mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-06 09:21:18 -05:00
217 lines
8.6 KiB
C++
217 lines
8.6 KiB
C++
|
// Copyright John Maddock 2006.
|
||
|
// Copyright Paul A. Bristow 2007, 2009
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||
|
|
||
|
#include <boost/math/concepts/real_concept.hpp>
|
||
|
#define BOOST_TEST_MAIN
|
||
|
#include <boost/test/unit_test.hpp>
|
||
|
#include <boost/test/floating_point_comparison.hpp>
|
||
|
#include <boost/math/special_functions/math_fwd.hpp>
|
||
|
#include <boost/math/tools/stats.hpp>
|
||
|
#include <boost/math/tools/test.hpp>
|
||
|
#include <boost/math/constants/constants.hpp>
|
||
|
#include <boost/type_traits/is_floating_point.hpp>
|
||
|
#include <boost/array.hpp>
|
||
|
#include "functor.hpp"
|
||
|
|
||
|
#ifdef TEST_GSL
|
||
|
#include <gsl/gsl_errno.h>
|
||
|
#include <gsl/gsl_message.h>
|
||
|
#endif
|
||
|
|
||
|
#include "handle_test_result.hpp"
|
||
|
#include "table_type.hpp"
|
||
|
|
||
|
#ifndef SC_
|
||
|
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
|
||
|
#endif
|
||
|
|
||
|
template <class Real, class T>
|
||
|
void test_inverses(const T& data)
|
||
|
{
|
||
|
using namespace std;
|
||
|
//typedef typename T::value_type row_type;
|
||
|
typedef Real value_type;
|
||
|
|
||
|
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
|
||
|
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
|
||
|
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
|
||
|
|
||
|
for(unsigned i = 0; i < data.size(); ++i)
|
||
|
{
|
||
|
//
|
||
|
// These inverse tests are thrown off if the output of the
|
||
|
// incomplete beta is too close to 1: basically there is insuffient
|
||
|
// information left in the value we're using as input to the inverse
|
||
|
// to be able to get back to the original value.
|
||
|
//
|
||
|
if(Real(data[i][5]) == 0)
|
||
|
{
|
||
|
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
|
||
|
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
|
||
|
}
|
||
|
else if((1 - Real(data[i][5]) > 0.001)
|
||
|
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>())
|
||
|
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>()))
|
||
|
{
|
||
|
value_type inv = boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5]));
|
||
|
BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
|
||
|
inv = boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5]));
|
||
|
BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
|
||
|
}
|
||
|
else if(1 == Real(data[i][5]))
|
||
|
{
|
||
|
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value<value_type>());
|
||
|
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
|
||
|
}
|
||
|
|
||
|
if(Real(data[i][6]) == 0)
|
||
|
{
|
||
|
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
|
||
|
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
|
||
|
}
|
||
|
else if((1 - Real(data[i][6]) > 0.001)
|
||
|
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<value_type>())
|
||
|
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<double>()))
|
||
|
{
|
||
|
value_type inv = boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6]));
|
||
|
BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision);
|
||
|
inv = boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6]));
|
||
|
BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision);
|
||
|
}
|
||
|
else if(Real(data[i][6]) == 1)
|
||
|
{
|
||
|
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>());
|
||
|
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value<value_type>());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <class Real, class T>
|
||
|
void test_inverses2(const T& data, const char* type_name, const char* test_name)
|
||
|
{
|
||
|
#if !(defined(ERROR_REPORTING_MODE) && !defined(IBETA_INVA_FUNCTION_TO_TEST))
|
||
|
//typedef typename T::value_type row_type;
|
||
|
typedef Real value_type;
|
||
|
|
||
|
typedef value_type (*pg)(value_type, value_type, value_type);
|
||
|
#ifdef IBETA_INVA_FUNCTION_TO_TEST
|
||
|
pg funcp = IBETA_INVA_FUNCTION_TO_TEST;
|
||
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
||
|
pg funcp = boost::math::ibeta_inva<value_type, value_type, value_type>;
|
||
|
#else
|
||
|
pg funcp = boost::math::ibeta_inva;
|
||
|
#endif
|
||
|
|
||
|
boost::math::tools::test_result<value_type> result;
|
||
|
|
||
|
std::cout << "Testing " << test_name << " with type " << type_name
|
||
|
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
|
||
|
|
||
|
//
|
||
|
// test ibeta_inva(T, T, T) against data:
|
||
|
//
|
||
|
result = boost::math::tools::test_hetero<Real>(
|
||
|
data,
|
||
|
bind_func<Real>(funcp, 0, 1, 2),
|
||
|
extract_result<Real>(3));
|
||
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_inva", test_name);
|
||
|
//
|
||
|
// test ibetac_inva(T, T, T) against data:
|
||
|
//
|
||
|
#ifdef IBETAC_INVA_FUNCTION_TO_TEST
|
||
|
funcp = IBETAC_INVA_FUNCTION_TO_TEST;
|
||
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
||
|
funcp = boost::math::ibetac_inva<value_type, value_type, value_type>;
|
||
|
#else
|
||
|
funcp = boost::math::ibetac_inva;
|
||
|
#endif
|
||
|
result = boost::math::tools::test_hetero<Real>(
|
||
|
data,
|
||
|
bind_func<Real>(funcp, 0, 1, 2),
|
||
|
extract_result<Real>(4));
|
||
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_inva", test_name);
|
||
|
//
|
||
|
// test ibeta_invb(T, T, T) against data:
|
||
|
//
|
||
|
#ifdef IBETA_INVB_FUNCTION_TO_TEST
|
||
|
funcp = IBETA_INVB_FUNCTION_TO_TEST;
|
||
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
||
|
funcp = boost::math::ibeta_invb<value_type, value_type, value_type>;
|
||
|
#else
|
||
|
funcp = boost::math::ibeta_invb;
|
||
|
#endif
|
||
|
result = boost::math::tools::test_hetero<Real>(
|
||
|
data,
|
||
|
bind_func<Real>(funcp, 0, 1, 2),
|
||
|
extract_result<Real>(5));
|
||
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_invb", test_name);
|
||
|
//
|
||
|
// test ibetac_invb(T, T, T) against data:
|
||
|
//
|
||
|
#ifdef IBETAC_INVB_FUNCTION_TO_TEST
|
||
|
funcp = IBETAC_INVB_FUNCTION_TO_TEST;
|
||
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
||
|
funcp = boost::math::ibetac_invb<value_type, value_type, value_type>;
|
||
|
#else
|
||
|
funcp = boost::math::ibetac_invb;
|
||
|
#endif
|
||
|
result = boost::math::tools::test_hetero<Real>(
|
||
|
data,
|
||
|
bind_func<Real>(funcp, 0, 1, 2),
|
||
|
extract_result<Real>(6));
|
||
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_invb", test_name);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
template <class T>
|
||
|
void test_beta(T, const char* name)
|
||
|
{
|
||
|
#if !defined(ERROR_REPORTING_MODE)
|
||
|
//
|
||
|
// The actual test data is rather verbose, so it's in a separate file
|
||
|
//
|
||
|
// The contents are as follows, each row of data contains
|
||
|
// five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
|
||
|
//
|
||
|
std::cout << "Running sanity checks for type " << name << std::endl;
|
||
|
|
||
|
#if !defined(TEST_DATA) || (TEST_DATA == 1)
|
||
|
# include "ibeta_small_data.ipp"
|
||
|
|
||
|
test_inverses<T>(ibeta_small_data);
|
||
|
#endif
|
||
|
|
||
|
#if !defined(TEST_DATA) || (TEST_DATA == 2)
|
||
|
# include "ibeta_data.ipp"
|
||
|
|
||
|
test_inverses<T>(ibeta_data);
|
||
|
#endif
|
||
|
|
||
|
#if !defined(TEST_DATA) || (TEST_DATA == 3)
|
||
|
# include "ibeta_large_data.ipp"
|
||
|
|
||
|
test_inverses<T>(ibeta_large_data);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if !defined(TEST_REAL_CONCEPT) || defined(FULL_TEST) || (TEST_DATA == 4)
|
||
|
if(boost::is_floating_point<T>::value){
|
||
|
//
|
||
|
// This accuracy test is normally only enabled for "real"
|
||
|
// floating point types and not for class real_concept.
|
||
|
// The reason is that these tests are exceptionally slow
|
||
|
// to complete when T doesn't have Lanczos support defined for it.
|
||
|
//
|
||
|
# include "ibeta_inva_data.ipp"
|
||
|
|
||
|
test_inverses2<T>(ibeta_inva_data, name, "Inverse incomplete beta");
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|