|
/*
|
|
* PID-map pages start out as NULL, they get allocated upon
|
|
* first use and are never deallocated. This way a low pid_max
|
|
* value does not cause lots of bitmaps to be allocated, but
|
|
* the scheme scales to up to 4 million PIDs, runtime.
|
|
*/
|
|
struct pspace init_pspace = {
|
|
.pidmap = {
|
|
[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
|
|
},
|
|
.last_pid = 0
|
|
};
|
|
|
|
/*
|
|
* Note: disable interrupts while the pidmap_lock is held as an
|
|
* interrupt might come in and do read_lock(&tasklist_lock).
|
|
*
|
|
* If we don't disable interrupts there is a nasty deadlock between
|
|
* detach_pid()->free_pid() and another cpu that does
|
|
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
|
|
* read_lock(&tasklist_lock);
|
|
*
|
|
* After we clean up the tasklist_lock and know there are no
|
|
* irq handlers that take it we can leave the interrupts enabled.
|
|
* For now it is easier to be safe than to prove it can't happen.
|
|
*/
|
|
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
|
|
|
|
static fastcall void free_pidmap(struct pspace *pspace, int pid)
|
|
{
|
|
struct pidmap *map = pspace->pidmap + pid / BITS_PER_PAGE;
|
|
int offset = pid & BITS_PER_PAGE_MASK;
|
|
|
|
clear_bit(offset, map->page);
|
|
atomic_inc(&map->nr_free);
|
|
}
|
|
|
|
static int alloc_pidmap(struct pspace *pspace)
|
|
{
|
|
int i, offset, max_scan, pid, last = pspace->last_pid;
|
|
struct pidmap *map;
|
|
|
|
pid = last + 1;
|
|
if (pid >= pid_max)
|
|
pid = RESERVED_PIDS;
|
|
offset = pid & BITS_PER_PAGE_MASK;
|
|
map = &pspace->pidmap[pid/BITS_PER_PAGE];
|
|
max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
|
|
for (i = 0; i <= max_scan; ++i) {
|
|
if (unlikely(!map->page)) {
|
|
void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
/*
|
|
* Free the page if someone raced with us
|
|
* installing it:
|
|
*/
|
|
spin_lock_irq(&pidmap_lock);
|
|
if (map->page)
|
|
kfree(page);
|
|
else
|
|
map->page = page;
|
|
spin_unlock_irq(&pidmap_lock);
|
|
if (unlikely(!map->page))
|
|
break;
|
|
}
|
|
if (likely(atomic_read(&map->nr_free))) {
|
|
do {
|
|
if (!test_and_set_bit(offset, map->page)) {
|
|
atomic_dec(&map->nr_free);
|
|
pspace->last_pid = pid;
|
|
return pid;
|
|
}
|
|
offset = find_next_offset(map, offset);
|
|
pid = mk_pid(pspace, map, offset);
|
|
/*
|
|
* find_next_offset() found a bit, the pid from it
|
|
* is in-bounds, and if we fell back to the last
|
|
* bitmap block and the final block was the same
|
|
* as the starting point, pid is before last_pid.
|
|
*/
|
|
} while (offset < BITS_PER_PAGE && pid < pid_max &&
|
|
(i != max_scan || pid < last ||
|
|
!((last+1) & BITS_PER_PAGE_MASK)));
|
|
}
|
|
if (map < &pspace->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
|
|
++map;
|
|
offset = 0;
|
|
} else {
|
|
map = &pspace->pidmap[0];
|
|
offset = RESERVED_PIDS;
|
|
if (unlikely(last == offset))
|
|
break;
|
|
}
|
|
pid = mk_pid(pspace, map, offset);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int next_pidmap(struct pspace *pspace, int last)
|
|
{
|
|
int offset;
|
|
struct pidmap *map, *end;
|
|
|
|
offset = (last + 1) & BITS_PER_PAGE_MASK;
|
|
map = &pspace->pidmap[(last + 1)/BITS_PER_PAGE];
|
|
end = &pspace->pidmap[PIDMAP_ENTRIES];
|
|
for (; map < end; map++, offset = 0) {
|
|
if (unlikely(!map->page))
|
|
continue;
|
|
offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
|
|
if (offset < BITS_PER_PAGE)
|
|
return mk_pid(pspace, map, offset);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
fastcall void put_pid(struct pid *pid)
|
|
{
|
|
if (!pid)
|
|
return;
|
|
if ((atomic_read(&pid->count) == 1) ||
|
|
atomic_dec_and_test(&pid->count))
|
|
kmem_cache_free(pid_cachep, pid);
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_pid);
|
|
|
|
static void delayed_put_pid(struct rcu_head *rhp)
|
|
{
|
|
struct pid *pid = container_of(rhp, struct pid, rcu);
|
|
put_pid(pid);
|
|
}
|
|
|
|
fastcall void free_pid(struct pid *pid)
|
|
{
|
|
/* We can be called with write_lock_irq(&tasklist_lock) held */
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pidmap_lock, flags);
|
|
hlist_del_rcu(&pid->pid_chain);
|
|
spin_unlock_irqrestore(&pidmap_lock, flags);
|
|
|
|
free_pidmap(&init_pspace, pid->nr);
|
|
call_rcu(&pid->rcu, delayed_put_pid);
|
|
}
|
|
|
|
struct pid *alloc_pid(void)
|
|
{
|
|
struct pid *pid;
|
|
enum pid_type type;
|
|
int nr = -1;
|
|
|
|
pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL);
|
|
if (!pid)
|
|
goto out;
|
|
|
|
nr = alloc_pidmap(&init_pspace);
|
|
if (nr < 0)
|
|
goto out_free;
|
|
|
|
atomic_set(&pid->count, 1);
|
|
pid->nr = nr;
|
|
for (type = 0; type < PIDTYPE_MAX; ++type)
|
|
INIT_HLIST_HEAD(&pid->tasks[type]);
|
|
|
|
spin_lock_irq(&pidmap_lock);
|
|
hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]);
|
|
spin_unlock_irq(&pidmap_lock);
|
|
|
|
out:
|
|
return pid;
|
|
|
|
out_free:
|
|
kmem_cache_free(pid_cachep, pid);
|
|
pid = NULL;
|
|
goto out;
|
|
}
|
|
|
|
struct pid * fastcall find_pid(int nr)
|
|
{
|
|
struct hlist_node *elem;
|
|
struct pid *pid;
|
|
|
|
hlist_for_each_entry_rcu(pid, elem,
|
|
&pid_hash[pid_hashfn(nr)], pid_chain) {
|
|
if (pid->nr == nr)
|
|
return pid;
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_pid);
|
|
|
|
int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr)
|
|
{
|
|
struct pid_link *link;
|
|
struct pid *pid;
|
|
|
|
link = &task->pids[type];
|
|
link->pid = pid = find_pid(nr);
|
|
hlist_add_head_rcu(&link->node, &pid->tasks[type]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void fastcall detach_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid_link *link;
|
|
struct pid *pid;
|
|
int tmp;
|
|
|
|
link = &task->pids[type];
|
|
pid = link->pid;
|
|
|
|
hlist_del_rcu(&link->node);
|
|
link->pid = NULL;
|
|
|
|
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
|
|
if (!hlist_empty(&pid->tasks[tmp]))
|
|
return;
|
|
|
|
free_pid(pid);
|
|
}
|
|
|
|
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
|
|
void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
|
|
enum pid_type type)
|
|
{
|
|
new->pids[type].pid = old->pids[type].pid;
|
|
hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
|
|
old->pids[type].pid = NULL;
|
|
}
|
|
|
|
struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result = NULL;
|
|
if (pid) {
|
|
struct hlist_node *first;
|
|
first = rcu_dereference(pid->tasks[type].first);
|
|
if (first)
|
|
result = hlist_entry(first, struct task_struct, pids[(type)].node);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Must be called under rcu_read_lock() or with tasklist_lock read-held.
|
|
*/
|
|
struct task_struct *find_task_by_pid_type(int type, int nr)
|
|
{
|
|
return pid_task(find_pid(nr), type);
|
|
}
|
|
|
|
EXPORT_SYMBOL(find_task_by_pid_type);
|
|
|
|
struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result;
|
|
rcu_read_lock();
|
|
result = pid_task(pid, type);
|
|
if (result)
|
|
get_task_struct(result);
|
|
rcu_read_unlock();
|
|
return result;
|
|
}
|
|
|
|
struct pid *find_get_pid(pid_t nr)
|
|
{
|
|
struct pid *pid;
|
|
|
|
rcu_read_lock();
|
|
pid = get_pid(find_pid(nr));
|
|
rcu_read_unlock();
|
|
|
|
return pid;
|
|
}
|
|
|
|
/*
|
|
* Used by proc to find the first pid that is greater then or equal to nr.
|
|
*
|
|
* If there is a pid at nr this function is exactly the same as find_pid.
|
|
*/
|
|
struct pid *find_ge_pid(int nr)
|
|
{
|
|
struct pid *pid;
|
|
|
|
do {
|
|
pid = find_pid(nr);
|
|
if (pid)
|
|
break;
|
|
nr = next_pidmap(&init_pspace, nr);
|
|
} while (nr > 0);
|
|
|
|
return pid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_get_pid);
|
|
|
|
/*
|
|
* The pid hash table is scaled according to the amount of memory in the
|
|
* machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
|
|
* more.
|
|
*/
|
|
void __init pidhash_init(void)
|
|
{
|
|
int i, pidhash_size;
|
|
unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
|
|
|
|
pidhash_shift = max(4, fls(megabytes * 4));
|
|
pidhash_shift = min(12, pidhash_shift);
|
|
pidhash_size = 1 << pidhash_shift;
|
|
|
|
printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
|
|
pidhash_size, pidhash_shift,
|
|
pidhash_size * sizeof(struct hlist_head));
|
|
|
|
pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
|
|
if (!pid_hash)
|
|
panic("Could not alloc pidhash!\n");
|
|
for (i = 0; i < pidhash_size; i++)
|
|
INIT_HLIST_HEAD(&pid_hash[i]);
|
|
}
|
|
|
|
void __init pidmap_init(void)
|
|
{
|
|
init_pspace.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
/* Reserve PID 0. We never call free_pidmap(0) */
|
|
set_bit(0, init_pspace.pidmap[0].page);
|
|
atomic_dec(&init_pspace.pidmap[0].nr_free);
|
|
|
|
pid_cachep = kmem_cache_create("pid", sizeof(struct pid),
|
|
__alignof__(struct pid),
|
|
SLAB_PANIC, NULL, NULL);
|
|
}
|