mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 13:30:52 -05:00 
			
		
		
		
	
		
			
	
	
		
			92 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			92 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								// Copyright Paul A. 2007, 2010
							 | 
						||
| 
								 | 
							
								// Copyright John Maddock 2007
							 | 
						||
| 
								 | 
							
								// Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								// Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								// (See accompanying file LICENSE_1_0.txt
							 | 
						||
| 
								 | 
							
								// or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Simple example of computing probabilities for a binomial random variable.
							 | 
						||
| 
								 | 
							
								// Replication of source nag_binomial_dist (g01bjc).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Shows how to replace NAG C library calls by Boost Math Toolkit C++ calls.
							 | 
						||
| 
								 | 
							
								// Note that the default policy does not replicate the way that NAG
							 | 
						||
| 
								 | 
							
								// library calls handle 'bad' arguments, but you can define policies that do,
							 | 
						||
| 
								 | 
							
								// as well as other policies that may suit your application even better.
							 | 
						||
| 
								 | 
							
								// See the examples of changing default policies for details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/binomial.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <iostream>
							 | 
						||
| 
								 | 
							
								  using std::cout; using std::endl; using std::ios; using std::showpoint;
							 | 
						||
| 
								 | 
							
								#include <iomanip>
							 | 
						||
| 
								 | 
							
								  using std::fixed; using std::setw;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int main()
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  cout << "Using the binomial distribution to replicate a NAG library call." << endl;
							 | 
						||
| 
								 | 
							
								  using boost::math::binomial_distribution;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // This replicates the computation of the examples of using nag-binomial_dist
							 | 
						||
| 
								 | 
							
								  // using g01bjc in section g01 Somple Calculations on Statistical Data.
							 | 
						||
| 
								 | 
							
								  // http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf
							 | 
						||
| 
								 | 
							
								  // Program results section 8.3 page 3.g01bjc.3
							 | 
						||
| 
								 | 
							
								    //8.2. Program Data
							 | 
						||
| 
								 | 
							
								    //g01bjc Example Program Data
							 | 
						||
| 
								 | 
							
								    //4 0.50 2 : n, p, k
							 | 
						||
| 
								 | 
							
								    //19 0.44 13
							 | 
						||
| 
								 | 
							
								    //100 0.75 67
							 | 
						||
| 
								 | 
							
								    //2000 0.33 700
							 | 
						||
| 
								 | 
							
								    //8.3. Program Results
							 | 
						||
| 
								 | 
							
								    //g01bjc Example Program Results
							 | 
						||
| 
								 | 
							
								    //n p k plek pgtk peqk
							 | 
						||
| 
								 | 
							
								    //4 0.500 2 0.68750 0.31250 0.37500
							 | 
						||
| 
								 | 
							
								    //19 0.440 13 0.99138 0.00862 0.01939
							 | 
						||
| 
								 | 
							
								    //100 0.750 67 0.04460 0.95540 0.01700
							 | 
						||
| 
								 | 
							
								    //2000 0.330 700 0.97251 0.02749 0.00312
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  cout.setf(ios::showpoint); // Trailing zeros to show significant decimal digits.
							 | 
						||
| 
								 | 
							
								  cout.precision(5); // Might calculate this from trials in distribution?
							 | 
						||
| 
								 | 
							
								  cout << fixed;
							 | 
						||
| 
								 | 
							
								  //  Binomial distribution.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Note  that  cdf(dist, k) is equivalent to NAG library plek probability of <= k
							 | 
						||
| 
								 | 
							
								  // cdf(complement(dist, k)) is equivalent to NAG library pgtk probability of > k
							 | 
						||
| 
								 | 
							
								  //             pdf(dist, k) is equivalent to NAG library peqk probability of == k
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  cout << " n        p     k     plek     pgtk     peqk " << endl;
							 | 
						||
| 
								 | 
							
								  binomial_distribution<>my_dist(4, 0.5);
							 | 
						||
| 
								 | 
							
								  cout << setw(4) << (int)my_dist.trials() << "  " << my_dist.success_fraction()
							 | 
						||
| 
								 | 
							
								  << "   " << 2 << "  " << cdf(my_dist, 2) << "  "
							 | 
						||
| 
								 | 
							
								  << cdf(complement(my_dist, 2)) << "  " << pdf(my_dist, 2) << endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  binomial_distribution<>two(19, 0.440);
							 | 
						||
| 
								 | 
							
								  cout << setw(4) << (int)two.trials() <<  "  "  << two.success_fraction()
							 | 
						||
| 
								 | 
							
								    << "  " << 13 << "  " << cdf(two, 13) << "  "
							 | 
						||
| 
								 | 
							
								    << cdf(complement(two, 13)) << "  " << pdf(two, 13) << endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  binomial_distribution<>three(100, 0.750);
							 | 
						||
| 
								 | 
							
								  cout << setw(4) << (int)three.trials() << "  " << three.success_fraction()
							 | 
						||
| 
								 | 
							
								    << "  " << 67 << "  " << cdf(three, 67) << "  " << cdf(complement(three, 67))
							 | 
						||
| 
								 | 
							
								    << "  " << pdf(three, 67) << endl;
							 | 
						||
| 
								 | 
							
								  binomial_distribution<>four(2000, 0.330);
							 | 
						||
| 
								 | 
							
								  cout << setw(4) << (int)four.trials() <<  "  "  << four.success_fraction()
							 | 
						||
| 
								 | 
							
								  << " " << 700 << "  "
							 | 
						||
| 
								 | 
							
								    << cdf(four, 700) << "  " << cdf(complement(four, 700))
							 | 
						||
| 
								 | 
							
								    << "  " << pdf(four, 700) << endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return 0;
							 | 
						||
| 
								 | 
							
								} // int main()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Example of using the binomial distribution to replicate a NAG library call.
							 | 
						||
| 
								 | 
							
								 n        p     k     plek     pgtk     peqk
							 | 
						||
| 
								 | 
							
								   4  0.50000   2  0.68750  0.31250  0.37500
							 | 
						||
| 
								 | 
							
								  19  0.44000  13  0.99138  0.00862  0.01939
							 | 
						||
| 
								 | 
							
								 100  0.75000  67  0.04460  0.95540  0.01700
							 | 
						||
| 
								 | 
							
								2000  0.33000 700  0.97251  0.02749  0.00312
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 |