WSJT-X/libm65/specjtms.f90

162 lines
3.8 KiB
Fortran
Raw Normal View History

subroutine specjtms(k)
! Starting code for a JTMS3 decoder.
parameter (NSMAX=30*48000)
parameter (NFFT=8192,NH=NFFT/2)
integer*2 id
real x(NFFT),w(NFFT)
real p(24)
real chansym(258),softsym(341)
integer nsum(24)
complex cx(NFFT),cx2(NFFT),cx0(NFFT)
complex covx(NH)
real s1a(NH),s2a(580)
logical first,window
common/mscom/id(1440000),s1(215,703),s2(215,703)
data first/.true./
save
if(first) then
pi=4.0*atan(1.0)
twopi=2.0*pi
do i=1,nfft
w(i)=(sin(i*pi/nfft))**2
enddo
df=48000.0/nfft
ja=nint(2600.0)/df
jb=nint(3400.0)/df
iz=3000.0/df
covx=0.
read(10,3001) chansym
3001 format(50f1.0)
chansym=2.0*chansym - 1.0
window=.false.
first=.false.
endif
ib=k
ia=k-4095
i0=ib-8191
sq=0.
do i=ia,ib
sq=sq + (0.001*id(i))**2
enddo
write(13,1010) t,sq,db(sq)
1010 format(3f12.3)
if(k.lt.8192) return
x(1:nfft)=0.001*id(i0:ib)
fac=2.0/nfft
cx=fac*x
if(window) cx=w*cx
call four2a(cx,nfft,1,-1,1) !Forward c2c FFT
do i=1,iz !Save spectrum for plot
s1a(i)=real(cx(i+1))**2 + aimag(cx(i+1))**2
enddo
cx(1)=0.5*cx(1)
cx(nh+2:nfft)=0.
call four2a(cx,nfft,1,1,1) !Inverse c2c FFT
if(window) then
cx(1:nh)=cx(1:nh)+covx(1:nh) !Add previous segment's 2nd half
covx(1:nh)=cx(nh+1:nfft) !Save 2nd half
endif
t=k/48000.0
cx2=cx*cx
call four2a(cx2,nfft,1,-1,1) !Forward c2c FFT of cx2
spk0=0.
do j=ja,jb
sq=1.e-6*(real(cx2(j))**2 + aimag(cx2(j))**2)
s2a(j)=sq
f=(j-1)*df
if(sq.gt.spk0) then
spk0=sq
f0=0.5*(f-3000.0)
phi0=0.5*atan2(aimag(cx2(j)),real(cx2(j)))
endif
write(15,1020) (j-1)*df,sq
1020 format(f10.3,f12.3)
enddo
slimit=2.0
! slimit=87.5
! if(spk0.gt.slimit) then
if(abs(spk0-87.3).lt.0.1) then
write(*,1030) t,f0,phi0,spk0
1030 format('t:',f6.2,' f0:',f7.1,' phi0:',f6.2,' spk0:',f8.1)
do i=1,iz
write(16,1040) i*df,s1a(i),db(s1a(i))
1040 format(3f12.3)
enddo
do j=ja,jb
f=(j-1)*df
f0a=0.5*(f-3000.0)
write(17,1050) f0a,s2a(j)
1050 format(2f12.3)
enddo
phi=phi0
phi=3.9
dphi=2.0*pi*(f0+1500.0 -1.1)/48000.0
p=0.
nsum=0
do i=1,nfft
phi=phi+dphi
if(phi.gt.twopi) phi=phi-twopi
cx0(i)=cx(i)*cmplx(cos(phi),-sin(phi))
pha=atan2(aimag(cx0(i)),real(cx0(i)))
write(18,1060) i,cx0(i),pha
1060 format(i6,5f12.3)
j=mod(i-1,24) + 1
! p(j)=p(j)+abs(cx0(i))
p(j)=p(j) + real(cx0(i))**2 + aimag(cx0(i))**2
nsum(j)=nsum(j)+1
enddo
do i=1,24
p(i)=p(i)/nsum(i)
write(20,1070) i,p(i)
1070 format(i6,f12.3)
enddo
do i=16,nfft,24
amp=abs(cx0(i))
pha=atan2(aimag(cx0(i)),real(cx0(i)))
j=(i+23)/24
write(21,1060) j,cx0(i),pha,pha+twopi,amp
softsym(j)=real(cx0(i))
enddo
! do iter=1,5
chansym=cshift(chansym,-86)
do lag=0,83
sum=dot_product(chansym,softsym(lag+1:lag+258))
if(abs(sum).gt.smax) then
smax=abs(sum)
lagpk=lag
endif
write(22,1080) lag,sum
1080 format(i3,f12.3)
enddo
! chansym=cshift(chansym,43)
! enddo
do i=1,258
prod=-chansym(i)*softsym(lagpk+i)
write(23,1090) i,prod,chansym(i),softsym(lagpk+i)
1090 format(i5,3f10.3)
enddo
do i=1,258,6
write(24,1100) (i+5)/6,int(chansym(i)),softsym(lagpk+i)
1100 format(2i5,f8.1)
enddo
endif
end subroutine specjtms