mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
	
	
		
			803 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			803 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // test_geometric.cpp
 | ||
|  | 
 | ||
|  | // Copyright Paul A. Bristow 2010.
 | ||
|  | // Copyright John Maddock 2010.
 | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | // Tests for Geometric Distribution.
 | ||
|  | 
 | ||
|  | // Note that these defines must be placed BEFORE #includes.
 | ||
|  | #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | ||
|  | // because several tests overflow & underflow by design.
 | ||
|  | #define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #  pragma warning(disable: 4127) // conditional expression is constant.
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
 | ||
|  | #  define TEST_FLOAT
 | ||
|  | #  define TEST_DOUBLE
 | ||
|  | #  define TEST_LDOUBLE
 | ||
|  | #  define TEST_REAL_CONCEPT
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <boost/math/tools/test.hpp>
 | ||
|  | #include <boost/math/concepts/real_concept.hpp> // for real_concept
 | ||
|  | using ::boost::math::concepts::real_concept; | ||
|  | 
 | ||
|  | #include <boost/math/distributions/geometric.hpp> // for geometric_distribution
 | ||
|  | using boost::math::geometric_distribution; | ||
|  | using boost::math::geometric; // using typedef for geometric_distribution<double>
 | ||
|  | 
 | ||
|  | #include <boost/math/distributions/negative_binomial.hpp> // for some comparisons.
 | ||
|  | 
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp> // for test_main
 | ||
|  | #include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE_FRACTION
 | ||
|  | #include "test_out_of_range.hpp"
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | using std::cout; | ||
|  | using std::endl; | ||
|  | using std::setprecision; | ||
|  | using std::showpoint; | ||
|  | #include <limits>
 | ||
|  | using std::numeric_limits; | ||
|  | 
 | ||
|  | template <class RealType> | ||
|  | void test_spot( // Test a single spot value against 'known good' values.
 | ||
|  |                RealType k,    // Number of failures.
 | ||
|  |                RealType p,    // Probability of success_fraction.
 | ||
|  |                RealType P,    // CDF probability.
 | ||
|  |                RealType Q,    // Complement of CDF.
 | ||
|  |                RealType tol)  // Test tolerance.
 | ||
|  | { | ||
|  |    boost::math::geometric_distribution<RealType> g(p); | ||
|  |    BOOST_CHECK_EQUAL(p, g.success_fraction()); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(g, k), P, tol); | ||
|  | 
 | ||
|  |   if((P < 0.99) && (Q < 0.99)) | ||
|  |   { | ||
|  |     // We can only check this if P is not too close to 1,
 | ||
|  |     // so that we can guarantee that Q is free of error:
 | ||
|  |     //
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       cdf(complement(g, k)), Q, tol); | ||
|  |     if(k != 0) | ||
|  |     { | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |         quantile(g, P), k, tol); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       // Just check quantile is very small:
 | ||
|  |       if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) | ||
|  |         && (boost::is_floating_point<RealType>::value)) | ||
|  |       { | ||
|  |         // Limit where this is checked: if exponent range is very large we may
 | ||
|  |         // run out of iterations in our root finding algorithm.
 | ||
|  |         BOOST_CHECK(quantile(g, P) < boost::math::tools::epsilon<RealType>() * 10); | ||
|  |       } | ||
|  |     } | ||
|  |     if(k != 0) | ||
|  |     { | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |         quantile(complement(g, Q)), k, tol); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       // Just check quantile is very small:
 | ||
|  |       if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) | ||
|  |         && (boost::is_floating_point<RealType>::value)) | ||
|  |       { | ||
|  |         // Limit where this is checked: if exponent range is very large we may
 | ||
|  |         // run out of iterations in our root finding algorithm.
 | ||
|  |         BOOST_CHECK(quantile(complement(g, Q)) < boost::math::tools::epsilon<RealType>() * 10); | ||
|  |       } | ||
|  |     } | ||
|  |   } //   if((P < 0.99) && (Q < 0.99))
 | ||
|  | 
 | ||
|  |     // Parameter estimation test:  estimate success ratio:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       geometric_distribution<RealType>::find_lower_bound_on_p( | ||
|  |       1+k, P), | ||
|  |       p, 0.02); // Wide tolerance needed for some tests.
 | ||
|  |    // Note we bump up the sample size here, purely for the sake of the test,
 | ||
|  |     // internally the function has to adjust the sample size so that we get
 | ||
|  |     // the right upper bound, our test undoes this, so we can verify the result.
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       geometric_distribution<RealType>::find_upper_bound_on_p( | ||
|  |       1+k+1, Q), | ||
|  |       p, 0.02); | ||
|  | 
 | ||
|  |     if(Q < P) | ||
|  |     { | ||
|  |        //
 | ||
|  |        // We check two things here, that the upper and lower bounds
 | ||
|  |        // are the right way around, and that they do actually bracket
 | ||
|  |        // the naive estimate of p = successes / (sample size)
 | ||
|  |        //
 | ||
|  |       BOOST_CHECK( | ||
|  |         geometric_distribution<RealType>::find_lower_bound_on_p( | ||
|  |         1+k, Q) | ||
|  |         <= | ||
|  |         geometric_distribution<RealType>::find_upper_bound_on_p( | ||
|  |         1+k, Q) | ||
|  |         ); | ||
|  |       BOOST_CHECK( | ||
|  |         geometric_distribution<RealType>::find_lower_bound_on_p( | ||
|  |         1+k, Q) | ||
|  |         <= | ||
|  |         1 / (1+k) | ||
|  |         ); | ||
|  |       BOOST_CHECK( | ||
|  |         1 / (1+k) | ||
|  |         <= | ||
|  |         geometric_distribution<RealType>::find_upper_bound_on_p( | ||
|  |         1+k, Q) | ||
|  |         ); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |        // As above but when P is small.
 | ||
|  |       BOOST_CHECK( | ||
|  |         geometric_distribution<RealType>::find_lower_bound_on_p( | ||
|  |         1+k, P) | ||
|  |         <= | ||
|  |         geometric_distribution<RealType>::find_upper_bound_on_p( | ||
|  |         1+k, P) | ||
|  |         ); | ||
|  |       BOOST_CHECK( | ||
|  |         geometric_distribution<RealType>::find_lower_bound_on_p( | ||
|  |         1+k,  P) | ||
|  |         <= | ||
|  |         1 / (1+k) | ||
|  |         ); | ||
|  |       BOOST_CHECK( | ||
|  |         1 / (1+k) | ||
|  |         <= | ||
|  |         geometric_distribution<RealType>::find_upper_bound_on_p( | ||
|  |         1+k, P) | ||
|  |         ); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Estimate sample size:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       geometric_distribution<RealType>::find_minimum_number_of_trials( | ||
|  |       k, p, P), | ||
|  |       1+k, 0.02); // Can differ 50 to 51 for small p
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       geometric_distribution<RealType>::find_maximum_number_of_trials( | ||
|  |          k, p, Q), | ||
|  |       1+k, 0.02); | ||
|  | 
 | ||
|  | } // test_spot
 | ||
|  | 
 | ||
|  | template <class RealType> // Any floating-point type RealType.
 | ||
|  | void test_spots(RealType) | ||
|  | { | ||
|  |   // Basic sanity checks.
 | ||
|  |   // Most test data is to double precision (17 decimal digits) only,
 | ||
|  | 
 | ||
|  |   cout << "Floating point Type is " << typeid(RealType).name() << endl; | ||
|  | 
 | ||
|  |   // so set tolerance to 1000 eps expressed as a fraction,
 | ||
|  |   // or 1000 eps of type double expressed as a fraction,
 | ||
|  |   // whichever is the larger.
 | ||
|  | 
 | ||
|  |   RealType tolerance = (std::max) | ||
|  |     (boost::math::tools::epsilon<RealType>(), | ||
|  |     static_cast<RealType>(std::numeric_limits<double>::epsilon())); | ||
|  |   tolerance *= 10; // 10 eps
 | ||
|  | 
 | ||
|  |   cout << "Tolerance = " << tolerance << "." << endl; | ||
|  | 
 | ||
|  |   RealType tol1eps = boost::math::tools::epsilon<RealType>(); // Very tight, suit exact values.
 | ||
|  |   //RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight,  values.
 | ||
|  |   RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
 | ||
|  |   cout << "Tolerance 5 eps = " << tol5eps << "." << endl; | ||
|  | 
 | ||
|  | 
 | ||
|  |   // Sources of spot test values are mainly R.
 | ||
|  | 
 | ||
|  |   using boost::math::geometric_distribution; | ||
|  |   using boost::math::geometric; | ||
|  |   using boost::math::cdf; | ||
|  |   using boost::math::pdf; | ||
|  |   using boost::math::quantile; | ||
|  |   using boost::math::complement; | ||
|  | 
 | ||
|  |   BOOST_MATH_STD_USING // for std math functions
 | ||
|  | 
 | ||
|  |   // Test geometric using cdf spot values R
 | ||
|  |   // These test quantiles and complements as well.
 | ||
|  | 
 | ||
|  |   test_spot(  //
 | ||
|  |   static_cast<RealType>(2),   // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.5), // Probability of success as fraction, p
 | ||
|  |   static_cast<RealType>(0.875L), // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(0.125L),  // complement CCDF Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot( //
 | ||
|  |   static_cast<RealType>(0),    // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.25), // Probability of success as fraction, p
 | ||
|  |   static_cast<RealType>(0.25),   // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(0.75),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |     // R formatC(pgeom(10,0.25), digits=17) [1] "0.95776486396789551"
 | ||
|  |     // formatC(pgeom(10,0.25, FALSE), digits=17) [1] "0.042235136032104499"
 | ||
|  | 
 | ||
|  |   static_cast<RealType>(10),  // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.25),  // Probability of success, p
 | ||
|  |   static_cast<RealType>(0.95776486396789551L),  // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(0.042235136032104499L), // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot(  //
 | ||
|  |   // > R formatC(pgeom(50,0.25, TRUE), digits=17) [1] "0.99999957525875771"
 | ||
|  |   // > R formatC(pgeom(50,0.25, FALSE), digits=17) [1] "4.2474124232020353e-07"
 | ||
|  |   static_cast<RealType>(50),     // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.25),     // Probability of success, p
 | ||
|  |   static_cast<RealType>(0.99999957525875771),  // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(4.2474124232020353e-07),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  |   /*
 | ||
|  |   // This causes failures in find_upper_bound_on_p p is small branch.
 | ||
|  |   test_spot(  // formatC(pgeom(50,0.01, TRUE), digits=17)[1] "0.40104399353383874"
 | ||
|  |     // > formatC(pgeom(50,0.01, FALSE), digits=17) [1] "0.59895600646616121"
 | ||
|  |   static_cast<RealType>(50), // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.01),   // Probability of success, p
 | ||
|  |   static_cast<RealType>(0.40104399353383874),   // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(0.59895600646616121),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  |   */ | ||
|  | 
 | ||
|  |   test_spot( // > formatC(pgeom(50,0.99, TRUE), digits=17) [1] "                 1"
 | ||
|  |     // formatC(pgeom(50,0.99, FALSE), digits=17) [1] "1.0000000000000364e-102"
 | ||
|  |   static_cast<RealType>(50),     // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.99),    // Probability of success, p
 | ||
|  |   static_cast<RealType>(1), // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(1.0000000000000364e-102),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot(  // > formatC(pgeom(1,0.99, TRUE), digits=17) [1] "0.99990000000000001"
 | ||
|  |     // > formatC(pgeom(1,0.99, FALSE), digits=17) [1] "0.00010000000000000009"
 | ||
|  |   static_cast<RealType>(1),     // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.99),                    // Probability of success, p
 | ||
|  |   static_cast<RealType>(0.9999),     // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(0.0001),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  | if(std::numeric_limits<RealType>::is_specialized) | ||
|  | { // An extreme value test that is more accurate than using negative binomial.
 | ||
|  |   // Since geometric only uses exp and log functions.
 | ||
|  |   test_spot(  // > formatC(pgeom(10000, 0.001, TRUE), digits=17) [1] "0.99995487182736897"
 | ||
|  | // > formatC(pgeom(10000,0.001, FALSE), digits=17) [1] "4.5128172631071587e-05"
 | ||
|  |   static_cast<RealType>(10000L), // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.001L),                    // Probability of success, p
 | ||
|  |   static_cast<RealType>(0.99995487182736897L),     // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(4.5128172631071587e-05L),   // Q = 1 - P
 | ||
|  |   tolerance); //
 | ||
|  |   } // numeric_limit is specialized
 | ||
|  |  // End of single spot tests using RealType
 | ||
|  | 
 | ||
|  |   // Tests on PDF:
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(0,0.5), digits=17)[1] " 0.5"
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)), | ||
|  |   static_cast<RealType>(0.0) ),  // Number of failures, k is very small but not integral,
 | ||
|  |   static_cast<RealType>(0.5), // nearly success probability.
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(0,0.5), digits=17)[1] "    0.5"
 | ||
|  |     //  R treates geom as a discrete distribution.
 | ||
|  |     // > formatC(dgeom(1.999999,0.5, FALSE), digits=17) [1] "   0"
 | ||
|  |     // Warning message:
 | ||
|  |     // In dgeom(1.999999, 0.5, FALSE) : non-integer x = 1.999999
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)), | ||
|  |   static_cast<RealType>(0.0001L) ),  // Number of failures, k is very small but not integral,
 | ||
|  |   static_cast<RealType>(0.4999653438420768L), // nearly success probability.
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] " 0.5"
 | ||
|  |     // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] "               0.5"
 | ||
|  |     //  R treates geom as a discrete distribution.
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)), | ||
|  |   static_cast<RealType>(0.0001L) ),  // Number of failures, k is very small but not integral,
 | ||
|  |   static_cast<RealType>(0.4999653438420768L), // nearly success probability.
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // formatC(dgeom(1,0.01), digits=17)[1] "0.0099000000000000008"
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.01L)), | ||
|  |   static_cast<RealType>(1) ),  // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.0099000000000000008), //
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //> formatC(dgeom(1,0.99), digits=17)[1] "0.0099000000000000043"
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)), | ||
|  |   static_cast<RealType>(1) ),  // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.00990000000000000043L), //
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //> > formatC(dgeom(0,0.99), digits=17)[1] "0.98999999999999999"
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)), | ||
|  |   static_cast<RealType>(0) ),  // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.98999999999999999L), //
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   // p  near unity.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // > formatC(dgeom(100,0.99), digits=17)[1] "9.9000000000003448e-201"
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.99L)), | ||
|  |   static_cast<RealType>(100) ),  // Number of failures, k
 | ||
|  |   static_cast<RealType>(9.9000000000003448e-201L), //
 | ||
|  |   100 * tolerance); // Note difference
 | ||
|  | 
 | ||
|  |     // p nearer unity.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999)), | ||
|  |   static_cast<RealType>(10) ),  // Number of failures, k
 | ||
|  |   // static_cast<double>(9.9989999999889024e-41), // Boost.Math
 | ||
|  |   // static_cast<float>(1.00156406e-040)
 | ||
|  |   static_cast<RealType>(9.999e-41), // exact from 100 digit calculator.
 | ||
|  |   2e3 * tolerance); // Note bigger tolerance needed.
 | ||
|  | 
 | ||
|  |   // Moshier Cephes 100 digits calculator says 9.999e-41
 | ||
|  |   //0.9999*pow(1-0.9999,10)
 | ||
|  |   // 9.9990000000000000000000000000000000000000000000000000000000000000000000E-41
 | ||
|  |   // 9.998999999988988e-041
 | ||
|  |   // > formatC(dgeom(10, 0.9999), digits=17) [1] "9.9989999999889024e-41"
 | ||
|  |   // p *  pow(q, k)         9.9989999999889880e-041
 | ||
|  |   // exp(p * k * log1p(-p)) 9.9989999999889024e-041
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // 0.9999999999 * pow(1-0.9999999999,10)=  9.9999999990E-101
 | ||
|  |   // > formatC(dgeom(10,0.9999999999), digits=17)  [1] "1.0000008273040127e-100"
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999999999L)), | ||
|  |   static_cast<RealType>(10) ),  //
 | ||
|  |   static_cast<RealType>(9.9999999990E-101L), // 1.0000008273040179e-100
 | ||
|  |   1e9 * tolerance); // Note big tolerance needed.
 | ||
|  |   // 1.0000008273040179e-100  Boost.Math
 | ||
|  |   // 1.0000008273040127e-100  R
 | ||
|  |   // 0.9999999990000004e-100  100 digit calculator 'exact'
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.00000000001L)), | ||
|  |   static_cast<RealType>(10) ),  //
 | ||
|  |   static_cast<RealType>(9.999999999e-12L), // get 9.9999999989999994e-012
 | ||
|  |   1 * tolerance); // Note small tolerance needed.
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( //
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.00000000001L)), | ||
|  |   static_cast<RealType>(1000) ),  //
 | ||
|  |   static_cast<RealType>(9.9999999e-12L), // get 9.9999998999999913e-012
 | ||
|  |   tolerance); // Note small tolerance needed.
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   ///////////////////////////////////////////////////
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //
 | ||
|  |     // > formatC(dgeom(0.0001,0.5, FALSE), digits=17) [1] "               0.5"
 | ||
|  |     //  R treates geom as a discrete distribution.
 | ||
|  |     // But Boost.Math is continuous, so if you want R behaviour,
 | ||
|  |     // make number of failures, k into an integer with the floor function.
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)), | ||
|  |   static_cast<RealType>(floor(0.0001L)) ),  // Number of failures, k is very small but MADE integral,
 | ||
|  |   static_cast<RealType>(0.5), // nearly success probability.
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   // R switches over at about 1e7 from k = 0, returning 0.5,  to k = 1, returning 0.25.
 | ||
|  |   // Boost.Math does not do this, even for 0.9999999999999999
 | ||
|  |   // > formatC(pgeom(0.999999,0.5, FALSE), digits=17) [1] "               0.5"
 | ||
|  |   // > formatC(pgeom(0.9999999,0.5, FALSE), digits=17) [1] "              0.25"
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] "               0.5"
 | ||
|  |     // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] "               0.5"
 | ||
|  |     //  R treates geom as a discrete distribution.
 | ||
|  |     // But Boost.Math is continuous, so if you want R behaviour,
 | ||
|  |     // make number of failures, k into an integer with the floor function.
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)), | ||
|  |   static_cast<RealType>(floor(0.9999999999999999L)) ),  // Number of failures, k is very small but MADE integral,
 | ||
|  |   static_cast<RealType>(0.5), // nearly success probability.
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // > formatC(pgeom(0.0001,0.5, TRUE), digits=17)[1] "               0.5"
 | ||
|  |     // > formatC(pgeom(0.0001,0.5, FALSE), digits=17) [1] "               0.5"
 | ||
|  |     //  R treates geom as a discrete distribution.
 | ||
|  |     // But Boost.Math is continuous, so if you want R behaviour,
 | ||
|  |     // make number of failures, k into an integer with the floor function.
 | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)), | ||
|  |   static_cast<RealType>(floor(1. - tolerance)) ), | ||
|  |   // Number of failures, k is very small but MADE integral,
 | ||
|  |   // Need to use tolerance here,
 | ||
|  |   // as epsilon is ill-defined for Real concept:
 | ||
|  |   // numeric_limits<RealType>::epsilon()  0
 | ||
|  |   static_cast<RealType>(0.5), // nearly success probability.
 | ||
|  |   tolerance * 10); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.0001L)), | ||
|  |   static_cast<RealType>(2)),  // k = 2.
 | ||
|  |   static_cast<RealType>(9.99800010e-5L), // 'exact '
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   //> formatC(dgeom(2, 0.9999), digits=17) [1] "9.9989999999977806e-09"
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)), | ||
|  |   static_cast<RealType>(2)),  // k = 0
 | ||
|  |   static_cast<RealType>(9.999e-9L), // 'exact'
 | ||
|  |   1000*tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)), | ||
|  |   static_cast<RealType>(3)),  // k = 3
 | ||
|  |   static_cast<RealType>(9.999e-13L), // get
 | ||
|  |   1000*tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   pdf(geometric_distribution<RealType>(static_cast<RealType>(0.9999L)), | ||
|  |   static_cast<RealType>(5)),  // k = 5
 | ||
|  |   static_cast<RealType>(9.999e-21L), //  9.9989999999944947e-021
 | ||
|  |   1000*tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   pdf(geometric_distribution<RealType>( static_cast<RealType>(0.0001L)), | ||
|  |   static_cast<RealType>(3)),  // k = 0.
 | ||
|  |   static_cast<RealType>(9.99700029999e-5L), //
 | ||
|  |   tolerance); | ||
|  |    // Tests on cdf:
 | ||
|  |   // MathCAD pgeom k, r, p) == failures, successes, probability.
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf( | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.5)), // prob 0.5
 | ||
|  |     static_cast<RealType>(0) ), // k = 0
 | ||
|  |     static_cast<RealType>(0.5), // probability =p
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(complement( | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.5)), //
 | ||
|  |     static_cast<RealType>(0) )), // k = 0
 | ||
|  |     static_cast<RealType>(0.5), // probability =
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf( | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.25)), // prob 0.5
 | ||
|  |     static_cast<RealType>(1) ), // k = 0
 | ||
|  |     static_cast<RealType>(0.4375L), // probability =p
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(complement( | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.25)), //
 | ||
|  |     static_cast<RealType>(1) )), // k = 0
 | ||
|  |     static_cast<RealType>(1-0.4375L), // probability =
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(complement( | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.5)), //
 | ||
|  |     static_cast<RealType>(1) )), // k = 0
 | ||
|  |     static_cast<RealType>(0.25), // probability = exact 0.25
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( //
 | ||
|  |     cdf(geometric_distribution<RealType>(static_cast<RealType>(0.5)), | ||
|  |     static_cast<RealType>(4)),  // k =4.
 | ||
|  |     static_cast<RealType>(0.96875L), // exact
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |   // Tests of other functions, mean and other moments ...
 | ||
|  | 
 | ||
|  |   geometric_distribution<RealType> dist(static_cast<RealType>(0.25)); | ||
|  |   // mean:
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     mean(dist), static_cast<RealType>((1 - 0.25) /0.25), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     mode(dist), static_cast<RealType>(0), tol1eps); | ||
|  |   // variance:
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     variance(dist), static_cast<RealType>((1 - 0.25) / (0.25 * 0.25)), tol5eps); | ||
|  | 
 | ||
|  |   // std deviation:
 | ||
|  |   // sqrt(0.75/0.125)
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     standard_deviation(dist), //
 | ||
|  |     static_cast<RealType>(sqrt((1.0L - 0.25L) / (0.25L * 0.25L))), // using 100 digit calc
 | ||
|  |     tol5eps); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     skewness(dist), //
 | ||
|  |     static_cast<RealType>((2-0.25L) /sqrt(0.75L)), | ||
|  |     // using calculator
 | ||
|  |     tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     kurtosis_excess(dist), //
 | ||
|  |     static_cast<RealType>(6 + 0.0625L/0.75L), //
 | ||
|  |     tol5eps); | ||
|  |   // 6.083333333333333  6.166666666666667
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     kurtosis(dist), // true
 | ||
|  |     static_cast<RealType>(9 + 0.0625L/0.75L), //
 | ||
|  |     tol5eps); | ||
|  |   // hazard:
 | ||
|  |   RealType x = static_cast<RealType>(0.125); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   hazard(dist, x) | ||
|  |   , pdf(dist, x) / cdf(complement(dist, x)), tol5eps); | ||
|  |   // cumulative hazard:
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   chf(dist, x), -log(cdf(complement(dist, x))), tol5eps); | ||
|  |   // coefficient_of_variation:
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   coefficient_of_variation(dist) | ||
|  |   , standard_deviation(dist) / mean(dist), tol5eps); | ||
|  | 
 | ||
|  |   // Special cases for PDF:
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   pdf( | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0)), //
 | ||
|  |   static_cast<RealType>(0)), | ||
|  |   static_cast<RealType>(0) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   pdf( | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0)), | ||
|  |   static_cast<RealType>(0.0001)), | ||
|  |   static_cast<RealType>(0) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   pdf( | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(1)), | ||
|  |   static_cast<RealType>(0.001)), | ||
|  |   static_cast<RealType>(0) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   pdf( | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(1)), | ||
|  |   static_cast<RealType>(8)), | ||
|  |   static_cast<RealType>(0) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_SMALL( | ||
|  |   pdf( | ||
|  |    geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0))- | ||
|  |   static_cast<RealType>(0.25), | ||
|  |   2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
 | ||
|  |   // numeric_limits<RealType>::epsilon()); // Not suitable for real concept!
 | ||
|  | 
 | ||
|  |   // Quantile boundary cases checks:
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(  // zero P < cdf(0) so should be exactly zero.
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)), | ||
|  |   static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(  // min P < cdf(0) so should be exactly zero.
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(boost::math::tools::min_value<RealType>())), | ||
|  |   static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   quantile(  // Small P < cdf(0) so should be near zero.
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(boost::math::tools::epsilon<RealType>())), //
 | ||
|  |   static_cast<RealType>(0), | ||
|  |     tol5eps); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   quantile(  // Small P < cdf(0) so should be exactly zero.
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0.0001)), | ||
|  |   static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   //BOOST_CHECK(  // Fails with overflow for real_concept
 | ||
|  |   //quantile(  // Small P near 1 so k failures should be big.
 | ||
|  |   //geometric_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
 | ||
|  |   //static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
 | ||
|  |   //static_cast<RealType>(189.56999032670058)  // 106.462769 for float
 | ||
|  |   //);
 | ||
|  | 
 | ||
|  |   if(std::numeric_limits<RealType>::has_infinity) | ||
|  |   { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
 | ||
|  |     // Note that infinity is not implemented for real_concept, so these tests
 | ||
|  |     // are only done for types, like built-in float, double.. that have infinity.
 | ||
|  |     // Note that these assume that  BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
 | ||
|  |     // #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY ==  throw_on_error would throw here.
 | ||
|  |     // #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
 | ||
|  |     //  so the throw path of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
 | ||
|  | 
 | ||
|  |     BOOST_CHECK( | ||
|  |     quantile(  // At P == 1 so k failures should be infinite.
 | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(1)) == | ||
|  |     //static_cast<RealType>(boost::math::tools::infinity<RealType>())
 | ||
|  |     static_cast<RealType>(std::numeric_limits<RealType>::infinity()) ); | ||
|  | 
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |     quantile(  // At 1 == P  so should be infinite.
 | ||
|  |     geometric_distribution<RealType>( static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(1)), //
 | ||
|  |     std::numeric_limits<RealType>::infinity() ); | ||
|  | 
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |     quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
 | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(0))), | ||
|  |     std::numeric_limits<RealType>::infinity() ); | ||
|  |    } // test for infinity using std::numeric_limits<>::infinity()
 | ||
|  |   else | ||
|  |   { // real_concept case, so check it throws rather than returning infinity.
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |     quantile(  // At P == 1 so k failures should be infinite.
 | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(1)), | ||
|  |     boost::math::tools::max_value<RealType>() ); | ||
|  | 
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |     quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
 | ||
|  |     geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(0))), | ||
|  |     boost::math::tools::max_value<RealType>()); | ||
|  |   } // has infinity
 | ||
|  | 
 | ||
|  |   BOOST_CHECK( // Should work for built-in and real_concept.
 | ||
|  |   quantile(complement(  // Q near to 1 so P nearly 1, so should be large > 300.
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(boost::math::tools::min_value<RealType>()))) | ||
|  |    >= static_cast<RealType>(300) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(  //  P ==  0 < cdf(0) so should be zero.
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)), | ||
|  |   static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |   // Quantile Complement boundary cases:
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(complement(  // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
 | ||
|  |   geometric_distribution<RealType>( static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(1))), | ||
|  |   static_cast<RealType>(0) | ||
|  |   ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(complement(  // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))), | ||
|  |   static_cast<RealType>(0) | ||
|  |   ); | ||
|  | 
 | ||
|  |   // Check that duff arguments throw domain_error:
 | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   pdf( // Negative success_fraction!
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(-0.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   pdf( // Success_fraction > 1!
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(1.25)), | ||
|  |   static_cast<RealType>(0)), | ||
|  |   std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   pdf( // Negative k argument !
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(-1)), | ||
|  |   std::domain_error); | ||
|  |   //BOOST_MATH_CHECK_THROW(
 | ||
|  |   //pdf( // check limit on k (failures)
 | ||
|  |   //geometric_distribution<RealType>(static_cast<RealType>(0.25)),
 | ||
|  |   //std::numeric_limits<RealType>infinity()),
 | ||
|  |   //std::domain_error);
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   cdf(  // Negative k argument !
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(-1)), | ||
|  |   std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   cdf( // Negative success_fraction!
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(-0.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   cdf( // Success_fraction > 1!
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(1.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   quantile(  // Negative success_fraction!
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(-0.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   quantile( // Success_fraction > 1!
 | ||
|  |   geometric_distribution<RealType>(static_cast<RealType>(1.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error); | ||
|  |    check_out_of_range<geometric_distribution<RealType> >(0.5); | ||
|  |   // End of check throwing 'duff' out-of-domain values.
 | ||
|  | 
 | ||
|  |   { // Compare geometric and negative binomial functions.
 | ||
|  |     using boost::math::negative_binomial_distribution; | ||
|  |     using boost::math::geometric_distribution; | ||
|  | 
 | ||
|  |     RealType k = static_cast<RealType>(2.L); | ||
|  |     RealType alpha = static_cast<RealType>(0.05L); | ||
|  |     RealType p = static_cast<RealType>(0.5L); | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( // Successes parameter in negative binomial is 1 for geometric.
 | ||
|  |       geometric_distribution<RealType>::find_lower_bound_on_p(k, alpha), | ||
|  |       negative_binomial_distribution<RealType>::find_lower_bound_on_p(k, static_cast<RealType>(1), alpha), | ||
|  |       tolerance); | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( // Successes parameter in negative binomial is 1 for geometric.
 | ||
|  |       geometric_distribution<RealType>::find_upper_bound_on_p(k, alpha), | ||
|  |       negative_binomial_distribution<RealType>::find_upper_bound_on_p(k, static_cast<RealType>(1), alpha), | ||
|  |       tolerance); | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( // Should be identical - successes parameter is not used.
 | ||
|  |        geometric_distribution<RealType>::find_maximum_number_of_trials(k, p, alpha), | ||
|  |       negative_binomial_distribution<RealType>::find_maximum_number_of_trials(k, p, alpha), | ||
|  |     tolerance); | ||
|  |   } | ||
|  |     //geometric::find_upper_bound_on_p(k, alpha);
 | ||
|  |    return; | ||
|  | } // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.
 | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE( test_main ) | ||
|  | { | ||
|  |   // Check that can generate geometric distribution using the two convenience methods:
 | ||
|  |    using namespace boost::math; | ||
|  |    geometric g05d(0.5); // Using typedef - default type is double.
 | ||
|  |    geometric_distribution<> g05dd(0.5); // Using default RealType double.
 | ||
|  | 
 | ||
|  |   // Basic sanity-check spot values.
 | ||
|  | 
 | ||
|  |   // Test some simple double only examples.
 | ||
|  |   geometric_distribution<double> mydist(0.25); | ||
|  |   // success fraction == 0.25 == 25% or 1 in 4 successes.
 | ||
|  |   // Note: double values (matching the distribution definition) avoid the need for any casting.
 | ||
|  | 
 | ||
|  |   // Check accessor functions return exact values for double at least.
 | ||
|  |   BOOST_CHECK_EQUAL(mydist.success_fraction(), static_cast<double>(1./4.)); | ||
|  | 
 | ||
|  |   //cout << numeric_limits<RealType>::epsilon() << endl;
 | ||
|  | 
 | ||
|  |   // (Parameter value, arbitrarily zero, only communicates the floating point type).
 | ||
|  | #ifdef TEST_FLOAT
 | ||
|  |   test_spots(0.0F); // Test float.
 | ||
|  | #endif
 | ||
|  | #ifdef TEST_DOUBLE
 | ||
|  |   test_spots(0.0); // Test double.
 | ||
|  | #endif
 | ||
|  | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | ||
|  | #ifdef TEST_LDOUBLE
 | ||
|  |   test_spots(0.0L); // Test long double.
 | ||
|  | #endif
 | ||
|  |   #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
 | ||
|  | #ifdef TEST_REAL_CONCEPT
 | ||
|  |     test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
 | ||
|  | #endif
 | ||
|  |   #endif
 | ||
|  | #else
 | ||
|  |    std::cout << "<note>The long double tests have been disabled on this platform " | ||
|  |       "either because the long double overloads of the usual math functions are " | ||
|  |       "not available at all, or because they are too inaccurate for these tests " | ||
|  |       "to pass.</note>" << std::endl; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |    | ||
|  | } // BOOST_AUTO_TEST_CASE( test_main )
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | */ |