WSJT-X/lib/sync64.f90

156 lines
4.1 KiB
Fortran
Raw Normal View History

subroutine sync64(c0,nf1,nf2,nfqso,ntol,mode64,dtx,f0,jpk,sync,sync2,width)
use timer_module, only: timer
parameter (NMAX=60*12000) !Max size of raw data at 12000 Hz
parameter (NSPS=3456) !Samples per symbol at 6000 Hz
parameter (NSPC=7*NSPS) !Samples per Costas array
real s1(0:NSPC-1) !Power spectrum of Costas 1
real s2(0:NSPC-1) !Power spectrum of Costas 2
real s3(0:NSPC-1) !Power spectrum of Costas 3
real s0(0:NSPC-1) !Sum of s1+s2+s3
real s0a(0:NSPC-1) !Best synchromized spectrum (saved)
real s0b(0:NSPC-1) !tmp
real a(5)
integer icos7(0:6) !Costas 7x7 tones
integer ipk0(1)
complex cc(0:NSPC-1) !Costas waveform
complex c0(0:720000) !Complex spectrum of dd()
complex c1(0:NSPC-1) !Complex spectrum of Costas 1
complex c2(0:NSPC-1) !Complex spectrum of Costas 2
complex c3(0:NSPC-1) !Complex spectrum of Costas 3
data icos7/2,5,6,0,4,1,3/ !Costas 7x7 tone pattern
data mode64z/-1/
save
if(mode64.ne.mode64z) then
twopi=8.0*atan(1.0)
dfgen=mode64*12000.0/6912.0
k=-1
phi=0.
do j=0,6 !Compute complex Costas waveform
dphi=twopi*10.0*icos7(j)*dfgen/6000.0
do i=1,NSPS
phi=phi + dphi
if(phi.gt.twopi) phi=phi-twopi
k=k+1
cc(k)=cmplx(cos(phi),sin(phi))
enddo
enddo
mode64z=mode64
endif
nfft3=NSPC
nh3=nfft3/2
df3=6000.0/nfft3
fa=max(nf1,nfqso-ntol)
fb=min(nf2,nfqso+ntol)
iaa=max(0,nint(fa/df3))
ibb=min(NSPC-1,nint(fb/df3))
maxtol=max(ntol,500)
fa=max(nf1,nfqso-maxtol)
fb=min(nf2,nfqso+maxtol)
ia=max(0,nint(fa/df3))
ib=min(NSPC-1,nint(fb/df3))
id=0.1*(ib-ia)
iz=ib-ia+1
sync=-1.e30
smaxall=0.
jpk=0
ja=0
jb=7.5*6000
jstep=100
ipk=0
kpk=0
nadd=10*mode64
if(mod(nadd,2).eq.0) nadd=nadd+1 !Make nadd odd
nskip=max(49,nadd)
do j1=ja,jb,jstep
call timer('sync64_1',0)
j2=j1 + 39*NSPS
j3=j1 + 77*NSPS
c1=1.e-4*c0(j1:j1+NSPC-1) * conjg(cc)
c2=1.e-4*c0(j2:j2+NSPC-1) * conjg(cc)
c3=1.e-4*c0(j3:j3+NSPC-1) * conjg(cc)
call four2a(c1,nfft3,1,-1,1)
call four2a(c2,nfft3,1,-1,1)
call four2a(c3,nfft3,1,-1,1)
s1=0.
s2=0.
s3=0.
s0b=0.
do i=ia,ib
freq=i*df3
s1(i)=real(c1(i))**2 + aimag(c1(i))**2
s2(i)=real(c2(i))**2 + aimag(c2(i))**2
s3(i)=real(c3(i))**2 + aimag(c3(i))**2
enddo
call timer('sync64_1',1)
call timer('sync64_2',0)
s0(ia:ib)=s1(ia:ib) + s2(ia:ib) + s3(ia:ib)
s0(:ia-1)=0.
s0(ib+1:)=0.
if(nadd.ge.3) then
do ii=1,3
s0b(ia:ib)=s0(ia:ib)
call smo(s0b(ia:ib),iz,s0(ia:ib),nadd)
enddo
endif
if(j1.eq.ja) then
call averms(s0(ia+id:ib-id),iz-2*id,nskip,ave,rms)
endif
s=(maxval(s0(iaa:ibb))-ave)/rms
ipk0=maxloc(s0(iaa:ibb))
ip=ipk0(1) + iaa - 1
if(s.gt.sync) then
jpk=j1
s0a=(s0-ave)/rms
sync=s
dtx=jpk/6000.0 - 1.0
ipk=ip
f0=ip*df3
endif
call timer('sync64_2',1)
enddo
s0a=s0a+2.0
write(17) ia,ib,s0a(ia:ib) !Save data for red curve
close(17)
nskip=50
call lorentzian(s0a(ia+nskip:ib-nskip),iz-2*nskip,a)
f0a=(a(3)+ia+49)*df3
w1=df3*a(4)
w2=2*nadd*df3
width=w1
if(w1.gt.1.2*w2) width=sqrt(w1**2 - w2**2)
sq=0.
do i=1,20
j=ia+nskip+1
k=ib-nskip-21+i
sq=sq + (s0a(j)-a(1))**2 + (s0a(k)-a(1))**2
enddo
rms2=sqrt(sq/40.0)
sync2=10.0*log10(a(2)/rms2)
! do i=1,iz-2*nskip
! x=i
! z=(x-a(3))/(0.5*a(4))
! yfit=a(1)
! if(abs(z).lt.3.0) then
! d=1.0 + z*z
! yfit=a(1) + a(2)*(1.0/d - 0.1)
! endif
! j=i+ia+49
! write(76,1110) j*df3,s0a(j),yfit
!1110 format(3f10.3)
! enddo
return
end subroutine sync64