mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-14 08:01:49 -05:00
224 lines
6.8 KiB
Fortran
224 lines
6.8 KiB
Fortran
|
module gf64math
|
||
|
! add and subtract in GF(2^6) based on primitive polynomial x^6+x+1
|
||
|
|
||
|
implicit none
|
||
|
integer, private :: gf64log(0:63)
|
||
|
integer, private :: gf64antilog(0:62)
|
||
|
|
||
|
! table of the logarithms of the elements of GF(M) (log(0) never used)
|
||
|
data gf64log/ &
|
||
|
-1, 0, 1, 6, 2, 12, 7, 26, 3, 32, &
|
||
|
13, 35, 8, 48, 27, 18, 4, 24, 33, 16, &
|
||
|
14, 52, 36, 54, 9, 45, 49, 38, 28, 41, &
|
||
|
19, 56, 5, 62, 25, 11, 34, 31, 17, 47, &
|
||
|
15, 23, 53, 51, 37, 44, 55, 40, 10, 61, &
|
||
|
46, 30, 50, 22, 39, 43, 29, 60, 42, 21, &
|
||
|
20, 59, 57, 58/
|
||
|
|
||
|
! table of GF(M) elements given their logarithm
|
||
|
data gf64antilog/ &
|
||
|
1, 2, 4, 8, 16, 32, 3, 6, 12, 24, &
|
||
|
48, 35, 5, 10, 20, 40, 19, 38, 15, 30, &
|
||
|
60, 59, 53, 41, 17, 34, 7, 14, 28, 56, &
|
||
|
51, 37, 9, 18, 36, 11, 22, 44, 27, 54, &
|
||
|
47, 29, 58, 55, 45, 25, 50, 39, 13, 26, &
|
||
|
52, 43, 21, 42, 23, 46, 31, 62, 63, 61, &
|
||
|
57, 49, 33/
|
||
|
|
||
|
contains
|
||
|
|
||
|
integer function gf64_add(i1,i2)
|
||
|
implicit none
|
||
|
integer::i1
|
||
|
integer::i2
|
||
|
gf64_add=iand(ieor(i1,i2),63)
|
||
|
end function gf64_add
|
||
|
|
||
|
integer function gf64_mult(i1,i2)
|
||
|
implicit none
|
||
|
integer::i1
|
||
|
integer::i2
|
||
|
integer::j
|
||
|
|
||
|
if(i1.eq.0 .or. i2.eq.0) then
|
||
|
gf64_mult=0
|
||
|
elseif(i1.eq.1) then
|
||
|
gf64_mult=i2
|
||
|
elseif(i2.eq.1) then
|
||
|
gf64_mult=i1
|
||
|
else
|
||
|
j=mod(gf64log(i1)+gf64log(i2),63)
|
||
|
gf64_mult=gf64antilog(j)
|
||
|
endif
|
||
|
end function gf64_mult
|
||
|
|
||
|
end module gf64math
|
||
|
|
||
|
module q65_generator
|
||
|
|
||
|
integer generator(15,50)
|
||
|
data generator/ &
|
||
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, &
|
||
|
0,20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, &
|
||
|
0,20, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, &
|
||
|
0,20, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, &
|
||
|
0,20, 0, 1, 1, 0, 0, 0,10, 0, 0, 0, 0, 1, 0, &
|
||
|
0,20, 0, 1, 1, 0, 0, 0,10, 0, 0, 0,44, 1, 0, &
|
||
|
0,20, 0, 1, 1, 0, 0, 0,10, 1, 0, 0,44, 1, 0, &
|
||
|
0,20, 0, 1, 1, 0, 0, 0,10, 1, 0, 0,44, 1,14, &
|
||
|
0,20, 0, 1, 1, 0, 0, 0,10, 1,31, 0,44, 1,14, &
|
||
|
0,20, 0, 1, 1,33, 0, 0,10, 1,31, 0,44, 1,14, &
|
||
|
56,20, 0, 1, 1,33, 0, 0,10, 1,31, 0,44, 1,14, &
|
||
|
56,20, 0, 1, 1,33, 0, 1,10, 1,31, 0,44, 1,14, &
|
||
|
56, 1, 0, 1, 1,33, 0, 1,10, 1,31, 0,44, 1,14, &
|
||
|
56, 1, 0, 1, 1,33, 0, 1,10, 1,31,36,44, 1,14, &
|
||
|
56, 1, 0, 1, 1,33, 0, 1,43, 1,31,36,44, 1,14, &
|
||
|
56, 1, 0, 1, 1,33, 0, 1,43,17,31,36,44, 1,14, &
|
||
|
56, 1, 0, 1, 1,33, 0, 1,43,17,31,36,36, 1,14, &
|
||
|
56, 1, 0, 1, 1,33,53, 1,43,17,31,36,36, 1,14, &
|
||
|
56, 1, 0,35, 1,33,53, 1,43,17,31,36,36, 1,14, &
|
||
|
56, 1, 0,35, 1,33,53, 1,43,17,30,36,36, 1,14, &
|
||
|
56, 1, 0,35, 1,33,53,52,43,17,30,36,36, 1,14, &
|
||
|
56, 1, 0,35, 1,32,53,52,43,17,30,36,36, 1,14, &
|
||
|
56, 1,60,35, 1,32,53,52,43,17,30,36,36, 1,14, &
|
||
|
56, 1,60,35, 1,32,53,52,43,17,30,36,36,49,14, &
|
||
|
56, 1,60,35, 1,32,53,52,43,17,30,36,37,49,14, &
|
||
|
56, 1,60,35,54,32,53,52,43,17,30,36,37,49,14, &
|
||
|
56, 1,60,35,54,32,53,52, 1,17,30,36,37,49,14, &
|
||
|
1, 1,60,35,54,32,53,52, 1,17,30,36,37,49,14, &
|
||
|
1, 0,60,35,54,32,53,52, 1,17,30,36,37,49,14, &
|
||
|
1, 0,60,35,54,32,53,52, 1,17,30,37,37,49,14, &
|
||
|
1, 0,61,35,54,32,53,52, 1,17,30,37,37,49,14, &
|
||
|
1, 0,61,35,54,32,53,52, 1,48,30,37,37,49,14, &
|
||
|
1, 0,61,35,54,32,53,52, 1,48,30,37,37,49,15, &
|
||
|
1, 0,61,35,54, 0,53,52, 1,48,30,37,37,49,15, &
|
||
|
1, 0,61,35,54, 0,52,52, 1,48,30,37,37,49,15, &
|
||
|
1, 0,61,35,54, 0,52,52, 1,48,30,37,37, 0,15, &
|
||
|
1, 0,61,35,54, 0,52,34, 1,48,30,37,37, 0,15, &
|
||
|
1, 0,61,35,54, 0,52,34, 1,48,30,37, 0, 0,15, &
|
||
|
1, 0,61,35,54, 0,52,34, 1,48,30,20, 0, 0,15, &
|
||
|
1, 0, 0,35,54, 0,52,34, 1,48,30,20, 0, 0,15, &
|
||
|
1, 0, 0,35,54, 0,52,34, 1, 0,30,20, 0, 0,15, &
|
||
|
0, 0, 0,35,54, 0,52,34, 1, 0,30,20, 0, 0,15, &
|
||
|
0, 0, 0,35,54, 0,52,34, 1, 0,38,20, 0, 0,15, &
|
||
|
0, 0, 0,35, 0, 0,52,34, 1, 0,38,20, 0, 0,15, &
|
||
|
0, 0, 0,35, 0, 0,52, 0, 1, 0,38,20, 0, 0,15, &
|
||
|
0, 0, 0,35, 0, 0,52, 0, 1, 0,38,20, 0, 0, 0, &
|
||
|
0, 0, 0,35, 0, 0,52, 0, 0, 0,38,20, 0, 0, 0, &
|
||
|
0, 0, 0,35, 0, 0,52, 0, 0, 0,38, 0, 0, 0, 0, &
|
||
|
0, 0, 0, 0, 0, 0,52, 0, 0, 0,38, 0, 0, 0, 0, &
|
||
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,38, 0, 0, 0, 0/
|
||
|
|
||
|
end module q65_generator
|
||
|
|
||
|
module q65_encoding
|
||
|
|
||
|
contains
|
||
|
|
||
|
subroutine q65_encode(message,codeword)
|
||
|
use gf64math
|
||
|
use q65_generator
|
||
|
integer message(15)
|
||
|
integer codeword(65)
|
||
|
integer i,j
|
||
|
|
||
|
codeword=0
|
||
|
codeword(1:15)=message
|
||
|
do i=1,15
|
||
|
do j=16,65
|
||
|
codeword(j)=gf64_add(codeword(j),gf64_mult(message(i),generator(i,j-15)))
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
return
|
||
|
end
|
||
|
|
||
|
subroutine get_q65crc12(mc2,ncrc1,ncrc2)
|
||
|
!
|
||
|
character c12*12,c6*6
|
||
|
integer*1 mc(90),mc2(90),tmp(6)
|
||
|
integer*1 r(13),p(13)
|
||
|
integer ncrc
|
||
|
! polynomial for 12-bit CRC 0xF01
|
||
|
data p/1,1,0,0,0,0,0,0,0,1,1,1,1/
|
||
|
|
||
|
! flip bit order of each 6-bit symbol for consistency with Nico's calculation
|
||
|
do i=0,14
|
||
|
tmp=mc2(i*6+1:i*6+6)
|
||
|
mc(i*6+1:i*6+6)=tmp(6:1:-1)
|
||
|
enddo
|
||
|
|
||
|
! divide by polynomial
|
||
|
r=mc(1:13)
|
||
|
do i=0,77
|
||
|
r(13)=mc(i+13)
|
||
|
r=mod(r+r(1)*p,2)
|
||
|
r=cshift(r,1)
|
||
|
enddo
|
||
|
|
||
|
write(c6,'(6b1)') r(6:1:-1)
|
||
|
read(c6,'(b6.6)') ncrc1
|
||
|
read(c6,'(6b1)') mc2(79:84)
|
||
|
write(c6,'(6b1)') r(12:7:-1)
|
||
|
read(c6,'(b6.6)') ncrc2
|
||
|
read(c6,'(6b1)') mc2(85:90)
|
||
|
|
||
|
end subroutine get_q65crc12
|
||
|
|
||
|
subroutine get_q65_tones(msg37,codeword,itone)
|
||
|
use packjt77
|
||
|
implicit none
|
||
|
character*37 msg37
|
||
|
character*77 c77
|
||
|
character*12 c12
|
||
|
character*6 c6
|
||
|
integer codeword(65)
|
||
|
integer sync(22)
|
||
|
integer message(15)
|
||
|
integer shortcodeword(63)
|
||
|
integer itone(85)
|
||
|
integer i,j,k
|
||
|
integer*1 mbits(90)
|
||
|
integer i3,n3,ncrc1,ncrc2
|
||
|
data sync/1,9,12,13,15,22,23,26,27,33,35,38,46,50,55,60,62,66,69,74,76,85/
|
||
|
|
||
|
i3=-1
|
||
|
n3=-1
|
||
|
call pack77(msg37,i3,n3,c77)
|
||
|
mbits=0
|
||
|
read(c77,'(77i1)') mbits(1:77)
|
||
|
|
||
|
! Message is 77 bits long. Add a 0 bit to create a 78-bit message and pad with
|
||
|
! 12 zeros to create 90-bit mbit array for CRC calculation.
|
||
|
call get_q65crc12(mbits,ncrc1,ncrc2)
|
||
|
|
||
|
! Now have message in bits 1:78 and CRC in bits 79:90.
|
||
|
! Group message bits into 15 6-bit symbols:
|
||
|
do i=0,14
|
||
|
write(c6,'(6i1)') mbits( (i*6+1):(i*6+6) )
|
||
|
read(c6,'(b6.6)') message(i+1)
|
||
|
enddo
|
||
|
|
||
|
! Encode to create a 65-symbol codeword
|
||
|
call q65_encode(message,codeword)
|
||
|
|
||
|
!Shorten the codeword by omitting the CRC symbols (symbols 14 and 15)
|
||
|
shortcodeword(1:13)=codeword(1:13)
|
||
|
shortcodeword(14:63)=codeword(16:65)
|
||
|
|
||
|
!Insert sync symbols to create array of channel symbols
|
||
|
j=1
|
||
|
k=0
|
||
|
do i=1,85
|
||
|
if(i.eq.sync(j)) then
|
||
|
j=j+1
|
||
|
itone(i)=0
|
||
|
else
|
||
|
k=k+1
|
||
|
itone(i)=shortcodeword(k)+1
|
||
|
endif
|
||
|
enddo
|
||
|
end subroutine get_q65_tones
|
||
|
|
||
|
end module q65_encoding
|