WSJT-X/Configuration.cpp

2422 lines
90 KiB
C++
Raw Normal View History

Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include "Configuration.hpp"
//
// Read me!
//
// This file defines a configuration dialog with the user. The general
// strategy is to expose agreed configuration parameters via a custom
// interface (See Configuration.hpp). The state exposed through this
// public interface reflects stored or derived data in the
// Configuration::impl object. The Configuration::impl structure is
// an implementation of the PIMPL (a.k.a. Cheshire Cat or compilation
// firewall) implementation hiding idiom that allows internal state to
// be completely removed from the public interface.
//
// There is a secondary level of parameter storage which reflects
// current settings UI state, these parameters are not copied to the
// state store that the public interface exposes until the
// Configuration:impl::accept() operation is successful. The accept()
// operation is tied to the settings OK button. The normal and most
// convenient place to store this intermediate settings UI state is in
// the data models of the UI controls, if that is not convenient then
// separate member variables must be used to store that state. It is
// important for the user experience that no publicly visible settings
// are changed while the settings UI are changed i.e. all settings
// changes must be deferred until the "OK" button is
// clicked. Conversely, all changes must be discarded if the settings
// UI "Cancel" button is clicked.
//
// There is a complication related to the radio interface since the
// this module offers the facility to test the radio interface. This
// test means that the public visibility to the radio being tested
// must be changed. To maintain the illusion of deferring changes
// until they are accepted, the original radio related settings are
// stored upon showing the UI and restored if the UI is dismissed by
// canceling.
//
// It should be noted that the settings UI lives as long as the
// application client that uses it does. It is simply shown and hidden
// as it is needed rather than creating it on demand. This strategy
// saves a lot of expensive UI drawing at the expense of a little
// storage and gives a convenient place to deliver settings values
// from.
//
// Here is an overview of the high level flow of this module:
//
// 1) On construction the initial environment is initialized and
// initial values for settings are read from the QSettings
// database. At this point default values for any new settings are
// established by providing a default value to the QSettings value
// queries. This should be the only place where a hard coded value for
// a settings item is defined. Any remaining one-time UI
// initialization is also done. At the end of the constructor a method
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// initialize_models() is called to load the UI with the current
// settings values.
//
// 2) When the settings UI is displayed by a client calling the exec()
// operation, only temporary state need be stored as the UI state will
// already mirror the publicly visible settings state.
//
// 3) As the user makes changes to the settings UI only validation
// need be carried out since the UI control data models are used as
// the temporary store of unconfirmed settings. As some settings will
// depend on each other a validate() operation is available, this
// operations implements a check of any complex multi-field values.
//
// 4) If the user discards the settings changes by dismissing the UI
// with the "Cancel" button; the reject() operation is called. The
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// reject() operation calls initialize_models() which will revert all
// the UI visible state to the values as at the initial exec()
// operation. No changes are moved into the data fields in
// Configuration::impl that reflect the settings state published by
// the public interface (Configuration.hpp).
//
// 5) If the user accepts the settings changes by dismissing the UI
// with the "OK" button; the accept() operation is called which calls
// the validate() operation again and, if it passes, the fields that
// are used to deliver the settings state are updated from the UI
// control models or other temporary state variables. At the end of
// the accept() operation, just before hiding the UI and returning
// control to the caller; the new settings values are stored into the
// settings database by a call to the write_settings() operation, thus
// ensuring that settings changes are saved even if the application
// crashes or is subsequently killed.
//
// 6) On destruction, which only happens when the application
// terminates, the settings are saved to the settings database by
// calling the write_settings() operation. This is largely redundant
// but is still done to save the default values of any new settings on
// an initial run.
//
// To add a new setting:
//
// 1) Update the UI with the new widget to view and change the value.
//
// 2) Add a member to Configuration::impl to store the accepted
// setting state. If the setting state is dynamic; add a new signal to
// broadcast the setting value.
//
// 3) Add a query method to the public interface (Configuration.hpp)
// to access the new setting value. If the settings is dynamic; this
// step is optional since value changes will be broadcast via a
// signal.
//
// 4) Add a forwarding operation to implement the new query (3) above.
//
// 5) Add a settings read call to read_settings() with a sensible
// default value. If the setting value is dynamic, add a signal emit
// call to broadcast the setting value change.
//
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// 6) Add code to initialize_models() to load the widget control's
// data model with the current value.
//
// 7) If there is no convenient data model field, add a data member to
// store the proposed new value. Ensure this member has a valid value
// on exit from read_settings().
//
// 8) Add any required inter-field validation to the validate()
// operation.
//
// 9) Add code to the accept() operation to extract the setting value
// from the widget control data model and load it into the
// Configuration::impl member that reflects the publicly visible
// setting state. If the setting value is dynamic; add a signal emit
// call to broadcast any changed state of the setting.
//
// 10) Add a settings write call to save the setting value to the
// settings database.
//
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include <stdexcept>
#include <iterator>
#include <algorithm>
#include <functional>
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
#include <limits>
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include <QApplication>
#include <QMetaType>
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
#include <QList>
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include <QSettings>
#include <QAudioDeviceInfo>
#include <QAudioInput>
#include <QDialog>
#include <QMessageBox>
#include <QAction>
#include <QFileDialog>
#include <QDir>
#include <QFormLayout>
#include <QString>
#include <QStringList>
#include <QStringListModel>
#include <QLineEdit>
#include <QRegExpValidator>
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
#include <QIntValidator>
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include <QThread>
#include <QTimer>
#include <QStandardPaths>
#include <QFont>
#include <QFontDialog>
#include <QColorDialog>
#include <QSerialPortInfo>
#include <QScopedPointer>
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include <QDebug>
#include "qt_helpers.hpp"
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include "SettingsGroup.hpp"
#include "FrequencyLineEdit.hpp"
#include "FrequencyItemDelegate.hpp"
#include "CandidateKeyFilter.hpp"
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include "ForeignKeyDelegate.hpp"
#include "TransceiverFactory.hpp"
#include "Transceiver.hpp"
#include "Bands.hpp"
#include "FrequencyList.hpp"
#include "StationList.hpp"
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
#include "NetworkServerLookup.hpp"
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include "pimpl_impl.hpp"
#include "ui_Configuration.h"
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include "moc_Configuration.cpp"
namespace
{
struct init
{
init ()
{
qRegisterMetaType<Configuration::DataMode> ("Configuration::DataMode");
qRegisterMetaTypeStreamOperators<Configuration::DataMode> ("Configuration::DataMode");
qRegisterMetaType<Configuration::Type2MsgGen> ("Configuration::Type2MsgGen");
qRegisterMetaTypeStreamOperators<Configuration::Type2MsgGen> ("Configuration::Type2MsgGen");
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
} static_initializer;
// these undocumented flag values when stored in (Qt::UserRole - 1)
// of a ComboBox item model index allow the item to be enabled or
// disabled
int const combo_box_item_enabled (32 | 1);
int const combo_box_item_disabled (0);
QRegExp message_alphabet {"[- A-Za-z0-9+./?]*"};
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
//
// Dialog to get a new Frequency item
//
class FrequencyDialog final
: public QDialog
{
public:
using Frequency = Radio::Frequency;
explicit FrequencyDialog (QWidget * parent = nullptr)
: QDialog {parent}
{
setWindowTitle (QApplication::applicationName () + " - " + tr ("Add Frequency"));
auto form_layout = new QFormLayout ();
form_layout->addRow (tr ("&Frequency (MHz):"), &frequency_line_edit_);
auto main_layout = new QVBoxLayout (this);
main_layout->addLayout (form_layout);
auto button_box = new QDialogButtonBox {QDialogButtonBox::Ok | QDialogButtonBox::Cancel};
main_layout->addWidget (button_box);
connect (button_box, &QDialogButtonBox::accepted, this, &FrequencyDialog::accept);
connect (button_box, &QDialogButtonBox::rejected, this, &FrequencyDialog::reject);
}
Frequency frequency () const
{
return frequency_line_edit_.frequency ();
}
private:
FrequencyLineEdit frequency_line_edit_;
};
//
// Dialog to get a new Station item
//
class StationDialog final
: public QDialog
{
public:
explicit StationDialog (StationList const * stations, Bands * bands, QWidget * parent = nullptr)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
: QDialog {parent}
, filtered_bands_ {new CandidateKeyFilter {stations, bands}}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
setWindowTitle (QApplication::applicationName () + " - " + tr ("Add Station"));
band_.setModel (filtered_bands_.data ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
auto form_layout = new QFormLayout ();
form_layout->addRow (tr ("&Band:"), &band_);
form_layout->addRow (tr ("&Offset (MHz):"), &delta_);
form_layout->addRow (tr ("&Antenna:"), &description_);
auto main_layout = new QVBoxLayout (this);
main_layout->addLayout (form_layout);
auto button_box = new QDialogButtonBox {QDialogButtonBox::Ok | QDialogButtonBox::Cancel};
main_layout->addWidget (button_box);
connect (button_box, &QDialogButtonBox::accepted, this, &StationDialog::accept);
connect (button_box, &QDialogButtonBox::rejected, this, &StationDialog::reject);
if (delta_.text ().isEmpty ())
{
delta_.setText ("0");
}
}
StationList::Station station () const
{
return {band_.currentText (), delta_.frequency_delta (), description_.text ()};
}
int exec () override
{
filtered_bands_->set_active_key ();
return QDialog::exec ();
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
private:
QScopedPointer<CandidateKeyFilter> filtered_bands_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
QComboBox band_;
FrequencyDeltaLineEdit delta_;
QLineEdit description_;
};
class RearrangableMacrosModel
: public QStringListModel
{
public:
Qt::ItemFlags flags (QModelIndex const& index) const override
{
auto flags = QStringListModel::flags (index);
if (index.isValid ())
{
// disallow drop onto existing items
flags &= ~Qt::ItemIsDropEnabled;
}
return flags;
}
};
// Class MessageItemDelegate
//
// Item delegate for message entry such as free text message macros.
//
class MessageItemDelegate final
: public QStyledItemDelegate
{
public:
explicit MessageItemDelegate (QObject * parent = nullptr)
: QStyledItemDelegate {parent}
{
}
QWidget * createEditor (QWidget * parent
, QStyleOptionViewItem const& /* option*/
, QModelIndex const& /* index */
) const override
{
auto editor = new QLineEdit {parent};
editor->setFrame (false);
editor->setValidator (new QRegExpValidator {message_alphabet, editor});
return editor;
}
};
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// Internal implementation of the Configuration class.
class Configuration::impl final
: public QDialog
{
Q_OBJECT;
public:
using FrequencyDelta = Radio::FrequencyDelta;
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
using port_type = Configuration::port_type;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
explicit impl (Configuration * self, QSettings * settings, QWidget * parent);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
~impl ();
bool have_rig (bool open_if_closed = true);
void transceiver_frequency (Frequency);
void transceiver_tx_frequency (Frequency);
void transceiver_mode (MODE);
void transceiver_ptt (bool);
void sync_transceiver (bool force_signal);
Q_SLOT int exec () override;
Q_SLOT void accept () override;
Q_SLOT void reject () override;
Q_SLOT void done (int) override;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
private:
typedef QList<QAudioDeviceInfo> AudioDevices;
void read_settings ();
void write_settings ();
bool load_audio_devices (QAudio::Mode, QComboBox *, QAudioDeviceInfo *);
void update_audio_channels (QComboBox const *, int, QComboBox *, bool);
void set_application_font (QFont const&);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
void initialize_models ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool open_rig ();
//bool set_mode ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
void close_rig ();
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
TransceiverFactory::ParameterPack gather_rig_data ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
void enumerate_rigs ();
void set_rig_invariants ();
bool validate ();
void message_box (QString const& reason, QString const& detail = QString ());
void fill_port_combo_box (QComboBox *);
Q_SLOT void on_font_push_button_clicked ();
Q_SLOT void on_decoded_text_font_push_button_clicked ();
Q_SLOT void on_PTT_port_combo_box_activated (int);
Q_SLOT void on_CAT_port_combo_box_activated (int);
Q_SLOT void on_CAT_serial_baud_combo_box_currentIndexChanged (int);
Q_SLOT void on_CAT_data_bits_button_group_buttonClicked (int);
Q_SLOT void on_CAT_stop_bits_button_group_buttonClicked (int);
Q_SLOT void on_CAT_handshake_button_group_buttonClicked (int);
Q_SLOT void on_CAT_poll_interval_spin_box_valueChanged (int);
Q_SLOT void on_split_mode_button_group_buttonClicked (int);
Q_SLOT void on_test_CAT_push_button_clicked ();
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
Q_SLOT void on_test_PTT_push_button_clicked (bool checked);
Q_SLOT void on_CAT_control_lines_group_box_toggled (bool);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Q_SLOT void on_CAT_DTR_check_box_toggled (bool);
Q_SLOT void on_CAT_RTS_check_box_toggled (bool);
Q_SLOT void on_rig_combo_box_currentIndexChanged (int);
Q_SLOT void on_sound_input_combo_box_currentTextChanged (QString const&);
Q_SLOT void on_sound_output_combo_box_currentTextChanged (QString const&);
Q_SLOT void on_add_macro_push_button_clicked (bool = false);
Q_SLOT void on_delete_macro_push_button_clicked (bool = false);
Q_SLOT void on_PTT_method_button_group_buttonClicked (int);
Q_SLOT void on_callsign_line_edit_editingFinished ();
Q_SLOT void on_grid_line_edit_editingFinished ();
Q_SLOT void on_add_macro_line_edit_editingFinished ();
Q_SLOT void delete_macro ();
void delete_selected_macros (QModelIndexList);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Q_SLOT void on_save_path_select_push_button_clicked (bool);
Q_SLOT void delete_frequencies ();
Q_SLOT void insert_frequency ();
Q_SLOT void delete_stations ();
Q_SLOT void insert_station ();
Q_SLOT void handle_transceiver_update (TransceiverState);
Q_SLOT void handle_transceiver_failure (QString reason);
Q_SLOT void on_pbCQmsg_clicked();
Q_SLOT void on_pbMyCall_clicked();
Q_SLOT void on_pbTxMsg_clicked();
Q_SLOT void on_pbNewDXCC_clicked();
Q_SLOT void on_pbNewCall_clicked();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// typenames used as arguments must match registered type names :(
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
Q_SIGNAL void start_transceiver () const;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Q_SIGNAL void stop_transceiver () const;
Q_SIGNAL void frequency (Frequency rx, Transceiver::MODE) const;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Q_SIGNAL void tx_frequency (Frequency tx, bool rationalize_mode) const;
Q_SIGNAL void mode (Transceiver::MODE, bool rationalize) const;
Q_SIGNAL void ptt (bool) const;
Q_SIGNAL void sync (bool force_signal) const;
Configuration * const self_; // back pointer to public interface
QThread transceiver_thread_;
TransceiverFactory transceiver_factory_;
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
QList<QMetaObject::Connection> rig_connections_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Ui::configuration_dialog * ui_;
QSettings * settings_;
QDir doc_dir_;
QDir temp_dir_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
QDir default_save_directory_;
QDir save_directory_;
QFont font_;
QFont next_font_;
QFont decoded_text_font_;
QFont next_decoded_text_font_;
bool restart_sound_input_device_;
bool restart_sound_output_device_;
unsigned jt9w_bw_mult_;
float jt9w_min_dt_;
float jt9w_max_dt_;
Type2MsgGen type_2_msg_gen_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
QStringListModel macros_;
RearrangableMacrosModel next_macros_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
QAction * macro_delete_action_;
Bands bands_;
FrequencyList frequencies_;
FrequencyList next_frequencies_;
StationList stations_;
StationList next_stations_;
QAction * frequency_delete_action_;
QAction * frequency_insert_action_;
FrequencyDialog * frequency_dialog_;
QAction * station_delete_action_;
QAction * station_insert_action_;
StationDialog * station_dialog_;
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
TransceiverFactory::ParameterPack rig_params_;
TransceiverFactory::ParameterPack saved_rig_params_;
bool rig_is_dummy_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool rig_active_;
bool have_rig_;
bool rig_changed_;
TransceiverState cached_rig_state_;
// the following members are required to get the rig into split the
// first time monitor or tune or Tx occur
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool setup_split_;
Frequency required_tx_frequency_; // this is needed because DX Lab
// Suite Commander in particular
// insists on reporting out of
// date state after successful
// commands to change the rig
// state :( Zero is valid and it
// means that we don't know the Tx
// frequency rather than implying
// no split.
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool enforce_mode_and_split_;
FrequencyDelta transceiver_offset_;
// configuration fields that we publish
QString my_callsign_;
QString my_grid_;
QColor color_CQ_;
QColor next_color_CQ_;
QColor color_MyCall_;
QColor next_color_MyCall_;
QColor color_TxMsg_;
QColor next_color_TxMsg_;
QColor color_DXCC_;
QColor next_color_DXCC_;
QColor color_NewCall_;
QColor next_color_NewCall_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
qint32 id_interval_;
bool id_after_73_;
bool tx_QSY_allowed_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool spot_to_psk_reporter_;
bool monitor_off_at_startup_;
bool monitor_last_used_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool log_as_RTTY_;
bool report_in_comments_;
bool prompt_to_log_;
bool insert_blank_;
bool DXCC_;
bool clear_DX_;
bool miles_;
bool quick_call_;
bool disable_TX_on_73_;
bool watchdog_;
bool TX_messages_;
bool enable_VHF_features_;
bool decode_at_52s_;
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
QString udp_server_name_;
port_type udp_server_port_;
bool accept_udp_requests_;
bool udpWindowToFront_;
bool udpWindowRestore_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
DataMode data_mode_;
QAudioDeviceInfo audio_input_device_;
bool default_audio_input_device_selected_;
AudioDevice::Channel audio_input_channel_;
QAudioDeviceInfo audio_output_device_;
bool default_audio_output_device_selected_;
AudioDevice::Channel audio_output_channel_;
friend class Configuration;
};
#include "Configuration.moc"
// delegate to implementation class
Configuration::Configuration (QSettings * settings, QWidget * parent)
: m_ {this, settings, parent}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
}
Configuration::~Configuration ()
{
}
QDir Configuration::doc_dir () const {return m_->doc_dir_;}
QDir Configuration::temp_dir () const {return m_->temp_dir_;}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
int Configuration::exec () {return m_->exec ();}
QAudioDeviceInfo const& Configuration::audio_input_device () const {return m_->audio_input_device_;}
AudioDevice::Channel Configuration::audio_input_channel () const {return m_->audio_input_channel_;}
QAudioDeviceInfo const& Configuration::audio_output_device () const {return m_->audio_output_device_;}
AudioDevice::Channel Configuration::audio_output_channel () const {return m_->audio_output_channel_;}
bool Configuration::restart_audio_input () const {return m_->restart_sound_input_device_;}
bool Configuration::restart_audio_output () const {return m_->restart_sound_output_device_;}
unsigned Configuration::jt9w_bw_mult () const {return m_->jt9w_bw_mult_;}
float Configuration::jt9w_min_dt () const {return m_->jt9w_min_dt_;}
float Configuration::jt9w_max_dt () const {return m_->jt9w_max_dt_;}
auto Configuration::type_2_msg_gen () const -> Type2MsgGen {return m_->type_2_msg_gen_;}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
QString Configuration::my_callsign () const {return m_->my_callsign_;}
QString Configuration::my_grid () const {return m_->my_grid_;}
QColor Configuration::color_CQ () const {return m_->color_CQ_;}
QColor Configuration::color_MyCall () const {return m_->color_MyCall_;}
QColor Configuration::color_TxMsg () const {return m_->color_TxMsg_;}
QColor Configuration::color_DXCC () const {return m_->color_DXCC_;}
QColor Configuration::color_NewCall () const {return m_->color_NewCall_;}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
QFont Configuration::decoded_text_font () const {return m_->decoded_text_font_;}
qint32 Configuration::id_interval () const {return m_->id_interval_;}
bool Configuration::id_after_73 () const {return m_->id_after_73_;}
bool Configuration::tx_QSY_allowed () const {return m_->tx_QSY_allowed_;}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool Configuration::spot_to_psk_reporter () const {return m_->spot_to_psk_reporter_;}
bool Configuration::monitor_off_at_startup () const {return m_->monitor_off_at_startup_;}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
bool Configuration::monitor_last_used () const {return m_->rig_is_dummy_ || m_->monitor_last_used_;}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool Configuration::log_as_RTTY () const {return m_->log_as_RTTY_;}
bool Configuration::report_in_comments () const {return m_->report_in_comments_;}
bool Configuration::prompt_to_log () const {return m_->prompt_to_log_;}
bool Configuration::insert_blank () const {return m_->insert_blank_;}
bool Configuration::DXCC () const {return m_->DXCC_;}
bool Configuration::clear_DX () const {return m_->clear_DX_;}
bool Configuration::miles () const {return m_->miles_;}
bool Configuration::quick_call () const {return m_->quick_call_;}
bool Configuration::disable_TX_on_73 () const {return m_->disable_TX_on_73_;}
bool Configuration::watchdog () const {return m_->watchdog_;}
bool Configuration::TX_messages () const {return m_->TX_messages_;}
bool Configuration::enable_VHF_features () const {return m_->enable_VHF_features_;}
bool Configuration::decode_at_52s () const {return m_->decode_at_52s_;}
bool Configuration::split_mode () const
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
return !m_->rig_is_dummy_ && m_->rig_params_.split_mode != TransceiverFactory::split_mode_none;
}
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
QString Configuration::udp_server_name () const {return m_->udp_server_name_;}
auto Configuration::udp_server_port () const -> port_type {return m_->udp_server_port_;}
bool Configuration::accept_udp_requests () const {return m_->accept_udp_requests_;}
bool Configuration::udpWindowToFront () const {return m_->udpWindowToFront_;}
bool Configuration::udpWindowRestore () const {return m_->udpWindowRestore_;}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Bands * Configuration::bands () {return &m_->bands_;}
StationList * Configuration::stations () {return &m_->stations_;}
FrequencyList * Configuration::frequencies () {return &m_->frequencies_;}
QStringListModel * Configuration::macros () {return &m_->macros_;}
QDir Configuration::save_directory () const {return m_->save_directory_;}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
QString Configuration::rig_name () const {return m_->rig_params_.rig_name;}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
bool Configuration::transceiver_online (bool open_if_closed)
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::transceiver_online: open_if_closed:" << open_if_closed << m_->cached_rig_state_;
#endif
return m_->have_rig (open_if_closed);
}
void Configuration::transceiver_offline ()
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::transceiver_offline:" << m_->cached_rig_state_;
#endif
return m_->close_rig ();
}
void Configuration::transceiver_frequency (Frequency f)
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::transceiver_frequency:" << f << m_->cached_rig_state_;
#endif
m_->transceiver_frequency (f);
}
void Configuration::transceiver_tx_frequency (Frequency f)
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::transceiver_tx_frequency:" << f << m_->cached_rig_state_;
#endif
m_->setup_split_ = true;
m_->required_tx_frequency_ = f;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
m_->transceiver_tx_frequency (f);
}
void Configuration::transceiver_mode (MODE mode)
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::transceiver_mode:" << mode << m_->cached_rig_state_;
#endif
m_->transceiver_mode (mode);
}
void Configuration::transceiver_ptt (bool on)
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::transceiver_ptt:" << on << m_->cached_rig_state_;
#endif
m_->transceiver_ptt (on);
}
void Configuration::sync_transceiver (bool force_signal, bool enforce_mode_and_split)
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::sync_transceiver: force signal:" << force_signal << "enforce_mode_and_split:" << enforce_mode_and_split << m_->cached_rig_state_;
#endif
m_->enforce_mode_and_split_ = enforce_mode_and_split;
m_->setup_split_ = enforce_mode_and_split;
m_->required_tx_frequency_ = 0;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
m_->sync_transceiver (force_signal);
}
Configuration::impl::impl (Configuration * self, QSettings * settings, QWidget * parent)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
: QDialog {parent}
, self_ {self}
, ui_ {new Ui::configuration_dialog}
, settings_ {settings}
, doc_dir_ {QApplication::applicationDirPath ()}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
, frequencies_ {
{ 136130, 474200, 1838000, 3576000, 5357000, 7076000, 10138000, 14076000, 18102000,
21076000, 24917000, 28076000, 50276000, 70091000, 144000000, 144489000, 222000000,
432000000, 902000000, 1296000000, 2301000000, 2304000000, 2320000000, 3400000000,
3456000000, 5760000000,10368000000, 24048000000 }
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
, stations_ {&bands_}
, next_stations_ {&bands_}
, frequency_dialog_ {new FrequencyDialog {this}}
, station_dialog_ {new StationDialog {&next_stations_, &bands_, this}}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
, rig_active_ {false}
, have_rig_ {false}
, rig_changed_ {false}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// , ptt_state_ {false}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
, setup_split_ {false}
, required_tx_frequency_ {0}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
, enforce_mode_and_split_ {false}
, transceiver_offset_ {0}
, default_audio_input_device_selected_ {false}
, default_audio_output_device_selected_ {false}
{
ui_->setupUi (this);
#if !defined (CMAKE_BUILD)
#define WSJT_SHARE_DESTINATION "."
#define WSJT_DOC_DESTINATION "."
#endif
#if !defined (Q_OS_WIN) || QT_VERSION >= 0x050300
auto path = QStandardPaths::locate (QStandardPaths::DataLocation, WSJT_DOC_DESTINATION, QStandardPaths::LocateDirectory);
if (path.isEmpty ())
{
doc_dir_.cdUp ();
#if defined (Q_OS_MAC)
doc_dir_.cdUp ();
doc_dir_.cdUp ();
#endif
doc_dir_.cd (WSJT_SHARE_DESTINATION);
doc_dir_.cd (WSJT_DOC_DESTINATION);
}
else
{
doc_dir_.cd (path);
}
#else
doc_dir_.cd (WSJT_DOC_DESTINATION);
#endif
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
// Create a temporary directory in a suitable location
QString temp_location {QStandardPaths::writableLocation (QStandardPaths::TempLocation)};
if (!temp_location.isEmpty ())
{
temp_dir_.setPath (temp_location);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
QString unique_directory {QApplication::applicationName ()};
if (!temp_dir_.mkpath (unique_directory) || !temp_dir_.cd (unique_directory))
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
QMessageBox::critical (this, "WSJT-X", tr ("Create temporary directory error: ") + temp_dir_.absolutePath ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
throw std::runtime_error {"Failed to create usable temporary directory"};
}
}
{
// Find a suitable data file location
QDir data_dir {QStandardPaths::writableLocation (QStandardPaths::DataLocation)};
if (!data_dir.mkpath ("."))
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
QMessageBox::critical (this, "WSJT-X", tr ("Create data directory error: ") + data_dir.absolutePath ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
throw std::runtime_error {"Failed to create data directory"};
}
// Make sure the default save directory exists
QString save_dir {"save"};
default_save_directory_ = data_dir;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (!default_save_directory_.mkpath (save_dir) || !default_save_directory_.cd (save_dir))
{
QMessageBox::critical (this, "WSJT-X", tr ("Create Directory", "Cannot create directory \"") + default_save_directory_.absoluteFilePath (save_dir) + "\".");
throw std::runtime_error {"Failed to create save directory"};
}
// we now have a deafult save path that exists
// make sure samples directory exists
QString samples_dir {"samples"};
if (!default_save_directory_.mkpath (samples_dir))
{
QMessageBox::critical (this, "WSJT-X", tr ("Create Directory", "Cannot create directory \"") + default_save_directory_.absoluteFilePath (samples_dir) + "\".");
throw std::runtime_error {"Failed to create save directory"};
}
// copy in any new sample files to the sample directory
QDir dest_dir {default_save_directory_};
dest_dir.cd (samples_dir);
QDir source_dir {":/" + samples_dir};
source_dir.cd (save_dir);
source_dir.cd (samples_dir);
auto list = source_dir.entryInfoList (QStringList {{"*.wav"}}, QDir::Files | QDir::Readable);
Q_FOREACH (auto const& item, list)
{
if (!dest_dir.exists (item.fileName ()))
{
QFile file {item.absoluteFilePath ()};
file.copy (dest_dir.absoluteFilePath (item.fileName ()));
}
}
}
// this must be done after the default paths above are set
read_settings ();
//
// validation
//
ui_->callsign_line_edit->setValidator (new QRegExpValidator {QRegExp {"[A-Za-z0-9/]+"}, this});
ui_->grid_line_edit->setValidator (new QRegExpValidator {QRegExp {"[A-Ra-r]{2,2}[0-9]{2,2}[A-Xa-x]{0,2}"}, this});
ui_->add_macro_line_edit->setValidator (new QRegExpValidator {message_alphabet, this});
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
ui_->udp_server_port_spin_box->setMinimum (1);
ui_->udp_server_port_spin_box->setMaximum (std::numeric_limits<port_type>::max ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
//
// assign ids to radio buttons
//
ui_->CAT_data_bits_button_group->setId (ui_->CAT_7_bit_radio_button, TransceiverFactory::seven_data_bits);
ui_->CAT_data_bits_button_group->setId (ui_->CAT_8_bit_radio_button, TransceiverFactory::eight_data_bits);
ui_->CAT_stop_bits_button_group->setId (ui_->CAT_one_stop_bit_radio_button, TransceiverFactory::one_stop_bit);
ui_->CAT_stop_bits_button_group->setId (ui_->CAT_two_stop_bit_radio_button, TransceiverFactory::two_stop_bits);
ui_->CAT_handshake_button_group->setId (ui_->CAT_handshake_none_radio_button, TransceiverFactory::handshake_none);
ui_->CAT_handshake_button_group->setId (ui_->CAT_handshake_xon_radio_button, TransceiverFactory::handshake_XonXoff);
ui_->CAT_handshake_button_group->setId (ui_->CAT_handshake_hardware_radio_button, TransceiverFactory::handshake_hardware);
ui_->PTT_method_button_group->setId (ui_->PTT_VOX_radio_button, TransceiverFactory::PTT_method_VOX);
ui_->PTT_method_button_group->setId (ui_->PTT_CAT_radio_button, TransceiverFactory::PTT_method_CAT);
ui_->PTT_method_button_group->setId (ui_->PTT_DTR_radio_button, TransceiverFactory::PTT_method_DTR);
ui_->PTT_method_button_group->setId (ui_->PTT_RTS_radio_button, TransceiverFactory::PTT_method_RTS);
ui_->TX_audio_source_button_group->setId (ui_->TX_source_mic_radio_button, TransceiverFactory::TX_audio_source_front);
ui_->TX_audio_source_button_group->setId (ui_->TX_source_data_radio_button, TransceiverFactory::TX_audio_source_rear);
ui_->TX_mode_button_group->setId (ui_->mode_none_radio_button, data_mode_none);
ui_->TX_mode_button_group->setId (ui_->mode_USB_radio_button, data_mode_USB);
ui_->TX_mode_button_group->setId (ui_->mode_data_radio_button, data_mode_data);
ui_->split_mode_button_group->setId (ui_->split_none_radio_button, TransceiverFactory::split_mode_none);
ui_->split_mode_button_group->setId (ui_->split_rig_radio_button, TransceiverFactory::split_mode_rig);
ui_->split_mode_button_group->setId (ui_->split_emulate_radio_button, TransceiverFactory::split_mode_emulate);
//
// setup PTT port combo box drop down content
//
fill_port_combo_box (ui_->PTT_port_combo_box);
ui_->PTT_port_combo_box->addItem ("CAT");
//
// setup hooks to keep audio channels aligned with devices
//
{
using namespace std;
using namespace std::placeholders;
function<void (int)> cb (bind (&Configuration::impl::update_audio_channels, this, ui_->sound_input_combo_box, _1, ui_->sound_input_channel_combo_box, false));
connect (ui_->sound_input_combo_box, static_cast<void (QComboBox::*)(int)> (&QComboBox::currentIndexChanged), cb);
cb = bind (&Configuration::impl::update_audio_channels, this, ui_->sound_output_combo_box, _1, ui_->sound_output_channel_combo_box, true);
connect (ui_->sound_output_combo_box, static_cast<void (QComboBox::*)(int)> (&QComboBox::currentIndexChanged), cb);
}
//
// setup macros list view
//
ui_->macros_list_view->setModel (&next_macros_);
ui_->macros_list_view->setItemDelegate (new MessageItemDelegate {this});
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
macro_delete_action_ = new QAction {tr ("&Delete"), ui_->macros_list_view};
ui_->macros_list_view->insertAction (nullptr, macro_delete_action_);
connect (macro_delete_action_, &QAction::triggered, this, &Configuration::impl::delete_macro);
//
// setup working frequencies table model & view
//
frequencies_.sort (0);
ui_->frequencies_table_view->setModel (&next_frequencies_);
ui_->frequencies_table_view->sortByColumn (0, Qt::AscendingOrder);
ui_->frequencies_table_view->setItemDelegateForColumn (0, new FrequencyItemDelegate {&bands_, this});
ui_->frequencies_table_view->setColumnHidden (1, true);
frequency_delete_action_ = new QAction {tr ("&Delete"), ui_->frequencies_table_view};
ui_->frequencies_table_view->insertAction (nullptr, frequency_delete_action_);
connect (frequency_delete_action_, &QAction::triggered, this, &Configuration::impl::delete_frequencies);
frequency_insert_action_ = new QAction {tr ("&Insert ..."), ui_->frequencies_table_view};
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->frequencies_table_view->insertAction (nullptr, frequency_insert_action_);
connect (frequency_insert_action_, &QAction::triggered, this, &Configuration::impl::insert_frequency);
//
// setup stations table model & view
//
stations_.sort (0);
ui_->stations_table_view->setModel (&next_stations_);
ui_->stations_table_view->sortByColumn (0, Qt::AscendingOrder);
ui_->stations_table_view->setColumnWidth (1, 150);
ui_->stations_table_view->setItemDelegateForColumn (0, new ForeignKeyDelegate {&next_stations_, &bands_, 0, 0, this});
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->stations_table_view->setItemDelegateForColumn (1, new FrequencyDeltaItemDelegate {this});
station_delete_action_ = new QAction {tr ("&Delete"), ui_->stations_table_view};
ui_->stations_table_view->insertAction (nullptr, station_delete_action_);
connect (station_delete_action_, &QAction::triggered, this, &Configuration::impl::delete_stations);
station_insert_action_ = new QAction {tr ("&Insert ..."), ui_->stations_table_view};
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->stations_table_view->insertAction (nullptr, station_insert_action_);
connect (station_insert_action_, &QAction::triggered, this, &Configuration::impl::insert_station);
//
// load combo boxes with audio setup choices
//
default_audio_input_device_selected_ = load_audio_devices (QAudio::AudioInput, ui_->sound_input_combo_box, &audio_input_device_);
default_audio_output_device_selected_ = load_audio_devices (QAudio::AudioOutput, ui_->sound_output_combo_box, &audio_output_device_);
update_audio_channels (ui_->sound_input_combo_box, ui_->sound_input_combo_box->currentIndex (), ui_->sound_input_channel_combo_box, false);
update_audio_channels (ui_->sound_output_combo_box, ui_->sound_output_combo_box->currentIndex (), ui_->sound_output_channel_combo_box, true);
ui_->sound_input_channel_combo_box->setCurrentIndex (audio_input_channel_);
ui_->sound_output_channel_combo_box->setCurrentIndex (audio_output_channel_);
restart_sound_input_device_ = false;
restart_sound_output_device_ = false;
enumerate_rigs ();
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
initialize_models ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
transceiver_thread_.start ();
#if !WSJT_ENABLE_EXPERIMENTAL_FEATURES
ui_->jt9w_group_box->setEnabled (false);
#endif
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
Configuration::impl::~impl ()
{
write_settings ();
close_rig ();
transceiver_thread_.quit ();
transceiver_thread_.wait ();
temp_dir_.removeRecursively (); // clean up temp files
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
void Configuration::impl::initialize_models ()
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
auto pal = ui_->callsign_line_edit->palette ();
if (my_callsign_.isEmpty ())
{
pal.setColor (QPalette::Base, "#ffccff");
}
else
{
pal.setColor (QPalette::Base, Qt::white);
}
ui_->callsign_line_edit->setPalette (pal);
ui_->grid_line_edit->setPalette (pal);
ui_->callsign_line_edit->setText (my_callsign_);
ui_->grid_line_edit->setText (my_grid_);
ui_->labCQ->setStyleSheet(QString("background: %1").arg(color_CQ_.name()));
ui_->labMyCall->setStyleSheet(QString("background: %1").arg(color_MyCall_.name()));
ui_->labTx->setStyleSheet(QString("background: %1").arg(color_TxMsg_.name()));
ui_->labDXCC->setStyleSheet(QString("background: %1").arg(color_DXCC_.name()));
ui_->labNewCall->setStyleSheet(QString("background: %1").arg(color_NewCall_.name()));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->CW_id_interval_spin_box->setValue (id_interval_);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->PTT_method_button_group->button (rig_params_.ptt_type)->setChecked (true);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->save_path_display_label->setText (save_directory_.absolutePath ());
ui_->CW_id_after_73_check_box->setChecked (id_after_73_);
ui_->tx_QSY_check_box->setChecked (tx_QSY_allowed_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->psk_reporter_check_box->setChecked (spot_to_psk_reporter_);
ui_->monitor_off_check_box->setChecked (monitor_off_at_startup_);
ui_->monitor_last_used_check_box->setChecked (monitor_last_used_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->log_as_RTTY_check_box->setChecked (log_as_RTTY_);
ui_->report_in_comments_check_box->setChecked (report_in_comments_);
ui_->prompt_to_log_check_box->setChecked (prompt_to_log_);
ui_->insert_blank_check_box->setChecked (insert_blank_);
ui_->DXCC_check_box->setChecked (DXCC_);
ui_->clear_DX_check_box->setChecked (clear_DX_);
ui_->miles_check_box->setChecked (miles_);
ui_->quick_call_check_box->setChecked (quick_call_);
ui_->disable_TX_on_73_check_box->setChecked (disable_TX_on_73_);
ui_->watchdog_check_box->setChecked (watchdog_);
ui_->TX_messages_check_box->setChecked (TX_messages_);
ui_->enable_VHF_features_check_box->setChecked(enable_VHF_features_);
ui_->decode_at_52s_check_box->setChecked(decode_at_52s_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->jt9w_bandwidth_mult_combo_box->setCurrentText (QString::number (jt9w_bw_mult_));
ui_->jt9w_min_dt_double_spin_box->setValue (jt9w_min_dt_);
ui_->jt9w_max_dt_double_spin_box->setValue (jt9w_max_dt_);
ui_->type_2_msg_gen_combo_box->setCurrentIndex (type_2_msg_gen_);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->rig_combo_box->setCurrentText (rig_params_.rig_name);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->TX_mode_button_group->button (data_mode_)->setChecked (true);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->split_mode_button_group->button (rig_params_.split_mode)->setChecked (true);
ui_->CAT_serial_baud_combo_box->setCurrentText (QString::number (rig_params_.baud));
ui_->CAT_data_bits_button_group->button (rig_params_.data_bits)->setChecked (true);
ui_->CAT_stop_bits_button_group->button (rig_params_.stop_bits)->setChecked (true);
ui_->CAT_handshake_button_group->button (rig_params_.handshake)->setChecked (true);
ui_->CAT_control_lines_group_box->setChecked (rig_params_.force_line_control);
ui_->CAT_DTR_check_box->setChecked (rig_params_.dtr_high);
ui_->CAT_RTS_check_box->setChecked (rig_params_.rts_high);
ui_->TX_audio_source_button_group->button (rig_params_.audio_source)->setChecked (true);
ui_->CAT_poll_interval_spin_box->setValue (rig_params_.poll_interval);
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
ui_->udp_server_line_edit->setText (udp_server_name_);
ui_->udp_server_port_spin_box->setValue (udp_server_port_);
ui_->accept_udp_requests_check_box->setChecked (accept_udp_requests_);
ui_->udpWindowToFront->setChecked(udpWindowToFront_);
ui_->udpWindowRestore->setChecked(udpWindowRestore_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (rig_params_.ptt_port.isEmpty ())
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
if (ui_->PTT_port_combo_box->count ())
{
ui_->PTT_port_combo_box->setCurrentText (ui_->PTT_port_combo_box->itemText (0));
}
}
else
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->PTT_port_combo_box->setCurrentText (rig_params_.ptt_port);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
next_macros_.setStringList (macros_.stringList ());
next_frequencies_ = frequencies_.frequencies ();
next_stations_ = stations_.stations ();
set_rig_invariants ();
}
void Configuration::impl::done (int r)
{
// do this here since window is still on screen at this point
SettingsGroup g {settings_, "Configuration"};
settings_->setValue ("window/size", size ());
settings_->setValue ("window/pos", pos ());
QDialog::done (r);
}
void Configuration::impl::read_settings ()
{
SettingsGroup g {settings_, "Configuration"};
resize (settings_->value ("window/size", size ()).toSize ());
move (settings_->value ("window/pos", pos ()).toPoint ());
my_callsign_ = settings_->value ("MyCall", "").toString ();
my_grid_ = settings_->value ("MyGrid", "").toString ();
next_color_CQ_ = color_CQ_ = settings_->value("colorCQ","#66ff66").toString();
next_color_MyCall_ = color_MyCall_ = settings_->value("colorMyCall","#ff6666").toString();
next_color_TxMsg_ = color_TxMsg_ = settings_->value("colorTxMsg","#ffff00").toString();
next_color_DXCC_ = color_DXCC_ = settings_->value("colorDXCC","#ff00ff").toString();
next_color_NewCall_ = color_NewCall_ = settings_->value("colorNewCall","#ffaaff").toString();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (next_font_.fromString (settings_->value ("Font", QGuiApplication::font ().toString ()).toString ())
&& next_font_ != font_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
font_ = next_font_;
set_application_font (font_);
}
else
{
next_font_ = font_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
if (next_decoded_text_font_.fromString (settings_->value ("DecodedTextFont", "Courier, 10").toString ())
&& next_decoded_text_font_ != decoded_text_font_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
decoded_text_font_ = next_decoded_text_font_;
Q_EMIT self_->decoded_text_font_changed (decoded_text_font_);
}
else
{
next_decoded_text_font_ = decoded_text_font_;
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
id_interval_ = settings_->value ("IDint", 0).toInt ();
save_directory_ = settings_->value ("SaveDir", default_save_directory_.absolutePath ()).toString ();
{
//
// retrieve audio input device
//
auto saved_name = settings_->value ("SoundInName").toString ();
// deal with special Windows default audio devices
auto default_device = QAudioDeviceInfo::defaultInputDevice ();
if (saved_name == default_device.deviceName ())
{
audio_input_device_ = default_device;
default_audio_input_device_selected_ = true;
}
else
{
default_audio_input_device_selected_ = false;
Q_FOREACH (auto const& p, QAudioDeviceInfo::availableDevices (QAudio::AudioInput)) // available audio input devices
{
if (p.deviceName () == saved_name)
{
audio_input_device_ = p;
}
}
}
}
{
//
// retrieve audio output device
//
auto saved_name = settings_->value("SoundOutName").toString();
// deal with special Windows default audio devices
auto default_device = QAudioDeviceInfo::defaultOutputDevice ();
if (saved_name == default_device.deviceName ())
{
audio_output_device_ = default_device;
default_audio_output_device_selected_ = true;
}
else
{
default_audio_output_device_selected_ = false;
Q_FOREACH (auto const& p, QAudioDeviceInfo::availableDevices (QAudio::AudioOutput)) // available audio output devices
{
if (p.deviceName () == saved_name)
{
audio_output_device_ = p;
}
}
}
}
// retrieve audio channel info
audio_input_channel_ = AudioDevice::fromString (settings_->value ("AudioInputChannel", "Mono").toString ());
audio_output_channel_ = AudioDevice::fromString (settings_->value ("AudioOutputChannel", "Mono").toString ());
jt9w_bw_mult_ = settings_->value ("ToneMult", 1).toUInt ();
jt9w_min_dt_ = settings_->value ("DTmin", -2.5).toFloat ();
jt9w_max_dt_ = settings_->value ("DTmax", 5.).toFloat ();
type_2_msg_gen_ = settings_->value ("Type2MsgGen", QVariant::fromValue (Configuration::type_2_msg_3_full)).value<Configuration::Type2MsgGen> ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
monitor_off_at_startup_ = settings_->value ("MonitorOFF", false).toBool ();
monitor_last_used_ = settings_->value ("MonitorLastUsed", false).toBool ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
spot_to_psk_reporter_ = settings_->value ("PSKReporter", false).toBool ();
id_after_73_ = settings_->value ("After73", false).toBool ();
tx_QSY_allowed_ = settings_->value ("TxQSYAllowed", false).toBool ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
macros_.setStringList (settings_->value ("Macros", QStringList {"TNX 73 GL"}).toStringList ());
if (settings_->contains ("frequencies"))
{
frequencies_ = settings_->value ("frequencies").value<Radio::Frequencies> ();
}
stations_ = settings_->value ("stations").value<StationList::Stations> ();
log_as_RTTY_ = settings_->value ("toRTTY", false).toBool ();
report_in_comments_ = settings_->value("dBtoComments", false).toBool ();
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
rig_params_.rig_name = settings_->value ("Rig", TransceiverFactory::basic_transceiver_name_).toString ();
rig_is_dummy_ = TransceiverFactory::basic_transceiver_name_ == rig_params_.rig_name;
rig_params_.network_port = settings_->value ("CATNetworkPort").toString ();
rig_params_.serial_port = settings_->value ("CATSerialPort").toString ();
rig_params_.baud = settings_->value ("CATSerialRate", 4800).toInt ();
rig_params_.data_bits = settings_->value ("CATDataBits", QVariant::fromValue (TransceiverFactory::eight_data_bits)).value<TransceiverFactory::DataBits> ();
rig_params_.stop_bits = settings_->value ("CATStopBits", QVariant::fromValue (TransceiverFactory::two_stop_bits)).value<TransceiverFactory::StopBits> ();
rig_params_.handshake = settings_->value ("CATHandshake", QVariant::fromValue (TransceiverFactory::handshake_none)).value<TransceiverFactory::Handshake> ();
rig_params_.force_line_control = settings_->value ("CATForceControlLines", false).toBool ();
rig_params_.dtr_high = settings_->value ("DTR", false).toBool ();
rig_params_.rts_high = settings_->value ("RTS", false).toBool ();
rig_params_.ptt_type = settings_->value ("PTTMethod", QVariant::fromValue (TransceiverFactory::PTT_method_VOX)).value<TransceiverFactory::PTTMethod> ();
rig_params_.audio_source = settings_->value ("TXAudioSource", QVariant::fromValue (TransceiverFactory::TX_audio_source_front)).value<TransceiverFactory::TXAudioSource> ();
rig_params_.ptt_port = settings_->value ("PTTport").toString ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
data_mode_ = settings_->value ("DataMode", QVariant::fromValue (data_mode_none)).value<Configuration::DataMode> ();
prompt_to_log_ = settings_->value ("PromptToLog", false).toBool ();
insert_blank_ = settings_->value ("InsertBlank", false).toBool ();
DXCC_ = settings_->value ("DXCCEntity", false).toBool ();
clear_DX_ = settings_->value ("ClearCallGrid", false).toBool ();
miles_ = settings_->value ("Miles", false).toBool ();
quick_call_ = settings_->value ("QuickCall", false).toBool ();
disable_TX_on_73_ = settings_->value ("73TxDisable", false).toBool ();
watchdog_ = settings_->value ("Runaway", false).toBool ();
TX_messages_ = settings_->value ("Tx2QSO", false).toBool ();
enable_VHF_features_ = settings_->value("VHFUHF",false).toBool ();
decode_at_52s_ = settings_->value("Decode52",false).toBool ();
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
rig_params_.poll_interval = settings_->value ("Polling", 0).toInt ();
rig_params_.split_mode = settings_->value ("SplitMode", QVariant::fromValue (TransceiverFactory::split_mode_none)).value<TransceiverFactory::SplitMode> ();
udp_server_name_ = settings_->value ("UDPServer", "127.0.0.1").toString ();
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
udp_server_port_ = settings_->value ("UDPServerPort", 2237).toUInt ();
accept_udp_requests_ = settings_->value ("AcceptUDPRequests", false).toBool ();
udpWindowToFront_ = settings_->value ("udpWindowToFront",false).toBool ();
udpWindowRestore_ = settings_->value ("udpWindowRestore",false).toBool ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void Configuration::impl::write_settings ()
{
SettingsGroup g {settings_, "Configuration"};
settings_->setValue ("MyCall", my_callsign_);
settings_->setValue ("MyGrid", my_grid_);
settings_->setValue("colorCQ",color_CQ_);
settings_->setValue("colorMyCall",color_MyCall_);
settings_->setValue("colorTxMsg",color_TxMsg_);
settings_->setValue("colorDXCC",color_DXCC_);
settings_->setValue("colorNewCall",color_NewCall_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
settings_->setValue ("Font", font_.toString ());
settings_->setValue ("DecodedTextFont", decoded_text_font_.toString ());
settings_->setValue ("IDint", id_interval_);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
settings_->setValue ("PTTMethod", QVariant::fromValue (rig_params_.ptt_type));
settings_->setValue ("PTTport", rig_params_.ptt_port);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
settings_->setValue ("SaveDir", save_directory_.absolutePath ());
if (default_audio_input_device_selected_)
{
settings_->setValue ("SoundInName", QAudioDeviceInfo::defaultInputDevice ().deviceName ());
}
else
{
settings_->setValue ("SoundInName", audio_input_device_.deviceName ());
}
if (default_audio_output_device_selected_)
{
settings_->setValue ("SoundOutName", QAudioDeviceInfo::defaultOutputDevice ().deviceName ());
}
else
{
settings_->setValue ("SoundOutName", audio_output_device_.deviceName ());
}
settings_->setValue ("AudioInputChannel", AudioDevice::toString (audio_input_channel_));
settings_->setValue ("AudioOutputChannel", AudioDevice::toString (audio_output_channel_));
settings_->setValue ("ToneMult", jt9w_bw_mult_);
settings_->setValue ("DTmin", jt9w_min_dt_);
settings_->setValue ("DTmax", jt9w_max_dt_);
settings_->setValue ("Type2MsgGen", QVariant::fromValue (type_2_msg_gen_));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
settings_->setValue ("MonitorOFF", monitor_off_at_startup_);
settings_->setValue ("MonitorLastUsed", monitor_last_used_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
settings_->setValue ("PSKReporter", spot_to_psk_reporter_);
settings_->setValue ("After73", id_after_73_);
settings_->setValue ("TxQSYAllowed", tx_QSY_allowed_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
settings_->setValue ("Macros", macros_.stringList ());
settings_->setValue ("frequencies", QVariant::fromValue (frequencies_.frequencies ()));
settings_->setValue ("stations", QVariant::fromValue (stations_.stations ()));
settings_->setValue ("toRTTY", log_as_RTTY_);
settings_->setValue ("dBtoComments", report_in_comments_);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
settings_->setValue ("Rig", rig_params_.rig_name);
settings_->setValue ("CATNetworkPort", rig_params_.network_port);
settings_->setValue ("CATSerialPort", rig_params_.serial_port);
settings_->setValue ("CATSerialRate", rig_params_.baud);
settings_->setValue ("CATDataBits", QVariant::fromValue (rig_params_.data_bits));
settings_->setValue ("CATStopBits", QVariant::fromValue (rig_params_.stop_bits));
settings_->setValue ("CATHandshake", QVariant::fromValue (rig_params_.handshake));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
settings_->setValue ("DataMode", QVariant::fromValue (data_mode_));
settings_->setValue ("PromptToLog", prompt_to_log_);
settings_->setValue ("InsertBlank", insert_blank_);
settings_->setValue ("DXCCEntity", DXCC_);
settings_->setValue ("ClearCallGrid", clear_DX_);
settings_->setValue ("Miles", miles_);
settings_->setValue ("QuickCall", quick_call_);
settings_->setValue ("73TxDisable", disable_TX_on_73_);
settings_->setValue ("Runaway", watchdog_);
settings_->setValue ("Tx2QSO", TX_messages_);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
settings_->setValue ("CATForceControlLines", rig_params_.force_line_control);
settings_->setValue ("DTR", rig_params_.dtr_high);
settings_->setValue ("RTS", rig_params_.rts_high);
settings_->setValue ("TXAudioSource", QVariant::fromValue (rig_params_.audio_source));
settings_->setValue ("Polling", rig_params_.poll_interval);
settings_->setValue ("SplitMode", QVariant::fromValue (rig_params_.split_mode));
settings_->setValue ("VHFUHF", enable_VHF_features_);
settings_->setValue ("Decode52", decode_at_52s_);
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
settings_->setValue ("UDPServer", udp_server_name_);
settings_->setValue ("UDPServerPort", udp_server_port_);
settings_->setValue ("AcceptUDPRequests", accept_udp_requests_);
settings_->setValue ("udpWindowToFront", udpWindowToFront_);
settings_->setValue ("udpWindowRestore", udpWindowRestore_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void Configuration::impl::set_rig_invariants ()
{
auto const& rig = ui_->rig_combo_box->currentText ();
auto const& ptt_port = ui_->PTT_port_combo_box->currentText ();
auto ptt_method = static_cast<TransceiverFactory::PTTMethod> (ui_->PTT_method_button_group->checkedId ());
auto CAT_PTT_enabled = transceiver_factory_.has_CAT_PTT (rig);
auto CAT_indirect_serial_PTT = transceiver_factory_.has_CAT_indirect_serial_PTT (rig);
auto asynchronous_CAT = transceiver_factory_.has_asynchronous_CAT (rig);
auto is_hw_handshake = ui_->CAT_handshake_group_box->isEnabled ()
&& TransceiverFactory::handshake_hardware == static_cast<TransceiverFactory::Handshake> (ui_->CAT_handshake_button_group->checkedId ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->test_CAT_push_button->setStyleSheet ({});
ui_->CAT_poll_interval_label->setEnabled (!asynchronous_CAT);
ui_->CAT_poll_interval_spin_box->setEnabled (!asynchronous_CAT);
static auto last_port_type = TransceiverFactory::Capabilities::none;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
auto port_type = transceiver_factory_.CAT_port_type (rig);
bool is_serial_CAT (TransceiverFactory::Capabilities::serial == port_type);
if (TransceiverFactory::basic_transceiver_name_ == rig)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// makes no sense with rig as "None"
ui_->monitor_last_used_check_box->setEnabled (false);
ui_->CAT_control_group_box->setEnabled (false);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->test_CAT_push_button->setEnabled (false);
ui_->test_PTT_push_button->setEnabled (TransceiverFactory::PTT_method_DTR == ptt_method
|| TransceiverFactory::PTT_method_RTS == ptt_method);
ui_->TX_audio_source_group_box->setEnabled (false);
ui_->mode_group_box->setEnabled (false);
ui_->split_operation_group_box->setEnabled (false);
}
else
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->monitor_last_used_check_box->setEnabled (true);
ui_->CAT_control_group_box->setEnabled (true);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->test_CAT_push_button->setEnabled (true);
ui_->test_PTT_push_button->setEnabled (false);
ui_->TX_audio_source_group_box->setEnabled (transceiver_factory_.has_CAT_PTT_mic_data (rig) && TransceiverFactory::PTT_method_CAT == ptt_method);
ui_->mode_group_box->setEnabled (true);
ui_->split_operation_group_box->setEnabled (true);
if (port_type != last_port_type)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
last_port_type = port_type;
switch (port_type)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
case TransceiverFactory::Capabilities::serial:
fill_port_combo_box (ui_->CAT_port_combo_box);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->CAT_port_combo_box->setCurrentText (rig_params_.serial_port);
if (ui_->CAT_port_combo_box->currentText ().isEmpty () && ui_->CAT_port_combo_box->count ())
{
ui_->CAT_port_combo_box->setCurrentText (ui_->CAT_port_combo_box->itemText (0));
}
ui_->CAT_port_label->setText (tr ("Serial Port:"));
ui_->CAT_port_combo_box->setToolTip (tr ("Serial port used for CAT control"));
ui_->CAT_port_combo_box->setEnabled (true);
break;
case TransceiverFactory::Capabilities::network:
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->CAT_port_combo_box->clear ();
ui_->CAT_port_combo_box->setCurrentText (rig_params_.network_port);
ui_->CAT_port_label->setText (tr ("Network Server:"));
ui_->CAT_port_combo_box->setToolTip (tr ("Optional hostname and port of network service.\n"
"Leave blank for a sensible default on this machine.\n"
"Formats:\n"
"\thostname:port\n"
"\tIPv4-address:port\n"
"\t[IPv6-address]:port"));
ui_->CAT_port_combo_box->setEnabled (true);
break;
default:
ui_->CAT_port_combo_box->clear ();
ui_->CAT_port_combo_box->setEnabled (false);
break;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
ui_->CAT_serial_port_parameters_group_box->setEnabled (is_serial_CAT);
ui_->CAT_control_lines_group_box->setEnabled (is_serial_CAT && !is_hw_handshake);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
auto const& cat_port = ui_->CAT_port_combo_box->currentText ();
// only enable CAT option if transceiver has CAT PTT
ui_->PTT_CAT_radio_button->setEnabled (CAT_PTT_enabled);
auto enable_ptt_port = TransceiverFactory::PTT_method_CAT != ptt_method && TransceiverFactory::PTT_method_VOX != ptt_method;
ui_->PTT_port_combo_box->setEnabled (enable_ptt_port);
ui_->PTT_port_label->setEnabled (enable_ptt_port);
ui_->PTT_port_combo_box->setItemData (ui_->PTT_port_combo_box->findText ("CAT")
, CAT_indirect_serial_PTT ? combo_box_item_enabled : combo_box_item_disabled
, Qt::UserRole - 1);
auto control_lines_available = !ui_->CAT_control_lines_group_box->isEnabled ()
|| !ui_->CAT_control_lines_group_box->isChecked ();
ui_->PTT_DTR_radio_button->setEnabled (!(((is_serial_CAT && ptt_port == cat_port)
&& !control_lines_available)
|| ("CAT" == ptt_port && !CAT_indirect_serial_PTT)));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ui_->PTT_RTS_radio_button->setEnabled (!(((is_serial_CAT && ptt_port == cat_port)
&& (!control_lines_available || is_hw_handshake))
|| ("CAT" == ptt_port && !CAT_indirect_serial_PTT)));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
bool Configuration::impl::validate ()
{
if (ui_->sound_input_combo_box->currentIndex () < 0
&& !QAudioDeviceInfo::availableDevices (QAudio::AudioInput).empty ())
{
message_box (tr ("Invalid audio input device"));
return false;
}
if (ui_->sound_output_combo_box->currentIndex () < 0
&& !QAudioDeviceInfo::availableDevices (QAudio::AudioOutput).empty ())
{
message_box (tr ("Invalid audio output device"));
return false;
}
if (!ui_->PTT_method_button_group->checkedButton ()->isEnabled ())
{
message_box (tr ("Invalid PTT method"));
return false;
}
auto ptt_method = static_cast<TransceiverFactory::PTTMethod> (ui_->PTT_method_button_group->checkedId ());
auto ptt_port = ui_->PTT_port_combo_box->currentText ();
if ((TransceiverFactory::PTT_method_DTR == ptt_method || TransceiverFactory::PTT_method_RTS == ptt_method)
&& (ptt_port.isEmpty ()
|| combo_box_item_disabled == ui_->PTT_port_combo_box->itemData (ui_->PTT_port_combo_box->findText (ptt_port), Qt::UserRole - 1)))
{
message_box (tr ("Invalid PTT port"));
return false;
}
return true;
}
int Configuration::impl::exec ()
{
// macros can be modified in the main window
next_macros_.setStringList (macros_.stringList ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
have_rig_ = rig_active_; // record that we started with a rig open
saved_rig_params_ = rig_params_; // used to detect changes that
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// require the Transceiver to be
// re-opened
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
rig_changed_ = false;
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
initialize_models ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
return QDialog::exec();
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
TransceiverFactory::ParameterPack Configuration::impl::gather_rig_data ()
{
TransceiverFactory::ParameterPack result;
result.rig_name = ui_->rig_combo_box->currentText ();
switch (transceiver_factory_.CAT_port_type (result.rig_name))
{
case TransceiverFactory::Capabilities::network:
result.network_port = ui_->CAT_port_combo_box->currentText ();
result.serial_port = rig_params_.serial_port;
break;
default:
result.serial_port = ui_->CAT_port_combo_box->currentText ();
result.network_port = rig_params_.network_port;
break;
}
result.baud = ui_->CAT_serial_baud_combo_box->currentText ().toInt ();
result.data_bits = static_cast<TransceiverFactory::DataBits> (ui_->CAT_data_bits_button_group->checkedId ());
result.stop_bits = static_cast<TransceiverFactory::StopBits> (ui_->CAT_stop_bits_button_group->checkedId ());
result.handshake = static_cast<TransceiverFactory::Handshake> (ui_->CAT_handshake_button_group->checkedId ());
result.force_line_control = ui_->CAT_control_lines_group_box->isChecked ();
result.dtr_high = ui_->CAT_DTR_check_box->isChecked ();
result.rts_high = ui_->CAT_RTS_check_box->isChecked ();
result.poll_interval = ui_->CAT_poll_interval_spin_box->value ();
result.ptt_type = static_cast<TransceiverFactory::PTTMethod> (ui_->PTT_method_button_group->checkedId ());
result.ptt_port = ui_->PTT_port_combo_box->currentText ();
result.audio_source = static_cast<TransceiverFactory::TXAudioSource> (ui_->TX_audio_source_button_group->checkedId ());
result.split_mode = static_cast<TransceiverFactory::SplitMode> (ui_->split_mode_button_group->checkedId ());
return result;
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
void Configuration::impl::accept ()
{
// Called when OK button is clicked.
if (!validate ())
{
return; // not accepting
}
// extract all rig related configuration parameters into temporary
// structure for checking if the rig needs re-opening without
// actually updating our live state
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
auto temp_rig_params = gather_rig_data ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// open_rig() uses values from models so we use it to validate the
// Transceiver settings before agreeing to accept the configuration
if (temp_rig_params != rig_params_ && !open_rig ())
{
return; // not accepting
}
QDialog::accept(); // do this before accessing custom
// models so that any changes in
// delegates in views get flushed to
// the underlying models before we
// access them
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
sync_transceiver (true); // force an update
//
// from here on we are bound to accept the new configuration
// parameters so extract values from models and make them live
//
if (next_font_ != font_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
font_ = next_font_;
set_application_font (font_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
if (next_decoded_text_font_ != decoded_text_font_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
decoded_text_font_ = next_decoded_text_font_;
Q_EMIT self_->decoded_text_font_changed (decoded_text_font_);
}
color_CQ_ = next_color_CQ_;
color_MyCall_ = next_color_MyCall_;
color_TxMsg_ = next_color_TxMsg_;
color_DXCC_ = next_color_DXCC_;
color_NewCall_ = next_color_NewCall_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
rig_params_ = temp_rig_params; // now we can go live with the rig
// related configuration parameters
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
rig_is_dummy_ = TransceiverFactory::basic_transceiver_name_ == rig_params_.rig_name;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// Check to see whether SoundInThread must be restarted,
// and save user parameters.
{
auto const& device_name = ui_->sound_input_combo_box->currentText ();
if (device_name != audio_input_device_.deviceName ())
{
auto const& default_device = QAudioDeviceInfo::defaultInputDevice ();
if (device_name == default_device.deviceName ())
{
audio_input_device_ = default_device;
}
else
{
bool found {false};
Q_FOREACH (auto const& d, QAudioDeviceInfo::availableDevices (QAudio::AudioInput))
{
if (device_name == d.deviceName ())
{
audio_input_device_ = d;
found = true;
}
}
if (!found)
{
audio_input_device_ = default_device;
}
}
restart_sound_input_device_ = true;
}
}
{
auto const& device_name = ui_->sound_output_combo_box->currentText ();
if (device_name != audio_output_device_.deviceName ())
{
auto const& default_device = QAudioDeviceInfo::defaultOutputDevice ();
if (device_name == default_device.deviceName ())
{
audio_output_device_ = default_device;
}
else
{
bool found {false};
Q_FOREACH (auto const& d, QAudioDeviceInfo::availableDevices (QAudio::AudioOutput))
{
if (device_name == d.deviceName ())
{
audio_output_device_ = d;
found = true;
}
}
if (!found)
{
audio_output_device_ = default_device;
}
}
restart_sound_output_device_ = true;
}
}
if (audio_input_channel_ != static_cast<AudioDevice::Channel> (ui_->sound_input_channel_combo_box->currentIndex ()))
{
audio_input_channel_ = static_cast<AudioDevice::Channel> (ui_->sound_input_channel_combo_box->currentIndex ());
restart_sound_input_device_ = true;
}
Q_ASSERT (audio_input_channel_ <= AudioDevice::Right);
if (audio_output_channel_ != static_cast<AudioDevice::Channel> (ui_->sound_output_channel_combo_box->currentIndex ()))
{
audio_output_channel_ = static_cast<AudioDevice::Channel> (ui_->sound_output_channel_combo_box->currentIndex ());
restart_sound_output_device_ = true;
}
Q_ASSERT (audio_output_channel_ <= AudioDevice::Both);
my_callsign_ = ui_->callsign_line_edit->text ();
my_grid_ = ui_->grid_line_edit->text ();
spot_to_psk_reporter_ = ui_->psk_reporter_check_box->isChecked ();
id_interval_ = ui_->CW_id_interval_spin_box->value ();
id_after_73_ = ui_->CW_id_after_73_check_box->isChecked ();
tx_QSY_allowed_ = ui_->tx_QSY_check_box->isChecked ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
monitor_off_at_startup_ = ui_->monitor_off_check_box->isChecked ();
monitor_last_used_ = ui_->monitor_last_used_check_box->isChecked ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
jt9w_bw_mult_ = ui_->jt9w_bandwidth_mult_combo_box->currentText ().toUInt ();
jt9w_min_dt_ = static_cast<float> (ui_->jt9w_min_dt_double_spin_box->value ());
jt9w_max_dt_ = static_cast<float> (ui_->jt9w_max_dt_double_spin_box->value ());
type_2_msg_gen_ = static_cast<Type2MsgGen> (ui_->type_2_msg_gen_combo_box->currentIndex ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
log_as_RTTY_ = ui_->log_as_RTTY_check_box->isChecked ();
report_in_comments_ = ui_->report_in_comments_check_box->isChecked ();
prompt_to_log_ = ui_->prompt_to_log_check_box->isChecked ();
insert_blank_ = ui_->insert_blank_check_box->isChecked ();
DXCC_ = ui_->DXCC_check_box->isChecked ();
clear_DX_ = ui_->clear_DX_check_box->isChecked ();
miles_ = ui_->miles_check_box->isChecked ();
quick_call_ = ui_->quick_call_check_box->isChecked ();
disable_TX_on_73_ = ui_->disable_TX_on_73_check_box->isChecked ();
watchdog_ = ui_->watchdog_check_box->isChecked ();
TX_messages_ = ui_->TX_messages_check_box->isChecked ();
data_mode_ = static_cast<DataMode> (ui_->TX_mode_button_group->checkedId ());
save_directory_ = ui_->save_path_display_label->text ();
enable_VHF_features_ = ui_->enable_VHF_features_check_box->isChecked ();
decode_at_52s_ = ui_->decode_at_52s_check_box->isChecked ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Send status information to UDP server To facilitate interaction with other applications WSJT-X now sends status updates to a predefined UDP server or multicast group address. The status updates include the information currently posted to the decodes.txt and wsjtx_status.txt files. An optional back communications channel is also implemented allowing the UDP server application to control some basic actions in WSJT-X. A reference implementaion of a typical UDP server written in C++ using Qt is provided to demonstrate these facilities. This application is not intended as a user tool but only as an example of how a third party application may interact with WSJT-X. The UDP messages Use QDataStream based serialization. Messages are documented in NetworkMessage.hpp along with some helper classes that simplify the building and decoding of messages. Two message handling classes are introduced, MessageClient and MessageServer. WSJT-X uses the MessageClient class to manage outgoing and incoming UDP messages that allow communication with other applications. The MessageServer class implements the kind of code that a potential cooperating application might use. Although these classes use Qt serialization facilities, the message formats are easily read and written by applications that do not use the Qt framework. MessageAggregator is a demonstration application that uses MessageServer and presents a GUI that displays messages from one or more WSJT-X instances and allows sending back a CQ or QRZ reply invocation by double clicking a decode. This application is not intended as a user facing tool but rather as a demonstration of the WSJT-X UDP messaging facility. It also demonstrates being a multicast UDP server by allowing multiple instances to run concurrently. This is enabled by using an appropriate multicast group address as the server address. Cooperating applications need not implement multicast techniques but it is recomended otherwise only a single appliaction can act as a broadcast message (from WSJT-X) recipient. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5225 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-15 12:40:49 -04:00
auto new_server = ui_->udp_server_line_edit->text ();
if (new_server != udp_server_name_)
{
udp_server_name_ = new_server;
Q_EMIT self_->udp_server_changed (new_server);
}
auto new_port = ui_->udp_server_port_spin_box->value ();
if (new_port != udp_server_port_)
{
udp_server_port_ = new_port;
Q_EMIT self_->udp_server_port_changed (new_port);
}
accept_udp_requests_ = ui_->accept_udp_requests_check_box->isChecked ();
udpWindowToFront_ = ui_->udpWindowToFront->isChecked ();
udpWindowRestore_ = ui_->udpWindowRestore->isChecked ();
if (macros_.stringList () != next_macros_.stringList ())
{
macros_.setStringList (next_macros_.stringList ());
}
if (frequencies_.frequencies () != next_frequencies_.frequencies ())
{
frequencies_ = next_frequencies_.frequencies ();
frequencies_.sort (0);
}
if (stations_.stations () != next_stations_.stations ())
{
stations_ = next_stations_.stations ();
stations_.sort (0);
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
write_settings (); // make visible to all
}
void Configuration::impl::reject ()
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
initialize_models (); // reverts to settings as at exec ()
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// check if the Transceiver instance changed, in which case we need
// to re open any prior Transceiver type
if (rig_changed_)
{
if (have_rig_)
{
// we have to do this since the rig has been opened since we
// were exec'ed even though it might fail
open_rig ();
}
else
{
close_rig ();
}
}
QDialog::reject ();
}
void Configuration::impl::message_box (QString const& reason, QString const& detail)
{
QMessageBox mb;
mb.setText (reason);
if (!detail.isEmpty ())
{
mb.setDetailedText (detail);
}
mb.setStandardButtons (QMessageBox::Ok);
mb.setDefaultButton (QMessageBox::Ok);
mb.setIcon (QMessageBox::Critical);
mb.exec ();
}
void Configuration::impl::on_font_push_button_clicked ()
{
next_font_ = QFontDialog::getFont (0, next_font_, this);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void Configuration::impl::on_pbCQmsg_clicked()
{
auto new_color = QColorDialog::getColor(next_color_CQ_, this, "CQ Messages Color");
if (new_color.isValid ())
{
next_color_CQ_ = new_color;
ui_->labCQ->setStyleSheet(QString("background: %1").arg(next_color_CQ_.name()));
}
}
void Configuration::impl::on_pbMyCall_clicked()
{
auto new_color = QColorDialog::getColor(next_color_MyCall_, this, "My Call Messages Color");
if (new_color.isValid ())
{
next_color_MyCall_ = new_color;
ui_->labMyCall->setStyleSheet(QString("background: %1").arg(next_color_MyCall_.name()));
}
}
void Configuration::impl::on_pbTxMsg_clicked()
{
auto new_color = QColorDialog::getColor(next_color_TxMsg_, this, "Tx Messages Color");
if (new_color.isValid ())
{
next_color_TxMsg_ = new_color;
ui_->labTx->setStyleSheet(QString("background: %1").arg(next_color_TxMsg_.name()));
}
}
void Configuration::impl::on_pbNewDXCC_clicked()
{
auto new_color = QColorDialog::getColor(next_color_DXCC_, this, "New DXCC Messages Color");
if (new_color.isValid ())
{
next_color_DXCC_ = new_color;
ui_->labDXCC->setStyleSheet(QString("background: %1").arg(next_color_DXCC_.name()));
}
}
void Configuration::impl::on_pbNewCall_clicked()
{
auto new_color = QColorDialog::getColor(next_color_NewCall_, this, "New Call Messages Color");
if (new_color.isValid ())
{
next_color_NewCall_ = new_color;
ui_->labNewCall->setStyleSheet(QString("background: %1").arg(next_color_NewCall_.name()));
}
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
void Configuration::impl::on_decoded_text_font_push_button_clicked ()
{
next_decoded_text_font_ = QFontDialog::getFont (0, decoded_text_font_ , this
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
, tr ("WSJT-X Decoded Text Font Chooser")
#if QT_VERSION >= 0x050201
, QFontDialog::MonospacedFonts
#endif
);
}
void Configuration::impl::on_PTT_port_combo_box_activated (int /* index */)
{
set_rig_invariants ();
}
void Configuration::impl::on_CAT_port_combo_box_activated (int /* index */)
{
set_rig_invariants ();
}
void Configuration::impl::on_CAT_serial_baud_combo_box_currentIndexChanged (int /* index */)
{
set_rig_invariants ();
}
void Configuration::impl::on_CAT_handshake_button_group_buttonClicked (int /* id */)
{
set_rig_invariants ();
}
void Configuration::impl::on_rig_combo_box_currentIndexChanged (int /* index */)
{
set_rig_invariants ();
}
void Configuration::impl::on_CAT_data_bits_button_group_buttonClicked (int /* id */)
{
set_rig_invariants ();
}
void Configuration::impl::on_CAT_stop_bits_button_group_buttonClicked (int /* id */)
{
set_rig_invariants ();
}
void Configuration::impl::on_CAT_poll_interval_spin_box_valueChanged (int /* value */)
{
set_rig_invariants ();
}
void Configuration::impl::on_split_mode_button_group_buttonClicked (int /* id */)
{
setup_split_ = true;
required_tx_frequency_ = 0;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void Configuration::impl::on_test_CAT_push_button_clicked ()
{
if (!validate ())
{
return;
}
ui_->test_CAT_push_button->setStyleSheet ({});
if (open_rig ())
{
Q_EMIT sync (true);
}
set_rig_invariants ();
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
void Configuration::impl::on_test_PTT_push_button_clicked (bool checked)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->test_PTT_push_button->setChecked (!checked); // let status
// update check us
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (!validate ())
{
return;
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (open_rig ())
{
Q_EMIT self_->transceiver_ptt (checked);
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void Configuration::impl::on_CAT_control_lines_group_box_toggled (bool /* checked */)
{
set_rig_invariants ();
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
void Configuration::impl::on_CAT_DTR_check_box_toggled (bool /* checked */)
{
set_rig_invariants ();
}
void Configuration::impl::on_CAT_RTS_check_box_toggled (bool /* checked */)
{
set_rig_invariants ();
}
void Configuration::impl::on_PTT_method_button_group_buttonClicked (int /* id */)
{
set_rig_invariants ();
}
void Configuration::impl::on_callsign_line_edit_editingFinished ()
{
ui_->callsign_line_edit->setText (ui_->callsign_line_edit->text ().toUpper ());
}
void Configuration::impl::on_grid_line_edit_editingFinished ()
{
auto text = ui_->grid_line_edit->text ();
ui_->grid_line_edit->setText (text.left (4).toUpper () + text.mid (4).toLower ());
}
void Configuration::impl::on_sound_input_combo_box_currentTextChanged (QString const& text)
{
default_audio_input_device_selected_ = QAudioDeviceInfo::defaultInputDevice ().deviceName () == text;
}
void Configuration::impl::on_sound_output_combo_box_currentTextChanged (QString const& text)
{
default_audio_output_device_selected_ = QAudioDeviceInfo::defaultOutputDevice ().deviceName () == text;
}
void Configuration::impl::on_add_macro_line_edit_editingFinished ()
{
ui_->add_macro_line_edit->setText (ui_->add_macro_line_edit->text ().toUpper ());
}
void Configuration::impl::on_delete_macro_push_button_clicked (bool /* checked */)
{
auto selection_model = ui_->macros_list_view->selectionModel ();
if (selection_model->hasSelection ())
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
// delete all selected items
delete_selected_macros (selection_model->selectedRows ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
void Configuration::impl::delete_macro ()
{
auto selection_model = ui_->macros_list_view->selectionModel ();
if (!selection_model->hasSelection ())
{
// delete item under cursor if any
auto index = selection_model->currentIndex ();
if (index.isValid ())
{
next_macros_.removeRow (index.row ());
}
}
else
{
// delete the whole selection
delete_selected_macros (selection_model->selectedRows ());
}
}
void Configuration::impl::delete_selected_macros (QModelIndexList selected_rows)
{
// sort in reverse row order so that we can delete without changing
// indices underneath us
qSort (selected_rows.begin (), selected_rows.end (), [] (QModelIndex const& lhs, QModelIndex const& rhs)
{
return rhs.row () < lhs.row (); // reverse row ordering
});
// now delete them
Q_FOREACH (auto index, selected_rows)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
next_macros_.removeRow (index.row ());
}
}
void Configuration::impl::on_add_macro_push_button_clicked (bool /* checked */)
{
if (next_macros_.insertRow (next_macros_.rowCount ()))
{
auto index = next_macros_.index (next_macros_.rowCount () - 1);
ui_->macros_list_view->setCurrentIndex (index);
next_macros_.setData (index, ui_->add_macro_line_edit->text ());
ui_->add_macro_line_edit->clear ();
}
}
void Configuration::impl::delete_frequencies ()
{
auto selection_model = ui_->frequencies_table_view->selectionModel ();
selection_model->select (selection_model->selection (), QItemSelectionModel::SelectCurrent | QItemSelectionModel::Rows);
next_frequencies_.removeDisjointRows (selection_model->selectedRows ());
}
void Configuration::impl::insert_frequency ()
{
if (QDialog::Accepted == frequency_dialog_->exec ())
{
ui_->frequencies_table_view->setCurrentIndex (next_frequencies_.add (frequency_dialog_->frequency ()));
}
}
void Configuration::impl::delete_stations ()
{
auto selection_model = ui_->stations_table_view->selectionModel ();
selection_model->select (selection_model->selection (), QItemSelectionModel::SelectCurrent | QItemSelectionModel::Rows);
next_stations_.removeDisjointRows (selection_model->selectedRows ());
}
void Configuration::impl::insert_station ()
{
if (QDialog::Accepted == station_dialog_->exec ())
{
ui_->stations_table_view->setCurrentIndex (next_stations_.add (station_dialog_->station ()));
}
}
void Configuration::impl::on_save_path_select_push_button_clicked (bool /* checked */)
{
QFileDialog fd {this, tr ("Save Directory"), ui_->save_path_display_label->text ()};
fd.setFileMode (QFileDialog::Directory);
fd.setOption (QFileDialog::ShowDirsOnly);
if (fd.exec ())
{
if (fd.selectedFiles ().size ())
{
ui_->save_path_display_label->setText (fd.selectedFiles ().at (0));
}
}
}
bool Configuration::impl::have_rig (bool open_if_closed)
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (open_if_closed && !open_rig ())
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
QMessageBox::critical (this, "WSJT-X", tr ("Failed to open connection to rig"));
}
return rig_active_;
}
bool Configuration::impl::open_rig ()
{
auto result = false;
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
auto const rig_data = gather_rig_data ();
if (!rig_active_ || rig_data != saved_rig_params_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
try
{
close_rig ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// create a new Transceiver object
auto rig = transceiver_factory_.create (rig_data, &transceiver_thread_);
// hook up Configuration transceiver control signals to Transceiver slots
//
// these connections cross the thread boundary
rig_connections_ << connect (this, &Configuration::impl::frequency, rig.get (), &Transceiver::frequency);
rig_connections_ << connect (this, &Configuration::impl::tx_frequency, rig.get (), &Transceiver::tx_frequency);
rig_connections_ << connect (this, &Configuration::impl::mode, rig.get (), &Transceiver::mode);
rig_connections_ << connect (this, &Configuration::impl::ptt, rig.get (), &Transceiver::ptt);
rig_connections_ << connect (this, &Configuration::impl::sync, rig.get (), &Transceiver::sync);
// hook up Transceiver signals to Configuration signals
//
// these connections cross the thread boundary
connect (rig.get (), &Transceiver::update, this, &Configuration::impl::handle_transceiver_update);
connect (rig.get (), &Transceiver::failure, this, &Configuration::impl::handle_transceiver_failure);
// setup thread safe startup and close down semantics
rig_connections_ << connect (this, &Configuration::impl::start_transceiver, rig.get (), &Transceiver::start);
connect (this, &Configuration::impl::stop_transceiver, rig.get (), &Transceiver::stop);
auto p = rig.release (); // take ownership
// schedule eventual destruction
//
// must be queued connection to avoid premature self-immolation
// since finished signal is going to be emitted from the object
// that will get destroyed in its own stop slot i.e. a same
// thread signal to slot connection which by default will be
// reduced to a method function call.
connect (p, &Transceiver::finished, p, &Transceiver::deleteLater, Qt::QueuedConnection);
ui_->test_CAT_push_button->setStyleSheet ({});
rig_active_ = true;
Q_EMIT start_transceiver (); // start rig on its thread
result = true;
}
catch (std::exception const& e)
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
handle_transceiver_failure (e.what ());
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
saved_rig_params_ = rig_data;
rig_changed_ = true;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
else
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
result = true;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
return result;
}
void Configuration::impl::transceiver_frequency (Frequency f)
{
Transceiver::MODE mode {Transceiver::UNK};
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (ui_->mode_group_box->isEnabled ())
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
switch (static_cast<DataMode> (ui_->TX_mode_button_group->checkedId ()))
{
case data_mode_USB: mode = Transceiver::USB; break;
case data_mode_data: mode = Transceiver::DIG_U; break;
case data_mode_none: break;
}
}
if (cached_rig_state_.frequency () != f
|| (mode != Transceiver::UNK && mode != cached_rig_state_.mode ()))
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
cached_rig_state_.frequency (f);
cached_rig_state_.mode (mode);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// lookup offset
transceiver_offset_ = stations_.offset (f);
Q_EMIT frequency (f + transceiver_offset_, mode);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
void Configuration::impl::transceiver_tx_frequency (Frequency f)
{
if (/* set_mode () || */ cached_rig_state_.tx_frequency () != f || cached_rig_state_.split () != !!f)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
cached_rig_state_.tx_frequency (f);
cached_rig_state_.split (f);
// lookup offset if we are in split mode
if (f)
{
transceiver_offset_ = stations_.offset (f);
f += transceiver_offset_;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
// Rationalise TX VFO mode if we ask for split and are
// responsible for mode.
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
Q_EMIT tx_frequency (f, cached_rig_state_.split ()
&& ui_->mode_group_box->isEnabled ()
&& data_mode_none != data_mode_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
void Configuration::impl::transceiver_mode (MODE m)
{
if (cached_rig_state_.mode () != m)
{
cached_rig_state_.mode (m);
// Rationalise mode if we are responsible for it and in split mode.
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
Q_EMIT mode (m, cached_rig_state_.split ()
&& ui_->mode_group_box->isEnabled ()
&& data_mode_none != data_mode_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
void Configuration::impl::transceiver_ptt (bool on)
{
cached_rig_state_.ptt (on);
// pass this on regardless of cache
Q_EMIT ptt (on);
}
void Configuration::impl::sync_transceiver (bool force_signal)
{
// pass this on as cache must be ignored
Q_EMIT sync (force_signal);
}
void Configuration::impl::handle_transceiver_update (TransceiverState state)
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::handle_transceiver_update: Transceiver State:" << state;
#endif
if (state.online ())
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->test_PTT_push_button->setChecked (state.ptt ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
TransceiverFactory::SplitMode split_mode_selected;
if (isVisible ())
{
ui_->test_CAT_push_button->setStyleSheet ("QPushButton {background-color: green;}");
auto const& rig = ui_->rig_combo_box->currentText ();
auto ptt_method = static_cast<TransceiverFactory::PTTMethod> (ui_->PTT_method_button_group->checkedId ());
auto CAT_PTT_enabled = transceiver_factory_.has_CAT_PTT (rig);
ui_->test_PTT_push_button->setEnabled ((TransceiverFactory::PTT_method_CAT == ptt_method && CAT_PTT_enabled)
|| TransceiverFactory::PTT_method_DTR == ptt_method
|| TransceiverFactory::PTT_method_RTS == ptt_method);
// Follow the setup choice.
split_mode_selected = static_cast<TransceiverFactory::SplitMode> (ui_->split_mode_button_group->checkedId ());
}
else
{
// Follow the rig unless configuration has been changed.
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
split_mode_selected = static_cast<TransceiverFactory::SplitMode> (rig_params_.split_mode);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (enforce_mode_and_split_)
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (TransceiverFactory::basic_transceiver_name_ != ui_->rig_combo_box->currentText ()
&& ((TransceiverFactory::split_mode_none != split_mode_selected) != state.split ()))
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
if (!setup_split_)
{
// Rig split mode isn't consistent with settings so
// change settings.
//
// For rigs that can't report split mode changes
// (e.g.Icom) this is going to confuse operators, but
// what can we do if they change the rig?
// auto split_mode = state.split () ? TransceiverFactory::split_mode_rig : TransceiverFactory::split_mode_none;
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// rig_params_.split_mode = split_mode;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// ui_->split_mode_button_group->button (split_mode)->setChecked (true);
// split_mode_selected = split_mode;
setup_split_ = true;
required_tx_frequency_ = 0;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// Q_EMIT self_->transceiver_failure (tr ("Rig split mode setting not consistent with WSJT-X settings. Changing WSJT-X settings for you."));
Q_EMIT self_->transceiver_failure (tr ("Rig split mode setting not consistent with WSJT-X settings."));
}
}
}
}
// One time rig setup split
if (setup_split_ && cached_rig_state_.split () != state.split ())
{
Q_EMIT tx_frequency (TransceiverFactory::split_mode_none != split_mode_selected ? (required_tx_frequency_ ? required_tx_frequency_ : state.tx_frequency ()) : 0, true);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
setup_split_ = false;
required_tx_frequency_ = 0;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
else
{
close_rig ();
}
cached_rig_state_ = state;
// take off offset
cached_rig_state_.frequency (cached_rig_state_.frequency () - transceiver_offset_);
if (cached_rig_state_.tx_frequency ())
{
cached_rig_state_.tx_frequency (cached_rig_state_.tx_frequency () - transceiver_offset_);
}
// pass on to clients
Q_EMIT self_->transceiver_update (cached_rig_state_);
}
void Configuration::impl::handle_transceiver_failure (QString reason)
{
#if WSJT_TRACE_CAT
qDebug () << "Configuration::handle_transceiver_failure: reason:" << reason;
#endif
close_rig ();
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->test_PTT_push_button->setChecked (false);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (isVisible ())
{
message_box (tr ("Rig failure"), reason);
}
else
{
// pass on if our dialog isn't active
Q_EMIT self_->transceiver_failure (reason);
}
}
void Configuration::impl::close_rig ()
{
ui_->test_PTT_push_button->setEnabled (false);
// revert to no rig configured
if (rig_active_)
{
ui_->test_CAT_push_button->setStyleSheet ("QPushButton {background-color: red;}");
Q_EMIT stop_transceiver ();
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
Q_FOREACH (auto const& connection, rig_connections_)
{
disconnect (connection);
}
rig_connections_.clear ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
rig_active_ = false;
}
}
// load the available audio devices into the selection combo box and
// select the default device if the current device isn't set or isn't
// available
bool Configuration::impl::load_audio_devices (QAudio::Mode mode, QComboBox * combo_box, QAudioDeviceInfo * device)
{
using std::copy;
using std::back_inserter;
bool result {false};
combo_box->clear ();
int current_index = -1;
int default_index = -1;
int extra_items {0};
auto const& default_device = (mode == QAudio::AudioInput ? QAudioDeviceInfo::defaultInputDevice () : QAudioDeviceInfo::defaultOutputDevice ());
// deal with special default audio devices on Windows
if ("Default Input Device" == default_device.deviceName ()
|| "Default Output Device" == default_device.deviceName ())
{
default_index = 0;
QList<QVariant> channel_counts;
auto scc = default_device.supportedChannelCounts ();
copy (scc.cbegin (), scc.cend (), back_inserter (channel_counts));
combo_box->addItem (default_device.deviceName (), channel_counts);
++extra_items;
if (default_device == *device)
{
current_index = 0;
result = true;
}
}
Q_FOREACH (auto const& p, QAudioDeviceInfo::availableDevices (mode))
{
// convert supported channel counts into something we can store in the item model
QList<QVariant> channel_counts;
auto scc = p.supportedChannelCounts ();
copy (scc.cbegin (), scc.cend (), back_inserter (channel_counts));
combo_box->addItem (p.deviceName (), channel_counts);
if (p == *device)
{
current_index = combo_box->count () - 1;
}
else if (p == default_device)
{
default_index = combo_box->count () - 1;
}
}
if (current_index < 0) // not found - use default
{
*device = default_device;
result = true;
current_index = default_index;
}
combo_box->setCurrentIndex (current_index);
return result;
}
// enable only the channels that are supported by the selected audio device
void Configuration::impl::update_audio_channels (QComboBox const * source_combo_box, int index, QComboBox * combo_box, bool allow_both)
{
// disable all items
for (int i (0); i < combo_box->count (); ++i)
{
combo_box->setItemData (i, combo_box_item_disabled, Qt::UserRole - 1);
}
Q_FOREACH (QVariant const& v, source_combo_box->itemData (index).toList ())
{
// enable valid options
int n {v.toInt ()};
if (2 == n)
{
combo_box->setItemData (AudioDevice::Left, combo_box_item_enabled, Qt::UserRole - 1);
combo_box->setItemData (AudioDevice::Right, combo_box_item_enabled, Qt::UserRole - 1);
if (allow_both)
{
combo_box->setItemData (AudioDevice::Both, combo_box_item_enabled, Qt::UserRole - 1);
}
}
else if (1 == n)
{
combo_box->setItemData (AudioDevice::Mono, combo_box_item_enabled, Qt::UserRole - 1);
}
}
}
void Configuration::impl::set_application_font (QFont const& font)
{
qApp->setStyleSheet (qApp->styleSheet () + "* {" + font_as_stylesheet (font) + '}');
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// load all the supported rig names into the selection combo box
void Configuration::impl::enumerate_rigs ()
{
ui_->rig_combo_box->clear ();
auto rigs = transceiver_factory_.supported_transceivers ();
for (auto r = rigs.cbegin (); r != rigs.cend (); ++r)
{
if ("None" == r.key ())
{
// put None first
ui_->rig_combo_box->insertItem (0, r.key (), r.value ().model_number_);
}
else
{
ui_->rig_combo_box->addItem (r.key (), r.value ().model_number_);
}
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
ui_->rig_combo_box->setCurrentText (rig_params_.rig_name);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void Configuration::impl::fill_port_combo_box (QComboBox * cb)
{
auto current_text = cb->currentText ();
cb->clear ();
Q_FOREACH (auto const& p, QSerialPortInfo::availablePorts ())
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
if (!p.portName ().contains ( "NULL" )) // virtual serial port pairs
{
// remove possibly confusing Windows device path (OK because
// it gets added back by Hamlib)
cb->addItem (p.systemLocation ().remove (QRegularExpression {R"(^\\\\\.\\)"}));
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
cb->addItem("USB");
cb->setEditText (current_text);
}
#if !defined (QT_NO_DEBUG_STREAM)
ENUM_QDEBUG_OPS_IMPL (Configuration, DataMode);
ENUM_QDEBUG_OPS_IMPL (Configuration, Type2MsgGen);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#endif
ENUM_QDATASTREAM_OPS_IMPL (Configuration, DataMode);
ENUM_QDATASTREAM_OPS_IMPL (Configuration, Type2MsgGen);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
ENUM_CONVERSION_OPS_IMPL (Configuration, DataMode);
ENUM_CONVERSION_OPS_IMPL (Configuration, Type2MsgGen);