android_kernel_xiaomi_sm8350/arch/ppc64/kernel/setup.c
Milton Miller 8d92739186 [PATCH] ppc64: Consolidate early console and PPCDBG code
Consolidate the early console and PPCDBG code in udbg.c

Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-09-06 16:07:37 +10:00

1333 lines
34 KiB
C

/*
*
* Common boot and setup code.
*
* Copyright (C) 2001 PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/ide.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/version.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/bootinfo.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/ppcdebug.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/system.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/lmb.h>
#include <asm/iSeries/ItLpNaca.h>
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/*
* Here are some early debugging facilities. You can enable one
* but your kernel will not boot on anything else if you do so
*/
/* This one is for use on LPAR machines that support an HVC console
* on vterm 0
*/
extern void udbg_init_debug_lpar(void);
/* This one is for use on Apple G5 machines
*/
extern void udbg_init_pmac_realmode(void);
/* That's RTAS panel debug */
extern void call_rtas_display_status_delay(unsigned char c);
/* Here's maple real mode debug */
extern void udbg_init_maple_realmode(void);
#define EARLY_DEBUG_INIT() do {} while(0)
#if 0
#define EARLY_DEBUG_INIT() udbg_init_debug_lpar()
#define EARLY_DEBUG_INIT() udbg_init_maple_realmode()
#define EARLY_DEBUG_INIT() udbg_init_pmac_realmode()
#define EARLY_DEBUG_INIT() \
do { udbg_putc = call_rtas_display_status_delay; } while(0)
#endif
/* extern void *stab; */
extern unsigned long klimit;
extern void mm_init_ppc64(void);
extern void stab_initialize(unsigned long stab);
extern void htab_initialize(void);
extern void early_init_devtree(void *flat_dt);
extern void unflatten_device_tree(void);
extern void smp_release_cpus(void);
int have_of = 1;
int boot_cpuid = 0;
int boot_cpuid_phys = 0;
dev_t boot_dev;
u64 ppc64_pft_size;
struct ppc64_caches ppc64_caches;
EXPORT_SYMBOL_GPL(ppc64_caches);
/*
* These are used in binfmt_elf.c to put aux entries on the stack
* for each elf executable being started.
*/
int dcache_bsize;
int icache_bsize;
int ucache_bsize;
/* The main machine-dep calls structure
*/
struct machdep_calls ppc_md;
EXPORT_SYMBOL(ppc_md);
#ifdef CONFIG_MAGIC_SYSRQ
unsigned long SYSRQ_KEY;
#endif /* CONFIG_MAGIC_SYSRQ */
static int ppc64_panic_event(struct notifier_block *, unsigned long, void *);
static struct notifier_block ppc64_panic_block = {
.notifier_call = ppc64_panic_event,
.priority = INT_MIN /* may not return; must be done last */
};
/*
* Perhaps we can put the pmac screen_info[] here
* on pmac as well so we don't need the ifdef's.
* Until we get multiple-console support in here
* that is. -- Cort
* Maybe tie it to serial consoles, since this is really what
* these processors use on existing boards. -- Dan
*/
struct screen_info screen_info = {
.orig_x = 0,
.orig_y = 25,
.orig_video_cols = 80,
.orig_video_lines = 25,
.orig_video_isVGA = 1,
.orig_video_points = 16
};
#if defined(CONFIG_PPC_MULTIPLATFORM) && defined(CONFIG_SMP)
static int smt_enabled_cmdline;
/* Look for ibm,smt-enabled OF option */
static void check_smt_enabled(void)
{
struct device_node *dn;
char *smt_option;
/* Allow the command line to overrule the OF option */
if (smt_enabled_cmdline)
return;
dn = of_find_node_by_path("/options");
if (dn) {
smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL);
if (smt_option) {
if (!strcmp(smt_option, "on"))
smt_enabled_at_boot = 1;
else if (!strcmp(smt_option, "off"))
smt_enabled_at_boot = 0;
}
}
}
/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
smt_enabled_cmdline = 1;
if (!p)
return 0;
if (!strcmp(p, "on") || !strcmp(p, "1"))
smt_enabled_at_boot = 1;
else if (!strcmp(p, "off") || !strcmp(p, "0"))
smt_enabled_at_boot = 0;
return 0;
}
early_param("smt-enabled", early_smt_enabled);
/**
* setup_cpu_maps - initialize the following cpu maps:
* cpu_possible_map
* cpu_present_map
* cpu_sibling_map
*
* Having the possible map set up early allows us to restrict allocations
* of things like irqstacks to num_possible_cpus() rather than NR_CPUS.
*
* We do not initialize the online map here; cpus set their own bits in
* cpu_online_map as they come up.
*
* This function is valid only for Open Firmware systems. finish_device_tree
* must be called before using this.
*
* While we're here, we may as well set the "physical" cpu ids in the paca.
*/
static void __init setup_cpu_maps(void)
{
struct device_node *dn = NULL;
int cpu = 0;
int swap_cpuid = 0;
check_smt_enabled();
while ((dn = of_find_node_by_type(dn, "cpu")) && cpu < NR_CPUS) {
u32 *intserv;
int j, len = sizeof(u32), nthreads;
intserv = (u32 *)get_property(dn, "ibm,ppc-interrupt-server#s",
&len);
if (!intserv)
intserv = (u32 *)get_property(dn, "reg", NULL);
nthreads = len / sizeof(u32);
for (j = 0; j < nthreads && cpu < NR_CPUS; j++) {
cpu_set(cpu, cpu_present_map);
set_hard_smp_processor_id(cpu, intserv[j]);
if (intserv[j] == boot_cpuid_phys)
swap_cpuid = cpu;
cpu_set(cpu, cpu_possible_map);
cpu++;
}
}
/* Swap CPU id 0 with boot_cpuid_phys, so we can always assume that
* boot cpu is logical 0.
*/
if (boot_cpuid_phys != get_hard_smp_processor_id(0)) {
u32 tmp;
tmp = get_hard_smp_processor_id(0);
set_hard_smp_processor_id(0, boot_cpuid_phys);
set_hard_smp_processor_id(swap_cpuid, tmp);
}
/*
* On pSeries LPAR, we need to know how many cpus
* could possibly be added to this partition.
*/
if (systemcfg->platform == PLATFORM_PSERIES_LPAR &&
(dn = of_find_node_by_path("/rtas"))) {
int num_addr_cell, num_size_cell, maxcpus;
unsigned int *ireg;
num_addr_cell = prom_n_addr_cells(dn);
num_size_cell = prom_n_size_cells(dn);
ireg = (unsigned int *)
get_property(dn, "ibm,lrdr-capacity", NULL);
if (!ireg)
goto out;
maxcpus = ireg[num_addr_cell + num_size_cell];
/* Double maxcpus for processors which have SMT capability */
if (cpu_has_feature(CPU_FTR_SMT))
maxcpus *= 2;
if (maxcpus > NR_CPUS) {
printk(KERN_WARNING
"Partition configured for %d cpus, "
"operating system maximum is %d.\n",
maxcpus, NR_CPUS);
maxcpus = NR_CPUS;
} else
printk(KERN_INFO "Partition configured for %d cpus.\n",
maxcpus);
for (cpu = 0; cpu < maxcpus; cpu++)
cpu_set(cpu, cpu_possible_map);
out:
of_node_put(dn);
}
/*
* Do the sibling map; assume only two threads per processor.
*/
for_each_cpu(cpu) {
cpu_set(cpu, cpu_sibling_map[cpu]);
if (cpu_has_feature(CPU_FTR_SMT))
cpu_set(cpu ^ 0x1, cpu_sibling_map[cpu]);
}
systemcfg->processorCount = num_present_cpus();
}
#endif /* defined(CONFIG_PPC_MULTIPLATFORM) && defined(CONFIG_SMP) */
#ifdef CONFIG_PPC_MULTIPLATFORM
extern struct machdep_calls pSeries_md;
extern struct machdep_calls pmac_md;
extern struct machdep_calls maple_md;
extern struct machdep_calls bpa_md;
/* Ultimately, stuff them in an elf section like initcalls... */
static struct machdep_calls __initdata *machines[] = {
#ifdef CONFIG_PPC_PSERIES
&pSeries_md,
#endif /* CONFIG_PPC_PSERIES */
#ifdef CONFIG_PPC_PMAC
&pmac_md,
#endif /* CONFIG_PPC_PMAC */
#ifdef CONFIG_PPC_MAPLE
&maple_md,
#endif /* CONFIG_PPC_MAPLE */
#ifdef CONFIG_PPC_BPA
&bpa_md,
#endif
NULL
};
/*
* Early initialization entry point. This is called by head.S
* with MMU translation disabled. We rely on the "feature" of
* the CPU that ignores the top 2 bits of the address in real
* mode so we can access kernel globals normally provided we
* only toy with things in the RMO region. From here, we do
* some early parsing of the device-tree to setup out LMB
* data structures, and allocate & initialize the hash table
* and segment tables so we can start running with translation
* enabled.
*
* It is this function which will call the probe() callback of
* the various platform types and copy the matching one to the
* global ppc_md structure. Your platform can eventually do
* some very early initializations from the probe() routine, but
* this is not recommended, be very careful as, for example, the
* device-tree is not accessible via normal means at this point.
*/
void __init early_setup(unsigned long dt_ptr)
{
struct paca_struct *lpaca = get_paca();
static struct machdep_calls **mach;
/*
* Enable early debugging if any specified (see top of
* this file)
*/
EARLY_DEBUG_INIT();
DBG(" -> early_setup()\n");
/*
* Fill the default DBG level (do we want to keep
* that old mecanism around forever ?)
*/
ppcdbg_initialize();
/*
* Do early initializations using the flattened device
* tree, like retreiving the physical memory map or
* calculating/retreiving the hash table size
*/
early_init_devtree(__va(dt_ptr));
/*
* Iterate all ppc_md structures until we find the proper
* one for the current machine type
*/
DBG("Probing machine type for platform %x...\n",
systemcfg->platform);
for (mach = machines; *mach; mach++) {
if ((*mach)->probe(systemcfg->platform))
break;
}
/* What can we do if we didn't find ? */
if (*mach == NULL) {
DBG("No suitable machine found !\n");
for (;;);
}
ppc_md = **mach;
DBG("Found, Initializing memory management...\n");
/*
* Initialize stab / SLB management
*/
stab_initialize(lpaca->stab_real);
/*
* Initialize the MMU Hash table and create the linear mapping
* of memory
*/
htab_initialize();
DBG(" <- early_setup()\n");
}
/*
* Initialize some remaining members of the ppc64_caches and systemcfg structures
* (at least until we get rid of them completely). This is mostly some
* cache informations about the CPU that will be used by cache flush
* routines and/or provided to userland
*/
static void __init initialize_cache_info(void)
{
struct device_node *np;
unsigned long num_cpus = 0;
DBG(" -> initialize_cache_info()\n");
for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
num_cpus += 1;
/* We're assuming *all* of the CPUs have the same
* d-cache and i-cache sizes... -Peter
*/
if ( num_cpus == 1 ) {
u32 *sizep, *lsizep;
u32 size, lsize;
const char *dc, *ic;
/* Then read cache informations */
if (systemcfg->platform == PLATFORM_POWERMAC) {
dc = "d-cache-block-size";
ic = "i-cache-block-size";
} else {
dc = "d-cache-line-size";
ic = "i-cache-line-size";
}
size = 0;
lsize = cur_cpu_spec->dcache_bsize;
sizep = (u32 *)get_property(np, "d-cache-size", NULL);
if (sizep != NULL)
size = *sizep;
lsizep = (u32 *) get_property(np, dc, NULL);
if (lsizep != NULL)
lsize = *lsizep;
if (sizep == 0 || lsizep == 0)
DBG("Argh, can't find dcache properties ! "
"sizep: %p, lsizep: %p\n", sizep, lsizep);
systemcfg->dcache_size = ppc64_caches.dsize = size;
systemcfg->dcache_line_size =
ppc64_caches.dline_size = lsize;
ppc64_caches.log_dline_size = __ilog2(lsize);
ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
size = 0;
lsize = cur_cpu_spec->icache_bsize;
sizep = (u32 *)get_property(np, "i-cache-size", NULL);
if (sizep != NULL)
size = *sizep;
lsizep = (u32 *)get_property(np, ic, NULL);
if (lsizep != NULL)
lsize = *lsizep;
if (sizep == 0 || lsizep == 0)
DBG("Argh, can't find icache properties ! "
"sizep: %p, lsizep: %p\n", sizep, lsizep);
systemcfg->icache_size = ppc64_caches.isize = size;
systemcfg->icache_line_size =
ppc64_caches.iline_size = lsize;
ppc64_caches.log_iline_size = __ilog2(lsize);
ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
}
}
/* Add an eye catcher and the systemcfg layout version number */
strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64");
systemcfg->version.major = SYSTEMCFG_MAJOR;
systemcfg->version.minor = SYSTEMCFG_MINOR;
systemcfg->processor = mfspr(SPRN_PVR);
DBG(" <- initialize_cache_info()\n");
}
static void __init check_for_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
u64 *prop;
DBG(" -> check_for_initrd()\n");
if (of_chosen) {
prop = (u64 *)get_property(of_chosen,
"linux,initrd-start", NULL);
if (prop != NULL) {
initrd_start = (unsigned long)__va(*prop);
prop = (u64 *)get_property(of_chosen,
"linux,initrd-end", NULL);
if (prop != NULL) {
initrd_end = (unsigned long)__va(*prop);
initrd_below_start_ok = 1;
} else
initrd_start = 0;
}
}
/* If we were passed an initrd, set the ROOT_DEV properly if the values
* look sensible. If not, clear initrd reference.
*/
if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
initrd_end > initrd_start)
ROOT_DEV = Root_RAM0;
else
initrd_start = initrd_end = 0;
if (initrd_start)
printk("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
DBG(" <- check_for_initrd()\n");
#endif /* CONFIG_BLK_DEV_INITRD */
}
#endif /* CONFIG_PPC_MULTIPLATFORM */
/*
* Do some initial setup of the system. The parameters are those which
* were passed in from the bootloader.
*/
void __init setup_system(void)
{
DBG(" -> setup_system()\n");
#ifdef CONFIG_PPC_ISERIES
/* pSeries systems are identified in prom.c via OF. */
if (itLpNaca.xLparInstalled == 1)
systemcfg->platform = PLATFORM_ISERIES_LPAR;
ppc_md.init_early();
#else /* CONFIG_PPC_ISERIES */
/*
* Unflatten the device-tree passed by prom_init or kexec
*/
unflatten_device_tree();
/*
* Fill the ppc64_caches & systemcfg structures with informations
* retreived from the device-tree. Need to be called before
* finish_device_tree() since the later requires some of the
* informations filled up here to properly parse the interrupt
* tree.
* It also sets up the cache line sizes which allows to call
* routines like flush_icache_range (used by the hash init
* later on).
*/
initialize_cache_info();
#ifdef CONFIG_PPC_RTAS
/*
* Initialize RTAS if available
*/
rtas_initialize();
#endif /* CONFIG_PPC_RTAS */
/*
* Check if we have an initrd provided via the device-tree
*/
check_for_initrd();
/*
* Do some platform specific early initializations, that includes
* setting up the hash table pointers. It also sets up some interrupt-mapping
* related options that will be used by finish_device_tree()
*/
ppc_md.init_early();
/*
* "Finish" the device-tree, that is do the actual parsing of
* some of the properties like the interrupt map
*/
finish_device_tree();
/*
* Initialize xmon
*/
#ifdef CONFIG_XMON_DEFAULT
xmon_init(1);
#endif
/*
* Register early console
*/
register_early_udbg_console();
/* Save unparsed command line copy for /proc/cmdline */
strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
parse_early_param();
#endif /* !CONFIG_PPC_ISERIES */
#if defined(CONFIG_SMP) && !defined(CONFIG_PPC_ISERIES)
/*
* iSeries has already initialized the cpu maps at this point.
*/
setup_cpu_maps();
/* Release secondary cpus out of their spinloops at 0x60 now that
* we can map physical -> logical CPU ids
*/
smp_release_cpus();
#endif /* defined(CONFIG_SMP) && !defined(CONFIG_PPC_ISERIES) */
printk("Starting Linux PPC64 %s\n", UTS_RELEASE);
printk("-----------------------------------------------------\n");
printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size);
printk("ppc64_debug_switch = 0x%lx\n", ppc64_debug_switch);
printk("ppc64_interrupt_controller = 0x%ld\n", ppc64_interrupt_controller);
printk("systemcfg = 0x%p\n", systemcfg);
printk("systemcfg->platform = 0x%x\n", systemcfg->platform);
printk("systemcfg->processorCount = 0x%lx\n", systemcfg->processorCount);
printk("systemcfg->physicalMemorySize = 0x%lx\n", systemcfg->physicalMemorySize);
printk("ppc64_caches.dcache_line_size = 0x%x\n",
ppc64_caches.dline_size);
printk("ppc64_caches.icache_line_size = 0x%x\n",
ppc64_caches.iline_size);
printk("htab_address = 0x%p\n", htab_address);
printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
printk("-----------------------------------------------------\n");
mm_init_ppc64();
DBG(" <- setup_system()\n");
}
/* also used by kexec */
void machine_shutdown(void)
{
if (ppc_md.nvram_sync)
ppc_md.nvram_sync();
}
void machine_restart(char *cmd)
{
machine_shutdown();
ppc_md.restart(cmd);
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
void machine_power_off(void)
{
machine_shutdown();
ppc_md.power_off();
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
/* Used by the G5 thermal driver */
EXPORT_SYMBOL_GPL(machine_power_off);
void machine_halt(void)
{
machine_shutdown();
ppc_md.halt();
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
static int ppc64_panic_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
ppc_md.panic((char *)ptr); /* May not return */
return NOTIFY_DONE;
}
#ifdef CONFIG_SMP
DEFINE_PER_CPU(unsigned int, pvr);
#endif
static int show_cpuinfo(struct seq_file *m, void *v)
{
unsigned long cpu_id = (unsigned long)v - 1;
unsigned int pvr;
unsigned short maj;
unsigned short min;
if (cpu_id == NR_CPUS) {
seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
if (ppc_md.get_cpuinfo != NULL)
ppc_md.get_cpuinfo(m);
return 0;
}
/* We only show online cpus: disable preempt (overzealous, I
* knew) to prevent cpu going down. */
preempt_disable();
if (!cpu_online(cpu_id)) {
preempt_enable();
return 0;
}
#ifdef CONFIG_SMP
pvr = per_cpu(pvr, cpu_id);
#else
pvr = mfspr(SPRN_PVR);
#endif
maj = (pvr >> 8) & 0xFF;
min = pvr & 0xFF;
seq_printf(m, "processor\t: %lu\n", cpu_id);
seq_printf(m, "cpu\t\t: ");
if (cur_cpu_spec->pvr_mask)
seq_printf(m, "%s", cur_cpu_spec->cpu_name);
else
seq_printf(m, "unknown (%08x)", pvr);
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
seq_printf(m, ", altivec supported");
#endif /* CONFIG_ALTIVEC */
seq_printf(m, "\n");
/*
* Assume here that all clock rates are the same in a
* smp system. -- Cort
*/
seq_printf(m, "clock\t\t: %lu.%06luMHz\n", ppc_proc_freq / 1000000,
ppc_proc_freq % 1000000);
seq_printf(m, "revision\t: %hd.%hd\n\n", maj, min);
preempt_enable();
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos <= NR_CPUS ? (void *)((*pos)+1) : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start =c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
/*
* These three variables are used to save values passed to us by prom_init()
* via the device tree. The TCE variables are needed because with a memory_limit
* in force we may need to explicitly map the TCE are at the top of RAM.
*/
unsigned long memory_limit;
unsigned long tce_alloc_start;
unsigned long tce_alloc_end;
#ifdef CONFIG_PPC_ISERIES
/*
* On iSeries we just parse the mem=X option from the command line.
* On pSeries it's a bit more complicated, see prom_init_mem()
*/
static int __init early_parsemem(char *p)
{
if (!p)
return 0;
memory_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
return 0;
}
early_param("mem", early_parsemem);
#endif /* CONFIG_PPC_ISERIES */
#ifdef CONFIG_PPC_MULTIPLATFORM
static int __init set_preferred_console(void)
{
struct device_node *prom_stdout = NULL;
char *name;
u32 *spd;
int offset = 0;
DBG(" -> set_preferred_console()\n");
/* The user has requested a console so this is already set up. */
if (strstr(saved_command_line, "console=")) {
DBG(" console was specified !\n");
return -EBUSY;
}
if (!of_chosen) {
DBG(" of_chosen is NULL !\n");
return -ENODEV;
}
/* We are getting a weird phandle from OF ... */
/* ... So use the full path instead */
name = (char *)get_property(of_chosen, "linux,stdout-path", NULL);
if (name == NULL) {
DBG(" no linux,stdout-path !\n");
return -ENODEV;
}
prom_stdout = of_find_node_by_path(name);
if (!prom_stdout) {
DBG(" can't find stdout package %s !\n", name);
return -ENODEV;
}
DBG("stdout is %s\n", prom_stdout->full_name);
name = (char *)get_property(prom_stdout, "name", NULL);
if (!name) {
DBG(" stdout package has no name !\n");
goto not_found;
}
spd = (u32 *)get_property(prom_stdout, "current-speed", NULL);
if (0)
;
#ifdef CONFIG_SERIAL_8250_CONSOLE
else if (strcmp(name, "serial") == 0) {
int i;
u32 *reg = (u32 *)get_property(prom_stdout, "reg", &i);
if (i > 8) {
switch (reg[1]) {
case 0x3f8:
offset = 0;
break;
case 0x2f8:
offset = 1;
break;
case 0x898:
offset = 2;
break;
case 0x890:
offset = 3;
break;
default:
/* We dont recognise the serial port */
goto not_found;
}
}
}
#endif /* CONFIG_SERIAL_8250_CONSOLE */
#ifdef CONFIG_PPC_PSERIES
else if (strcmp(name, "vty") == 0) {
u32 *reg = (u32 *)get_property(prom_stdout, "reg", NULL);
char *compat = (char *)get_property(prom_stdout, "compatible", NULL);
if (reg && compat && (strcmp(compat, "hvterm-protocol") == 0)) {
/* Host Virtual Serial Interface */
int offset;
switch (reg[0]) {
case 0x30000000:
offset = 0;
break;
case 0x30000001:
offset = 1;
break;
default:
goto not_found;
}
of_node_put(prom_stdout);
DBG("Found hvsi console at offset %d\n", offset);
return add_preferred_console("hvsi", offset, NULL);
} else {
/* pSeries LPAR virtual console */
of_node_put(prom_stdout);
DBG("Found hvc console\n");
return add_preferred_console("hvc", 0, NULL);
}
}
#endif /* CONFIG_PPC_PSERIES */
#ifdef CONFIG_SERIAL_PMACZILOG_CONSOLE
else if (strcmp(name, "ch-a") == 0)
offset = 0;
else if (strcmp(name, "ch-b") == 0)
offset = 1;
#endif /* CONFIG_SERIAL_PMACZILOG_CONSOLE */
else
goto not_found;
of_node_put(prom_stdout);
DBG("Found serial console at ttyS%d\n", offset);
if (spd) {
static char __initdata opt[16];
sprintf(opt, "%d", *spd);
return add_preferred_console("ttyS", offset, opt);
} else
return add_preferred_console("ttyS", offset, NULL);
not_found:
DBG("No preferred console found !\n");
of_node_put(prom_stdout);
return -ENODEV;
}
console_initcall(set_preferred_console);
#endif /* CONFIG_PPC_MULTIPLATFORM */
#ifdef CONFIG_IRQSTACKS
static void __init irqstack_early_init(void)
{
unsigned int i;
/*
* interrupt stacks must be under 256MB, we cannot afford to take
* SLB misses on them.
*/
for_each_cpu(i) {
softirq_ctx[i] = (struct thread_info *)__va(lmb_alloc_base(THREAD_SIZE,
THREAD_SIZE, 0x10000000));
hardirq_ctx[i] = (struct thread_info *)__va(lmb_alloc_base(THREAD_SIZE,
THREAD_SIZE, 0x10000000));
}
}
#else
#define irqstack_early_init()
#endif
/*
* Stack space used when we detect a bad kernel stack pointer, and
* early in SMP boots before relocation is enabled.
*/
static void __init emergency_stack_init(void)
{
unsigned long limit;
unsigned int i;
/*
* Emergency stacks must be under 256MB, we cannot afford to take
* SLB misses on them. The ABI also requires them to be 128-byte
* aligned.
*
* Since we use these as temporary stacks during secondary CPU
* bringup, we need to get at them in real mode. This means they
* must also be within the RMO region.
*/
limit = min(0x10000000UL, lmb.rmo_size);
for_each_cpu(i)
paca[i].emergency_sp = __va(lmb_alloc_base(PAGE_SIZE, 128,
limit)) + PAGE_SIZE;
}
/*
* Called from setup_arch to initialize the bitmap of available
* syscalls in the systemcfg page
*/
void __init setup_syscall_map(void)
{
unsigned int i, count64 = 0, count32 = 0;
extern unsigned long *sys_call_table;
extern unsigned long *sys_call_table32;
extern unsigned long sys_ni_syscall;
for (i = 0; i < __NR_syscalls; i++) {
if (sys_call_table[i] == sys_ni_syscall)
continue;
count64++;
systemcfg->syscall_map_64[i >> 5] |= 0x80000000UL >> (i & 0x1f);
}
for (i = 0; i < __NR_syscalls; i++) {
if (sys_call_table32[i] == sys_ni_syscall)
continue;
count32++;
systemcfg->syscall_map_32[i >> 5] |= 0x80000000UL >> (i & 0x1f);
}
printk(KERN_INFO "Syscall map setup, %d 32 bits and %d 64 bits syscalls\n",
count32, count64);
}
/*
* Called into from start_kernel, after lock_kernel has been called.
* Initializes bootmem, which is unsed to manage page allocation until
* mem_init is called.
*/
void __init setup_arch(char **cmdline_p)
{
extern void do_init_bootmem(void);
ppc64_boot_msg(0x12, "Setup Arch");
*cmdline_p = cmd_line;
/*
* Set cache line size based on type of cpu as a default.
* Systems with OF can look in the properties on the cpu node(s)
* for a possibly more accurate value.
*/
dcache_bsize = ppc64_caches.dline_size;
icache_bsize = ppc64_caches.iline_size;
/* reboot on panic */
panic_timeout = 180;
if (ppc_md.panic)
notifier_chain_register(&panic_notifier_list, &ppc64_panic_block);
init_mm.start_code = PAGE_OFFSET;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = klimit;
irqstack_early_init();
emergency_stack_init();
stabs_alloc();
/* set up the bootmem stuff with available memory */
do_init_bootmem();
sparse_init();
/* initialize the syscall map in systemcfg */
setup_syscall_map();
ppc_md.setup_arch();
/* Use the default idle loop if the platform hasn't provided one. */
if (NULL == ppc_md.idle_loop) {
ppc_md.idle_loop = default_idle;
printk(KERN_INFO "Using default idle loop\n");
}
paging_init();
ppc64_boot_msg(0x15, "Setup Done");
}
/* ToDo: do something useful if ppc_md is not yet setup. */
#define PPC64_LINUX_FUNCTION 0x0f000000
#define PPC64_IPL_MESSAGE 0xc0000000
#define PPC64_TERM_MESSAGE 0xb0000000
#define PPC64_ATTN_MESSAGE 0xa0000000
#define PPC64_DUMP_MESSAGE 0xd0000000
static void ppc64_do_msg(unsigned int src, const char *msg)
{
if (ppc_md.progress) {
char buf[128];
sprintf(buf, "%08X\n", src);
ppc_md.progress(buf, 0);
snprintf(buf, 128, "%s", msg);
ppc_md.progress(buf, 0);
}
}
/* Print a boot progress message. */
void ppc64_boot_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
printk("[boot]%04x %s\n", src, msg);
}
/* Print a termination message (print only -- does not stop the kernel) */
void ppc64_terminate_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
printk("[terminate]%04x %s\n", src, msg);
}
/* Print something that needs attention (device error, etc) */
void ppc64_attention_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_ATTN_MESSAGE|src, msg);
printk("[attention]%04x %s\n", src, msg);
}
/* Print a dump progress message. */
void ppc64_dump_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_DUMP_MESSAGE|src, msg);
printk("[dump]%04x %s\n", src, msg);
}
/* This should only be called on processor 0 during calibrate decr */
void __init setup_default_decr(void)
{
struct paca_struct *lpaca = get_paca();
lpaca->default_decr = tb_ticks_per_jiffy;
lpaca->next_jiffy_update_tb = get_tb() + tb_ticks_per_jiffy;
}
#ifndef CONFIG_PPC_ISERIES
/*
* This function can be used by platforms to "find" legacy serial ports.
* It works for "serial" nodes under an "isa" node, and will try to
* respect the "ibm,aix-loc" property if any. It works with up to 8
* ports.
*/
#define MAX_LEGACY_SERIAL_PORTS 8
static struct plat_serial8250_port serial_ports[MAX_LEGACY_SERIAL_PORTS+1];
static unsigned int old_serial_count;
void __init generic_find_legacy_serial_ports(u64 *physport,
unsigned int *default_speed)
{
struct device_node *np;
u32 *sizeprop;
struct isa_reg_property {
u32 space;
u32 address;
u32 size;
};
struct pci_reg_property {
struct pci_address addr;
u32 size_hi;
u32 size_lo;
};
DBG(" -> generic_find_legacy_serial_port()\n");
*physport = 0;
if (default_speed)
*default_speed = 0;
np = of_find_node_by_path("/");
if (!np)
return;
/* First fill our array */
for (np = NULL; (np = of_find_node_by_type(np, "serial"));) {
struct device_node *isa, *pci;
struct isa_reg_property *reg;
unsigned long phys_size, addr_size, io_base;
u32 *rangesp;
u32 *interrupts, *clk, *spd;
char *typep;
int index, rlen, rentsize;
/* Ok, first check if it's under an "isa" parent */
isa = of_get_parent(np);
if (!isa || strcmp(isa->name, "isa")) {
DBG("%s: no isa parent found\n", np->full_name);
continue;
}
/* Now look for an "ibm,aix-loc" property that gives us ordering
* if any...
*/
typep = (char *)get_property(np, "ibm,aix-loc", NULL);
/* Get the ISA port number */
reg = (struct isa_reg_property *)get_property(np, "reg", NULL);
if (reg == NULL)
goto next_port;
/* We assume the interrupt number isn't translated ... */
interrupts = (u32 *)get_property(np, "interrupts", NULL);
/* get clock freq. if present */
clk = (u32 *)get_property(np, "clock-frequency", NULL);
/* get default speed if present */
spd = (u32 *)get_property(np, "current-speed", NULL);
/* Default to locate at end of array */
index = old_serial_count; /* end of the array by default */
/* If we have a location index, then use it */
if (typep && *typep == 'S') {
index = simple_strtol(typep+1, NULL, 0) - 1;
/* if index is out of range, use end of array instead */
if (index >= MAX_LEGACY_SERIAL_PORTS)
index = old_serial_count;
/* if our index is still out of range, that mean that
* array is full, we could scan for a free slot but that
* make little sense to bother, just skip the port
*/
if (index >= MAX_LEGACY_SERIAL_PORTS)
goto next_port;
if (index >= old_serial_count)
old_serial_count = index + 1;
/* Check if there is a port who already claimed our slot */
if (serial_ports[index].iobase != 0) {
/* if we still have some room, move it, else override */
if (old_serial_count < MAX_LEGACY_SERIAL_PORTS) {
DBG("Moved legacy port %d -> %d\n", index,
old_serial_count);
serial_ports[old_serial_count++] =
serial_ports[index];
} else {
DBG("Replacing legacy port %d\n", index);
}
}
}
if (index >= MAX_LEGACY_SERIAL_PORTS)
goto next_port;
if (index >= old_serial_count)
old_serial_count = index + 1;
/* Now fill the entry */
memset(&serial_ports[index], 0, sizeof(struct plat_serial8250_port));
serial_ports[index].uartclk = clk ? *clk : BASE_BAUD * 16;
serial_ports[index].iobase = reg->address;
serial_ports[index].irq = interrupts ? interrupts[0] : 0;
serial_ports[index].flags = ASYNC_BOOT_AUTOCONF;
DBG("Added legacy port, index: %d, port: %x, irq: %d, clk: %d\n",
index,
serial_ports[index].iobase,
serial_ports[index].irq,
serial_ports[index].uartclk);
/* Get phys address of IO reg for port 1 */
if (index != 0)
goto next_port;
pci = of_get_parent(isa);
if (!pci) {
DBG("%s: no pci parent found\n", np->full_name);
goto next_port;
}
rangesp = (u32 *)get_property(pci, "ranges", &rlen);
if (rangesp == NULL) {
of_node_put(pci);
goto next_port;
}
rlen /= 4;
/* we need the #size-cells of the PCI bridge node itself */
phys_size = 1;
sizeprop = (u32 *)get_property(pci, "#size-cells", NULL);
if (sizeprop != NULL)
phys_size = *sizeprop;
/* we need the parent #addr-cells */
addr_size = prom_n_addr_cells(pci);
rentsize = 3 + addr_size + phys_size;
io_base = 0;
for (;rlen >= rentsize; rlen -= rentsize,rangesp += rentsize) {
if (((rangesp[0] >> 24) & 0x3) != 1)
continue; /* not IO space */
io_base = rangesp[3];
if (addr_size == 2)
io_base = (io_base << 32) | rangesp[4];
}
if (io_base != 0) {
*physport = io_base + reg->address;
if (default_speed && spd)
*default_speed = *spd;
}
of_node_put(pci);
next_port:
of_node_put(isa);
}
DBG(" <- generic_find_legacy_serial_port()\n");
}
static struct platform_device serial_device = {
.name = "serial8250",
.id = 0,
.dev = {
.platform_data = serial_ports,
},
};
static int __init serial_dev_init(void)
{
return platform_device_register(&serial_device);
}
arch_initcall(serial_dev_init);
#endif /* CONFIG_PPC_ISERIES */
int check_legacy_ioport(unsigned long base_port)
{
if (ppc_md.check_legacy_ioport == NULL)
return 0;
return ppc_md.check_legacy_ioport(base_port);
}
EXPORT_SYMBOL(check_legacy_ioport);
#ifdef CONFIG_XMON
static int __init early_xmon(char *p)
{
/* ensure xmon is enabled */
if (p) {
if (strncmp(p, "on", 2) == 0)
xmon_init(1);
if (strncmp(p, "off", 3) == 0)
xmon_init(0);
if (strncmp(p, "early", 5) != 0)
return 0;
}
xmon_init(1);
debugger(NULL);
return 0;
}
early_param("xmon", early_xmon);
#endif
void cpu_die(void)
{
if (ppc_md.cpu_die)
ppc_md.cpu_die();
}