mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
	
	
		
			262 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
		
		
			
		
	
	
			262 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
|  | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" | ||
|  |     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> | ||
|  | <html xmlns="http://www.w3.org/1999/xhtml"> | ||
|  | <head> | ||
|  | <meta name="generator" content= | ||
|  | "HTML Tidy for Linux/x86 (vers 1st March 2004), see www.w3.org" /> | ||
|  | <meta name="GENERATOR" content="Quanta Plus" /> | ||
|  | <meta http-equiv="Content-Type" content= | ||
|  | "text/html; charset=us-ascii" /> | ||
|  | <link rel="stylesheet" href="../../../../boost.css" type="text/css"/> | ||
|  | <link rel="stylesheet" href="ublas.css" type="text/css" /> | ||
|  | <script type="text/javascript" src="js/jquery-1.3.2.min.js" async="async" ></script> | ||
|  | <script type="text/javascript" src="js/jquery.toc-gw.js" async="async" ></script> | ||
|  | <title>uBLAS operations overview</title> | ||
|  | </head> | ||
|  | <body> | ||
|  | <h1><img src="../../../../boost.png" align="middle" />Overview of Matrix and Vector Operations</h1> | ||
|  | <div class="toc" id="toc"></div> | ||
|  | 
 | ||
|  | <dl> | ||
|  | <dt>Contents:</dt> | ||
|  | <dd><a href="#blas">Basic Linear Algebra</a></dd> | ||
|  | <dd><a href="#advanced">Advanced Functions</a></dd> | ||
|  | <dd><a href="#sub">Submatrices, Subvectors</a></dd> | ||
|  | <dd><a href="#speed">Speed Improvements</a></dd> | ||
|  | </dl> | ||
|  | 
 | ||
|  | <h2>Definitions</h2> | ||
|  | 
 | ||
|  | <table style="" summary="notation"> | ||
|  | <tr><td><code>A, B, C</code></td> | ||
|  | <td> are matrices</td></tr> | ||
|  | <tr><td><code>u, v, w</code></td>  | ||
|  | <td>are vectors</td></tr> | ||
|  | <tr><td><code>i, j, k</code></td>  | ||
|  | <td>are integer values</td></tr> | ||
|  | <tr><td><code>t, t1, t2</code></td>  | ||
|  | <td>are scalar values</td></tr> | ||
|  | <tr><td><code>r, r1, r2</code></td>  | ||
|  | <td>are <a href="range.html">ranges</a>, e.g. <code>range(0, 3)</code></td></tr> | ||
|  | <tr><td><code>s, s1, s2</code></td>  | ||
|  | <td>are <a href="range.html#slice">slices</a>, e.g. <code>slice(0, 1, 3)</code></td></tr> | ||
|  | </table> | ||
|  | 
 | ||
|  | <h2><a name="blas">Basic Linear Algebra</a></h2> | ||
|  | 
 | ||
|  | <h3>standard operations: addition, subtraction, multiplication by a | ||
|  | scalar</h3> | ||
|  | 
 | ||
|  | <pre><code> | ||
|  | C = A + B; C = A - B; C = -A; | ||
|  | w = u + v; w = u - v; w = -u; | ||
|  | C = t * A; C = A * t; C = A / t; | ||
|  | w = t * u; w = u * t; w = u / t; | ||
|  | </code></pre> | ||
|  | 
 | ||
|  | <h3>computed assignments</h3> | ||
|  | 
 | ||
|  | <pre><code> | ||
|  | C += A; C -= A;  | ||
|  | w += u; w -= u;  | ||
|  | C *= t; C /= t;  | ||
|  | w *= t; w /= t; | ||
|  | </code></pre> | ||
|  | 
 | ||
|  | <h3>inner, outer and other products</h3> | ||
|  | 
 | ||
|  | <pre><code> | ||
|  | t = inner_prod(u, v); | ||
|  | C = outer_prod(u, v); | ||
|  | w = prod(A, u); w = prod(u, A); w = prec_prod(A, u); w = prec_prod(u, A); | ||
|  | C = prod(A, B); C = prec_prod(A, B); | ||
|  | w = element_prod(u, v); w = element_div(u, v); | ||
|  | C = element_prod(A, B); C = element_div(A, B); | ||
|  | </code></pre> | ||
|  | 
 | ||
|  | <h3>transformations</h3> | ||
|  | 
 | ||
|  | <pre><code> | ||
|  | w = conj(u); w = real(u); w = imag(u); | ||
|  | C = trans(A); C = conj(A); C = herm(A); C = real(A); C = imag(A); | ||
|  | </code></pre> | ||
|  | 
 | ||
|  | <h2><a name="advanced">Advanced functions</a></h2> | ||
|  | 
 | ||
|  | <h3>norms</h3> | ||
|  | 
 | ||
|  | <pre><code> | ||
|  | t = norm_inf(v); i = index_norm_inf(v); | ||
|  | t = norm_1(v);   t = norm_2(v);  | ||
|  | t = norm_inf(A); i = index_norm_inf(A); | ||
|  | t = norm_1(A);   t = norm_frobenius(A);  | ||
|  | </code></pre> | ||
|  | 
 | ||
|  | <h3>products</h3> | ||
|  | 
 | ||
|  | <pre><code> | ||
|  | axpy_prod(A, u, w, true);  // w = A * u | ||
|  | axpy_prod(A, u, w, false); // w += A * u | ||
|  | axpy_prod(u, A, w, true);  // w = trans(A) * u | ||
|  | axpy_prod(u, A, w, false); // w += trans(A) * u | ||
|  | axpy_prod(A, B, C, true);  // C = A * B | ||
|  | axpy_prod(A, B, C, false); // C += A * B | ||
|  | </code></pre> | ||
|  | <p><em>Note:</em> The last argument (<code>bool init</code>) of | ||
|  | <code>axpy_prod</code> is optional. Currently it defaults to | ||
|  | <code>true</code>, but this may change in the future. Setting the | ||
|  | <code>init</code> to <code>true</code> is equivalent to calling | ||
|  | <code>w.clear()</code> before <code>axpy_prod</code>.  | ||
|  | There are some specialisation for products of compressed matrices that give a | ||
|  | large speed up compared to <code>prod</code>.</p> | ||
|  | <pre><code> | ||
|  | w = block_prod<matrix_type, 64> (A, u); // w = A * u | ||
|  | w = block_prod<matrix_type, 64> (u, A); // w = trans(A) * u | ||
|  | C = block_prod<matrix_type, 64> (A, B); // C = A * B | ||
|  | </code></pre> | ||
|  | <p><em>Note:</em> The blocksize can be any integer. However, the | ||
|  | actual speed depends very significantly on the combination of blocksize, | ||
|  | CPU and compiler. The function <code>block_prod</code> is designed | ||
|  | for large dense matrices.</p> | ||
|  | <h3>rank-k updates</h3> | ||
|  | <pre><code> | ||
|  | opb_prod(A, B, C, true);  // C = A * B | ||
|  | opb_prod(A, B, C, false); // C += A * B | ||
|  | </code></pre> | ||
|  | <p><em>Note:</em> The last argument (<code>bool init</code>) of | ||
|  | <code>opb_prod</code> is optional. Currently it defaults to | ||
|  | <code>true</code>, but this may change in the future. This function | ||
|  | may give a speedup if <code>A</code> has less columns than rows, | ||
|  | because the product is computed as a sum of outer products.</p> | ||
|  | 
 | ||
|  | <h2><a name="sub">Submatrices, Subvectors</a></h2> | ||
|  | <p>Accessing submatrices and subvectors via <b>proxies</b> using <code>project</code> functions:</p> | ||
|  | <pre><code> | ||
|  | w = project(u, r);         // the subvector of u specifed by the index range r | ||
|  | w = project(u, s);         // the subvector of u specifed by the index slice s | ||
|  | C = project(A, r1, r2);    // the submatrix of A specified by the two index ranges r1 and r2 | ||
|  | C = project(A, s1, s2);    // the submatrix of A specified by the two index slices s1 and s2 | ||
|  | w = row(A, i); w = column(A, j);    // a row or column of matrix as a vector | ||
|  | </code></pre> | ||
|  | <p>Assigning to submatrices and subvectors via <b>proxies</b> using <code>project</code> functions:</p> | ||
|  | <pre><code> | ||
|  | project(u, r) = w;         // assign the subvector of u specifed by the index range r | ||
|  | project(u, s) = w;         // assign the subvector of u specifed by the index slice s | ||
|  | project(A, r1, r2) = C;    // assign the submatrix of A specified by the two index ranges r1 and r2 | ||
|  | project(A, s1, s2) = C;    // assign the submatrix of A specified by the two index slices s1 and s2 | ||
|  | row(A, i) = w; column(A, j) = w;    // a row or column of matrix as a vector | ||
|  | </code></pre> | ||
|  | <p><em>Note:</em> A range <code>r = range(start, stop)</code> | ||
|  | contains all indices <code>i</code> with <code>start <= i < | ||
|  | stop</code>. A slice is something more general. The slice | ||
|  | <code>s = slice(start, stride, size)</code> contains the indices | ||
|  | <code>start, start+stride, ..., start+(size-1)*stride</code>. The | ||
|  | stride can be 0 or negative! If <code>start >= stop</code> for a range | ||
|  | or <code>size == 0</code> for a slice then it contains no elements.</p> | ||
|  | <p>Sub-ranges and sub-slices of vectors and matrices can be created directly with the <code>subrange</code> and <code>sublice</code> functions:</p> | ||
|  | <pre><code> | ||
|  | w = subrange(u, 0, 2);         // the 2 element subvector of u | ||
|  | w = subslice(u, 0, 1, 2);      // the 2 element subvector of u | ||
|  | C = subrange(A, 0,2, 0,3);     // the 2x3 element submatrix of A | ||
|  | C = subslice(A, 0,1,2, 0,1,3); // the 2x3 element submatrix of A | ||
|  | subrange(u, 0, 2) = w;         // assign the 2 element subvector of u | ||
|  | subslice(u, 0, 1, 2) = w;      // assign the 2 element subvector of u | ||
|  | subrange(A, 0,2, 0,3) = C;     // assign the 2x3 element submatrix of A | ||
|  | subrange(A, 0,1,2, 0,1,3) = C; // assigne the 2x3 element submatrix of A | ||
|  | </code></pre> | ||
|  | <p>There are to more ways to access some matrix elements as a | ||
|  | vector:</p> | ||
|  | <pre><code>matrix_vector_range<matrix_type> (A, r1, r2); | ||
|  | matrix_vector_slice<matrix_type> (A, s1, s2); | ||
|  | </code></pre> | ||
|  | <p><em>Note:</em> These matrix proxies take a sequence of elements | ||
|  | of a matrix and allow you to access these as a vector. In | ||
|  | particular <code>matrix_vector_slice</code> can do this in a very | ||
|  | general way. <code>matrix_vector_range</code> is less useful as the | ||
|  | elements must lie along a diagonal.</p> | ||
|  | <p><em>Example:</em> To access the first two elements of a sub | ||
|  | column of a matrix we access the row with a slice with stride 1 and | ||
|  | the column with a slice with stride 0 thus:<br /> | ||
|  | <code>matrix_vector_slice<matrix_type> (A, slice(0,1,2), | ||
|  | slice(0,0,2)); | ||
|  | </code></p> | ||
|  | 
 | ||
|  | <h2><a name="speed">Speed improvements</a></h2> | ||
|  | <h3><a name='noalias'>Matrix / Vector assignment</a></h3> | ||
|  | <p>If you know for sure that the left hand expression and the right | ||
|  | hand expression have no common storage, then assignment has | ||
|  | no <em>aliasing</em>. A more efficient assignment can be specified | ||
|  | in this case:</p> | ||
|  | <pre><code>noalias(C) = prod(A, B); | ||
|  | </code></pre> | ||
|  | <p>This avoids the creation of a temporary matrix that is required in a normal assignment. | ||
|  | 'noalias' assignment requires that the left and right hand side be size conformant.</p> | ||
|  | 
 | ||
|  | <h3>Sparse element access</h3> | ||
|  | <p>The matrix element access function <code>A(i1,i2)</code> or the equivalent vector | ||
|  | element access functions (<code>v(i) or v[i]</code>) usually create 'sparse element proxies' | ||
|  | when applied to a sparse matrix or vector. These <em>proxies</em> allow access to elements | ||
|  | without having to worry about nasty C++ issues where references are invalidated.</p> | ||
|  | <p>These 'sparse element proxies' can be implemented more efficiently when applied to <code>const</code> | ||
|  | objects. | ||
|  | Sadly in C++ there is no way to distinguish between an element access on the left and right hand side of | ||
|  | an assignment. Most often elements on the right hand side will not be changed and therefore it would | ||
|  | be better to use the <code>const</code> proxies. We can do this by making the matrix or vector | ||
|  | <code>const</code> before accessing it's elements. For example:</p> | ||
|  | <pre><code>value = const_cast<const VEC>(v)[i];   // VEC is the type of V | ||
|  | </code></pre> | ||
|  | <p>If more then one element needs to be accessed <code>const_iterator</code>'s should be used | ||
|  | in preference to <code>iterator</code>'s for the same reason. For the more daring 'sparse element proxies' | ||
|  | can be completely turned off in uBLAS by defining the configuration macro <code>BOOST_UBLAS_NO_ELEMENT_PROXIES</code>. | ||
|  | </p> | ||
|  | 
 | ||
|  | 
 | ||
|  | <h3>Controlling the complexity of nested products</h3> | ||
|  | 
 | ||
|  | <p>What is the  complexity (the number of add and multiply operations) required to compute the following? | ||
|  | </p> | ||
|  | <pre> | ||
|  |  R = prod(A, prod(B,C));  | ||
|  | </pre> | ||
|  | <p>Firstly the complexity depends on matrix size. Also since prod is transitive (not commutative) | ||
|  | the bracket order affects the complexity. | ||
|  | </p> | ||
|  | <p>uBLAS evaluates expressions without matrix or vector temporaries and honours | ||
|  | the bracketing structure. However avoiding temporaries for nested product unnecessarly increases the complexity. | ||
|  | Conversly by explictly using temporary matrices the complexity of a nested product can be reduced. | ||
|  | </p> | ||
|  | <p>uBLAS provides 3 alternative syntaxes for this purpose: | ||
|  | </p> | ||
|  | <pre> | ||
|  |  temp_type T = prod(B,C); R = prod(A,T);   // Preferable if T is preallocated | ||
|  | </pre> | ||
|  | <pre> | ||
|  |  prod(A, temp_type(prod(B,C)); | ||
|  | </pre> | ||
|  | <pre> | ||
|  |  prod(A, prod<temp_type>(B,C)); | ||
|  | </pre> | ||
|  | <p>The 'temp_type' is important. Given A,B,C are all of the same type. Say | ||
|  | matrix<float>, the choice is easy. However if the value_type is mixed (int with float or double) | ||
|  | or the matrix type is mixed (sparse with symmetric) the best solution is not so obvious. It is up to you! It | ||
|  | depends on numerical properties of A and the result of the prod(B,C). | ||
|  | </p> | ||
|  | 
 | ||
|  | <hr /> | ||
|  | <p>Copyright (©) 2000-2007 Joerg Walter, Mathias Koch, Gunter | ||
|  | Winkler, Michael Stevens<br /> | ||
|  |    Use, modification and distribution are subject to the | ||
|  |    Boost Software License, Version 1.0. | ||
|  |    (See accompanying file LICENSE_1_0.txt | ||
|  |    or copy at <a href="http://www.boost.org/LICENSE_1_0.txt"> | ||
|  |       http://www.boost.org/LICENSE_1_0.txt | ||
|  |    </a>). | ||
|  | </p> | ||
|  | <script type="text/javascript"> | ||
|  | (function($) { | ||
|  |     $('#toc').toc(); | ||
|  | })(jQuery); | ||
|  | </script> | ||
|  | </body> | ||
|  | </html> |