mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
	
	
		
			524 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			524 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // Copyright Paul A. Bristow 2012.
 | ||
|  | // Copyright John Maddock 2012.
 | ||
|  | // Copyright Benjamin Sobotta 2012
 | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #  pragma warning (disable : 4127) // conditional expression is constant.
 | ||
|  | #  pragma warning (disable : 4305) // 'initializing' : truncation from 'double' to 'const float'.
 | ||
|  | #  pragma warning (disable : 4310) // cast truncates constant value.
 | ||
|  | #  pragma warning (disable : 4512) // assignment operator could not be generated.
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | //#include <pch.hpp> // include directory libs/math/src/tr1/ is needed.
 | ||
|  | 
 | ||
|  | #include <boost/math/concepts/real_concept.hpp> // for real_concept
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp> // Boost.Test
 | ||
|  | #include <boost/test/floating_point_comparison.hpp>
 | ||
|  | 
 | ||
|  | #include <boost/math/distributions/skew_normal.hpp>
 | ||
|  | using boost::math::skew_normal_distribution; | ||
|  | using boost::math::skew_normal; | ||
|  | #include <boost/math/tools/test.hpp> 
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | #include <iomanip>
 | ||
|  | using std::cout; | ||
|  | using std::endl; | ||
|  | using std::setprecision; | ||
|  | #include <limits>
 | ||
|  | using std::numeric_limits; | ||
|  | #include "test_out_of_range.hpp"
 | ||
|  | 
 | ||
|  | template <class RealType> | ||
|  | void check_skew_normal(RealType mean, RealType scale, RealType shape, RealType x, RealType p, RealType q, RealType tol) | ||
|  | { | ||
|  |  using boost::math::skew_normal_distribution; | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     ::boost::math::cdf(   // Check cdf
 | ||
|  |     skew_normal_distribution<RealType>(mean, scale, shape),      // distribution.
 | ||
|  |     x),    // random variable.
 | ||
|  |     p,     // probability.
 | ||
|  |     tol);   // tolerance.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     ::boost::math::cdf( // Check cdf complement
 | ||
|  |     complement(  | ||
|  |     skew_normal_distribution<RealType>(mean, scale, shape),   // distribution.
 | ||
|  |     x)),   // random variable.
 | ||
|  |     q,      // probability complement.
 | ||
|  |     tol);    // %tolerance.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     ::boost::math::quantile( // Check quantile
 | ||
|  |     skew_normal_distribution<RealType>(mean, scale, shape),    // distribution.
 | ||
|  |     p),   // probability.
 | ||
|  |     x,   // random variable.
 | ||
|  |     tol);   // tolerance.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     ::boost::math::quantile( // Check quantile complement
 | ||
|  |     complement( | ||
|  |     skew_normal_distribution<RealType>(mean, scale, shape),   // distribution.
 | ||
|  |     q)),   // probability complement.
 | ||
|  |     x,     // random variable.
 | ||
|  |     tol);  // tolerance.
 | ||
|  | 
 | ||
|  |    skew_normal_distribution<RealType> dist (mean, scale, shape); | ||
|  | 
 | ||
|  |    if((p < 0.999) && (q < 0.999)) | ||
|  |    {  // We can only check this if P is not too close to 1,
 | ||
|  |       // so that we can guarantee Q is accurate:
 | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |         cdf(complement(dist, x)), q, tol); // 1 - cdf
 | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |         quantile(dist, p), x, tol); // quantile(cdf) = x
 | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |         quantile(complement(dist, q)), x, tol); // quantile(complement(1 - cdf)) = x
 | ||
|  |    } | ||
|  | } // template <class RealType>void check_skew_normal()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class RealType> | ||
|  | void test_spots(RealType) | ||
|  | { | ||
|  |    // Basic sanity checks
 | ||
|  |    RealType tolerance = 1e-4f; // 1e-4 (as %)
 | ||
|  | 
 | ||
|  |   // Check some bad parameters to the distribution,
 | ||
|  | #ifndef BOOST_NO_EXCEPTIONS
 | ||
|  |    BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd
 | ||
|  |    BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(0, -1), std::domain_error); // negative sd
 | ||
|  | #else
 | ||
|  |    BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(0, 0), std::domain_error); // zero sd
 | ||
|  |    BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(0, -1), std::domain_error); // negative sd
 | ||
|  | #endif
 | ||
|  |   // Tests on extreme values of random variate x, if has numeric_limit infinity etc.
 | ||
|  |     skew_normal_distribution<RealType> N01; | ||
|  |   if(std::numeric_limits<RealType>::has_infinity) | ||
|  |   { | ||
|  |     BOOST_CHECK_EQUAL(pdf(N01, +std::numeric_limits<RealType>::infinity()), 0); // x = + infinity, pdf = 0
 | ||
|  |     BOOST_CHECK_EQUAL(pdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, pdf = 0
 | ||
|  |     BOOST_CHECK_EQUAL(cdf(N01, +std::numeric_limits<RealType>::infinity()), 1); // x = + infinity, cdf = 1
 | ||
|  |     BOOST_CHECK_EQUAL(cdf(N01, -std::numeric_limits<RealType>::infinity()), 0); // x = - infinity, cdf = 0
 | ||
|  |     BOOST_CHECK_EQUAL(cdf(complement(N01, +std::numeric_limits<RealType>::infinity())), 0); // x = + infinity, c cdf = 0
 | ||
|  |     BOOST_CHECK_EQUAL(cdf(complement(N01, -std::numeric_limits<RealType>::infinity())), 1); // x = - infinity, c cdf = 1
 | ||
|  | #ifndef BOOST_NO_EXCEPTIONS
 | ||
|  |     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
 | ||
|  |     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(),  static_cast<RealType>(1)), std::domain_error); // -infinite mean
 | ||
|  |     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
 | ||
|  | #else
 | ||
|  |     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
 | ||
|  |     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(-std::numeric_limits<RealType>::infinity(),  static_cast<RealType>(1)), std::domain_error); // -infinite mean
 | ||
|  |     BOOST_MATH_CHECK_THROW(boost::math::skew_normal_distribution<RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
 | ||
|  | #endif
 | ||
|  |   } | ||
|  | 
 | ||
|  |   if (std::numeric_limits<RealType>::has_quiet_NaN) | ||
|  |   { | ||
|  |     // No longer allow x to be NaN, then these tests should throw.
 | ||
|  |     BOOST_MATH_CHECK_THROW(pdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
 | ||
|  |     BOOST_MATH_CHECK_THROW(cdf(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // x = NaN
 | ||
|  |     BOOST_MATH_CHECK_THROW(cdf(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // x = + infinity
 | ||
|  |     BOOST_MATH_CHECK_THROW(quantile(N01, +std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); // p = + infinity
 | ||
|  |     BOOST_MATH_CHECK_THROW(quantile(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // p = + infinity
 | ||
|  |   } | ||
|  | 
 | ||
|  |    cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << " %" << endl; | ||
|  | 
 | ||
|  |    // Tests where shape = 0, so same as normal tests.
 | ||
|  |    // (These might be removed later).
 | ||
|  |    check_skew_normal( | ||
|  |       static_cast<RealType>(5), | ||
|  |       static_cast<RealType>(2), | ||
|  |       static_cast<RealType>(0), | ||
|  |       static_cast<RealType>(4.8), | ||
|  |       static_cast<RealType>(0.46017), | ||
|  |       static_cast<RealType>(1 - 0.46017), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    check_skew_normal( | ||
|  |       static_cast<RealType>(5), | ||
|  |       static_cast<RealType>(2), | ||
|  |       static_cast<RealType>(0), | ||
|  |       static_cast<RealType>(5.2), | ||
|  |       static_cast<RealType>(1 - 0.46017), | ||
|  |       static_cast<RealType>(0.46017), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    check_skew_normal( | ||
|  |       static_cast<RealType>(5), | ||
|  |       static_cast<RealType>(2), | ||
|  |       static_cast<RealType>(0), | ||
|  |       static_cast<RealType>(2.2), | ||
|  |       static_cast<RealType>(0.08076), | ||
|  |       static_cast<RealType>(1 - 0.08076), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    check_skew_normal( | ||
|  |       static_cast<RealType>(5), | ||
|  |       static_cast<RealType>(2), | ||
|  |       static_cast<RealType>(0), | ||
|  |       static_cast<RealType>(7.8), | ||
|  |       static_cast<RealType>(1 - 0.08076), | ||
|  |       static_cast<RealType>(0.08076), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    check_skew_normal( | ||
|  |       static_cast<RealType>(-3), | ||
|  |       static_cast<RealType>(5), | ||
|  |       static_cast<RealType>(0), | ||
|  |       static_cast<RealType>(-4.5), | ||
|  |       static_cast<RealType>(0.38209), | ||
|  |       static_cast<RealType>(1 - 0.38209), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    check_skew_normal( | ||
|  |       static_cast<RealType>(-3), | ||
|  |       static_cast<RealType>(5), | ||
|  |       static_cast<RealType>(0), | ||
|  |       static_cast<RealType>(-1.5), | ||
|  |       static_cast<RealType>(1 - 0.38209), | ||
|  |       static_cast<RealType>(0.38209), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    check_skew_normal( | ||
|  |       static_cast<RealType>(-3), | ||
|  |       static_cast<RealType>(5), | ||
|  |       static_cast<RealType>(0), | ||
|  |       static_cast<RealType>(-8.5), | ||
|  |       static_cast<RealType>(0.13567), | ||
|  |       static_cast<RealType>(1 - 0.13567), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    check_skew_normal( | ||
|  |       static_cast<RealType>(-3), | ||
|  |       static_cast<RealType>(5), | ||
|  |       static_cast<RealType>(0), | ||
|  |       static_cast<RealType>(2.5), | ||
|  |       static_cast<RealType>(1 - 0.13567), | ||
|  |       static_cast<RealType>(0.13567), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    // Tests where shape != 0, specific to skew_normal distribution.
 | ||
|  |    //void check_skew_normal(RealType mean, RealType scale, RealType shape, RealType x, RealType p, RealType q, RealType tol)
 | ||
|  |       check_skew_normal( // 1st R example.
 | ||
|  |       static_cast<RealType>(1.1), | ||
|  |       static_cast<RealType>(2.2), | ||
|  |       static_cast<RealType>(-3.3), | ||
|  |       static_cast<RealType>(0.4), // x
 | ||
|  |       static_cast<RealType>(0.733918618927874), // p == psn
 | ||
|  |       static_cast<RealType>(1 - 0.733918618927874), // q 
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    // Not sure about these yet.
 | ||
|  |       //check_skew_normal( // 2nd R example.
 | ||
|  |       //static_cast<RealType>(1.1),
 | ||
|  |       //static_cast<RealType>(0.02),
 | ||
|  |       //static_cast<RealType>(0.03),
 | ||
|  |       //static_cast<RealType>(1.3), // x
 | ||
|  |       //static_cast<RealType>(0.01), // p
 | ||
|  |       //static_cast<RealType>(0.09), // q
 | ||
|  |       //tolerance);
 | ||
|  |       //check_skew_normal( // 3nd R example.
 | ||
|  |       //static_cast<RealType>(10.1),
 | ||
|  |       //static_cast<RealType>(5.),
 | ||
|  |       //static_cast<RealType>(-0.03),
 | ||
|  |       //static_cast<RealType>(-1.3), // x
 | ||
|  |       //static_cast<RealType>(0.01201290665838824), // p
 | ||
|  |       //static_cast<RealType>(1. - 0.01201290665838824), // q 0.987987101
 | ||
|  |       //tolerance);
 | ||
|  | 
 | ||
|  |     // Tests for PDF: we know that the normal peak value is at 1/sqrt(2*pi)
 | ||
|  |    //
 | ||
|  |    tolerance = boost::math::tools::epsilon<RealType>() * 5; // 5 eps as a fraction
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       pdf(skew_normal_distribution<RealType>(), static_cast<RealType>(0)), | ||
|  |       static_cast<RealType>(0.3989422804014326779399460599343818684759L), // 1/sqrt(2*pi)
 | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       pdf(skew_normal_distribution<RealType>(3), static_cast<RealType>(3)), | ||
|  |       static_cast<RealType>(0.3989422804014326779399460599343818684759L), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       pdf(skew_normal_distribution<RealType>(3, 5), static_cast<RealType>(3)), | ||
|  |       static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |    // Shape != 0.
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       pdf(skew_normal_distribution<RealType>(3,5,1e-6), static_cast<RealType>(3)), | ||
|  |       static_cast<RealType>(0.3989422804014326779399460599343818684759L / 5), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |    // Checks on mean, variance cumulants etc.
 | ||
|  |    // Checks on shape ==0
 | ||
|  | 
 | ||
|  |     RealType tol5 = boost::math::tools::epsilon<RealType>() * 5; | ||
|  |     skew_normal_distribution<RealType> dist(8, 3); | ||
|  |     RealType x = static_cast<RealType>(0.125); | ||
|  | 
 | ||
|  |     BOOST_MATH_STD_USING // ADL of std math lib names
 | ||
|  | 
 | ||
|  |     // mean:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        mean(dist) | ||
|  |        , static_cast<RealType>(8), tol5); | ||
|  |     // variance:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        variance(dist) | ||
|  |        , static_cast<RealType>(9), tol5); | ||
|  |     // std deviation:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        standard_deviation(dist) | ||
|  |        , static_cast<RealType>(3), tol5); | ||
|  |     // hazard:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        hazard(dist, x) | ||
|  |        , pdf(dist, x) / cdf(complement(dist, x)), tol5); | ||
|  |     // cumulative hazard:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        chf(dist, x) | ||
|  |        , -log(cdf(complement(dist, x))), tol5); | ||
|  |     // coefficient_of_variation:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        coefficient_of_variation(dist) | ||
|  |        , standard_deviation(dist) / mean(dist), tol5); | ||
|  |     // mode: 
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION(mode(dist), static_cast<RealType>(8), 0.001f); | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        median(dist) | ||
|  |        , static_cast<RealType>(8), tol5); | ||
|  | 
 | ||
|  |     // skewness:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        skewness(dist) | ||
|  |        , static_cast<RealType>(0), tol5); | ||
|  |     // kurtosis:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        kurtosis(dist) | ||
|  |        , static_cast<RealType>(3), tol5); | ||
|  |     // kurtosis excess:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        kurtosis_excess(dist) | ||
|  |        , static_cast<RealType>(0), tol5); | ||
|  | 
 | ||
|  |     skew_normal_distribution<RealType> norm01(0, 1); // Test default (0, 1)
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        mean(norm01), | ||
|  |        static_cast<RealType>(0), 0); // Mean == zero
 | ||
|  | 
 | ||
|  |     skew_normal_distribution<RealType> defsd_norm01(0); // Test default (0, sd = 1)
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        mean(defsd_norm01), | ||
|  |        static_cast<RealType>(0), 0); // Mean == zero
 | ||
|  | 
 | ||
|  |     skew_normal_distribution<RealType> def_norm01; // Test default (0, sd = 1)
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        mean(def_norm01), | ||
|  |        static_cast<RealType>(0), 0); // Mean == zero
 | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        standard_deviation(def_norm01), | ||
|  |        static_cast<RealType>(1), 0);  // 
 | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |        mode(def_norm01), | ||
|  |        static_cast<RealType>(0), 0); // Mode == zero
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     // Skew_normal tests with shape != 0.
 | ||
|  |     { | ||
|  |       // Note these tolerances are expressed as percentages, hence the extra * 100 on the end:
 | ||
|  |       RealType tol10 = boost::math::tools::epsilon<RealType>() * 10 * 100; | ||
|  |       RealType tol100 = boost::math::tools::epsilon<RealType>() * 100 * 100; | ||
|  | 
 | ||
|  |       //skew_normal_distribution<RealType> dist(1.1, 0.02, 0.03);
 | ||
|  | 
 | ||
|  |       BOOST_MATH_STD_USING // ADL of std math lib names.
 | ||
|  | 
 | ||
|  |       // Test values from R = see skew_normal_drv.cpp which included the R code used.
 | ||
|  |       { | ||
|  |         dist = skew_normal_distribution<RealType>(static_cast<RealType>(1.1l), static_cast<RealType>(2.2l), static_cast<RealType>(-3.3l)); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE(      // mean:
 | ||
|  |            mean(dist) | ||
|  |            , static_cast<RealType>(-0.579908992539856825862549L), tol10 * 2); | ||
|  | 
 | ||
|  |         std::cout << std::setprecision(17) << "Variance = " << variance(dist) << std::endl; | ||
|  |          BOOST_CHECK_CLOSE(      // variance: N[variance[skewnormaldistribution[1.1, 2.2, -3.3]], 50]
 | ||
|  |           variance(dist) | ||
|  |           , static_cast<RealType>(2.0179057767837232633904061072049998357047989154484L), tol10); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE(      // skewness:
 | ||
|  |            skewness(dist) | ||
|  |            , static_cast<RealType>(-0.709854548171537509192897824663L), tol100); | ||
|  |         BOOST_CHECK_CLOSE(      // kurtosis:
 | ||
|  |            kurtosis(dist) | ||
|  |            , static_cast<RealType>(3.5538752625241790601377L), tol100); | ||
|  |         BOOST_CHECK_CLOSE(      // kurtosis excess:
 | ||
|  |            kurtosis_excess(dist) | ||
|  |            , static_cast<RealType>(0.5538752625241790601377L), tol100); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE( | ||
|  |           pdf(dist, static_cast<RealType>(0.4L)), | ||
|  |           static_cast<RealType>(0.294140110156599539564571L), | ||
|  |           tol10); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE( | ||
|  |           cdf(dist, static_cast<RealType>(0.4L)), | ||
|  |           static_cast<RealType>(0.7339186189278737976326676452L), | ||
|  |           tol100); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE( | ||
|  |           quantile(dist, static_cast<RealType>(0.3L)), | ||
|  |           static_cast<RealType>(-1.180104068086875314419247L), | ||
|  |           tol100); | ||
|  | 
 | ||
|  | 
 | ||
|  |       { // mode tests
 | ||
|  | 
 | ||
|  |            dist = skew_normal_distribution<RealType>(static_cast<RealType>(0.l), static_cast<RealType>(1.l), static_cast<RealType>(4.l)); | ||
|  | 
 | ||
|  |        // cout << "pdf(dist, 0) = " << pdf(dist, 0) <<  ", pdf(dist, 0.45) = " << pdf(dist, 0.45) << endl;
 | ||
|  |        // BOOST_CHECK_CLOSE(mode(dist), boost::math::constants::root_two<RealType>() / 2, tol5);
 | ||
|  |         BOOST_CHECK_CLOSE(mode(dist), static_cast<RealType>(0.41697299497388863932L), tol100); | ||
|  |       } | ||
|  | 
 | ||
|  | 
 | ||
|  |       } | ||
|  |       { | ||
|  |         dist = skew_normal_distribution<RealType>(static_cast<RealType>(1.1l), static_cast<RealType>(0.02l), static_cast<RealType>(0.03l)); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE(      // mean:
 | ||
|  |            mean(dist) | ||
|  |            , static_cast<RealType>(1.1004785154529557886162L), tol10); | ||
|  |         BOOST_CHECK_CLOSE(      // variance:
 | ||
|  |           variance(dist) | ||
|  |            , static_cast<RealType>(0.00039977102296128251645L), tol10); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE(      // skewness:
 | ||
|  |            skewness(dist) | ||
|  |            , static_cast<RealType>(5.8834811259890359782e-006L), tol100); | ||
|  |         BOOST_CHECK_CLOSE(      // kurtosis:
 | ||
|  |            kurtosis(dist) | ||
|  |            , static_cast<RealType>(3.L + 9.2903475812137800239002e-008L), tol100); | ||
|  |         BOOST_CHECK_CLOSE(      // kurtosis excess:
 | ||
|  |            kurtosis_excess(dist) | ||
|  |            , static_cast<RealType>(9.2903475812137800239002e-008L), tol100); | ||
|  |       } | ||
|  |       { | ||
|  |         dist = skew_normal_distribution<RealType>(static_cast<RealType>(10.1l), static_cast<RealType>(5.l), static_cast<RealType>(-0.03l)); | ||
|  |         BOOST_CHECK_CLOSE(      // mean:
 | ||
|  |            mean(dist) | ||
|  |            , static_cast<RealType>(9.9803711367610528459485937L), tol10); | ||
|  |         BOOST_CHECK_CLOSE(      // variance:
 | ||
|  |           variance(dist) | ||
|  |            , static_cast<RealType>(24.98568893508015727823L), tol10); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE(      // skewness:
 | ||
|  |            skewness(dist) | ||
|  |            , static_cast<RealType>(-5.8834811259890359782085e-006L), tol100); | ||
|  |         BOOST_CHECK_CLOSE(      // kurtosis:
 | ||
|  |            kurtosis(dist) | ||
|  |            , static_cast<RealType>(3.L + 9.2903475812137800239002e-008L), tol100); | ||
|  |         BOOST_CHECK_CLOSE(      // kurtosis excess:
 | ||
|  |            kurtosis_excess(dist) | ||
|  |            , static_cast<RealType>(9.2903475812137800239002e-008L), tol100); | ||
|  |       } | ||
|  |       { | ||
|  |         dist = skew_normal_distribution<RealType>(static_cast<RealType>(-10.1l), static_cast<RealType>(5.l), static_cast<RealType>(30.l)); | ||
|  |         BOOST_CHECK_CLOSE(      // mean:
 | ||
|  |            mean(dist) | ||
|  |            , static_cast<RealType>(-6.11279169674138408531365L), 2 * tol10); | ||
|  |         BOOST_CHECK_CLOSE(      // variance:
 | ||
|  |           variance(dist) | ||
|  |           , static_cast<RealType>(9.10216994642554914628242L), tol10 * 2); | ||
|  | 
 | ||
|  |         BOOST_CHECK_CLOSE(      // skewness:
 | ||
|  |            skewness(dist) | ||
|  |            , static_cast<RealType>(0.99072425443686904424L), tol100); | ||
|  |         BOOST_CHECK_CLOSE(      // kurtosis:
 | ||
|  |            kurtosis(dist) | ||
|  |            , static_cast<RealType>(3.L + 0.8638862008406084244563L), tol100); | ||
|  |         BOOST_CHECK_CLOSE(      // kurtosis excess:
 | ||
|  |            kurtosis_excess(dist) | ||
|  |            , static_cast<RealType>(0.8638862008406084244563L), tol100); | ||
|  |       } | ||
|  | 
 | ||
|  |       BOOST_MATH_CHECK_THROW(cdf(skew_normal_distribution<RealType>(0, 0, 0), 0), std::domain_error); | ||
|  |       BOOST_MATH_CHECK_THROW(cdf(skew_normal_distribution<RealType>(0, -1, 0), 0), std::domain_error); | ||
|  |       BOOST_MATH_CHECK_THROW(quantile(skew_normal_distribution<RealType>(0, 1, 0), -1), std::domain_error); | ||
|  |       BOOST_MATH_CHECK_THROW(quantile(skew_normal_distribution<RealType>(0, 1, 0), 2), std::domain_error); | ||
|  |       check_out_of_range<skew_normal_distribution<RealType> >(1, 1, 1); | ||
|  |     } | ||
|  | 
 | ||
|  | 
 | ||
|  | } // template <class RealType>void test_spots(RealType)
 | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE( test_main ) | ||
|  | { | ||
|  | 
 | ||
|  | 
 | ||
|  |   using boost::math::skew_normal; | ||
|  |   using boost::math::skew_normal_distribution; | ||
|  | 
 | ||
|  |   //int precision = 17; // std::numeric_limits<double::max_digits10;
 | ||
|  |   double tolfeweps = numeric_limits<double>::epsilon() * 5; | ||
|  |   //double tol6decdigits = numeric_limits<float>::epsilon() * 2;
 | ||
|  |   // Check that can generate skew_normal distribution using the two convenience methods:
 | ||
|  |   boost::math::skew_normal w12(1., 2); // Using typedef.
 | ||
|  |   boost::math::skew_normal_distribution<> w01; // Use default unity values for mean and scale.
 | ||
|  |   // Note NOT myn01() as the compiler will interpret as a function!
 | ||
|  | 
 | ||
|  |   // Checks on constructors.
 | ||
|  |   // Default parameters.
 | ||
|  |   BOOST_CHECK_EQUAL(w01.location(), 0); | ||
|  |   BOOST_CHECK_EQUAL(w01.scale(), 1); | ||
|  |   BOOST_CHECK_EQUAL(w01.shape(), 0); | ||
|  | 
 | ||
|  |   skew_normal_distribution<> w23(2., 3); // Using default RealType double.
 | ||
|  |   BOOST_CHECK_EQUAL(w23.scale(), 3); | ||
|  |   BOOST_CHECK_EQUAL(w23.shape(), 0); | ||
|  | 
 | ||
|  |   skew_normal_distribution<> w123(1., 2., 3.); // Using default RealType double.
 | ||
|  |   BOOST_CHECK_EQUAL(w123.location(), 1.); | ||
|  |   BOOST_CHECK_EQUAL(w123.scale(), 2.); | ||
|  |   BOOST_CHECK_EQUAL(w123.shape(), 3.); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(mean(w01), static_cast<double>(0), tolfeweps); // Default mean == zero
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(scale(w01), static_cast<double>(1), tolfeweps); // Default scale == unity
 | ||
|  | 
 | ||
|  |   // Basic sanity-check spot values for all floating-point types..
 | ||
|  |   // (Parameter value, arbitrarily zero, only communicates the floating point type).
 | ||
|  |   test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
 | ||
|  |   test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
 | ||
|  | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | ||
|  |   test_spots(0.0L); // Test long double.
 | ||
|  | #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
 | ||
|  |   test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
 | ||
|  | #endif
 | ||
|  | #else
 | ||
|  |   std::cout << "<note>The long double tests have been disabled on this platform " | ||
|  |     "either because the long double overloads of the usual math functions are " | ||
|  |     "not available at all, or because they are too inaccurate for these tests " | ||
|  |     "to pass.</note>" << std::endl; | ||
|  | #endif
 | ||
|  |   /*      */ | ||
|  |    | ||
|  | } // BOOST_AUTO_TEST_CASE( test_main )
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | Output: | ||
|  | 
 | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  | 
 |