mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 18:10:21 -04:00 
			
		
		
		
	
		
			
	
	
		
			665 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			665 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // test_beta_dist.cpp
 | ||
|  | 
 | ||
|  | // Copyright John Maddock 2006.
 | ||
|  | // Copyright  Paul A. Bristow 2007, 2009, 2010, 2012.
 | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | // Basic sanity tests for the beta Distribution.
 | ||
|  | 
 | ||
|  | // http://members.aol.com/iandjmsmith/BETAEX.HTM  beta distribution calculator
 | ||
|  | // Appreas to be a 64-bit calculator showing 17 decimal digit (last is noisy).
 | ||
|  | // Similar to mathCAD?
 | ||
|  | 
 | ||
|  | // http://www.nuhertz.com/statmat/distributions.html#Beta
 | ||
|  | // Pretty graphs and explanations for most distributions.
 | ||
|  | 
 | ||
|  | // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp
 | ||
|  | // provided 40 decimal digits accuracy incomplete beta aka beta regularized == cdf
 | ||
|  | 
 | ||
|  | // http://www.ausvet.com.au/pprev/content.php?page=PPscript
 | ||
|  | // mode 0.75    5/95% 0.9    alpha 7.39    beta 3.13
 | ||
|  | // http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
 | ||
|  | // Beta Buster also calculates alpha and beta from mode & percentile estimates.
 | ||
|  | // This is NOT (yet) implemented.
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #  pragma warning(disable: 4127) // conditional expression is constant.
 | ||
|  | # pragma warning (disable : 4996) // POSIX name for this item is deprecated.
 | ||
|  | # pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'arg' was previously defined as a type.
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <boost/math/concepts/real_concept.hpp> // for real_concept
 | ||
|  | using ::boost::math::concepts::real_concept; | ||
|  | #include <boost/math/tools/test.hpp>
 | ||
|  | 
 | ||
|  | #include <boost/math/distributions/beta.hpp> // for beta_distribution
 | ||
|  | using boost::math::beta_distribution; | ||
|  | using boost::math::beta; | ||
|  | 
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp> // for test_main
 | ||
|  | #include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE_FRACTION
 | ||
|  | 
 | ||
|  | #include "test_out_of_range.hpp"
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | using std::cout; | ||
|  | using std::endl; | ||
|  | #include <limits>
 | ||
|  | using std::numeric_limits; | ||
|  | 
 | ||
|  | template <class RealType> | ||
|  | void test_spot( | ||
|  |      RealType a,    // alpha a
 | ||
|  |      RealType b,    // beta b
 | ||
|  |      RealType x,    // Probability
 | ||
|  |      RealType P,    // CDF of beta(a, b)
 | ||
|  |      RealType Q,    // Complement of CDF
 | ||
|  |      RealType tol)  // Test tolerance.
 | ||
|  | { | ||
|  |    boost::math::beta_distribution<RealType> abeta(a, b); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(abeta, x), P, tol); | ||
|  |    if((P < 0.99) && (Q < 0.99)) | ||
|  |    {  // We can only check this if P is not too close to 1,
 | ||
|  |       // so that we can guarantee that Q is free of error,
 | ||
|  |       // (and similarly for Q)
 | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |          cdf(complement(abeta, x)), Q, tol); | ||
|  |       if(x != 0) | ||
|  |       { | ||
|  |          BOOST_CHECK_CLOSE_FRACTION( | ||
|  |             quantile(abeta, P), x, tol); | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          // Just check quantile is very small:
 | ||
|  |          if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) | ||
|  |            && (boost::is_floating_point<RealType>::value)) | ||
|  |          { | ||
|  |             // Limit where this is checked: if exponent range is very large we may
 | ||
|  |             // run out of iterations in our root finding algorithm.
 | ||
|  |             BOOST_CHECK(quantile(abeta, P) < boost::math::tools::epsilon<RealType>() * 10); | ||
|  |          } | ||
|  |       } // if k
 | ||
|  |       if(x != 0) | ||
|  |       { | ||
|  |          BOOST_CHECK_CLOSE_FRACTION(quantile(complement(abeta, Q)), x, tol); | ||
|  |       } | ||
|  |       else | ||
|  |       {  // Just check quantile is very small:
 | ||
|  |          if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) && (boost::is_floating_point<RealType>::value)) | ||
|  |          {  // Limit where this is checked: if exponent range is very large we may
 | ||
|  |             // run out of iterations in our root finding algorithm.
 | ||
|  |             BOOST_CHECK(quantile(complement(abeta, Q)) < boost::math::tools::epsilon<RealType>() * 10); | ||
|  |          } | ||
|  |       } // if x
 | ||
|  |       // Estimate alpha & beta from mean and variance:
 | ||
|  | 
 | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |          beta_distribution<RealType>::find_alpha(mean(abeta), variance(abeta)), | ||
|  |          abeta.alpha(), tol); | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |          beta_distribution<RealType>::find_beta(mean(abeta), variance(abeta)), | ||
|  |          abeta.beta(), tol); | ||
|  | 
 | ||
|  |       // Estimate sample alpha and beta from others:
 | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |          beta_distribution<RealType>::find_alpha(abeta.beta(), x, P), | ||
|  |          abeta.alpha(), tol); | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |          beta_distribution<RealType>::find_beta(abeta.alpha(), x, P), | ||
|  |          abeta.beta(), tol); | ||
|  |    } // if((P < 0.99) && (Q < 0.99)
 | ||
|  | 
 | ||
|  | } // template <class RealType> void test_spot
 | ||
|  | 
 | ||
|  | template <class RealType> // Any floating-point type RealType.
 | ||
|  | void test_spots(RealType) | ||
|  | { | ||
|  |   // Basic sanity checks with 'known good' values.
 | ||
|  |   // MathCAD test data is to double precision only,
 | ||
|  |   // so set tolerance to 100 eps expressed as a fraction, or
 | ||
|  |   // 100 eps of type double expressed as a fraction,
 | ||
|  |   // whichever is the larger.
 | ||
|  | 
 | ||
|  |   RealType tolerance = (std::max) | ||
|  |       (boost::math::tools::epsilon<RealType>(), | ||
|  |       static_cast<RealType>(std::numeric_limits<double>::epsilon())); // 0 if real_concept.
 | ||
|  | 
 | ||
|  |    cout << "Boost::math::tools::epsilon = " << boost::math::tools::epsilon<RealType>() <<endl; | ||
|  |    cout << "std::numeric_limits::epsilon = " << std::numeric_limits<RealType>::epsilon() <<endl; | ||
|  |    cout << "epsilon = " << tolerance; | ||
|  | 
 | ||
|  |    tolerance *= 100000; // Note: NO * 100 because is fraction, NOT %.
 | ||
|  |    cout  << ", Tolerance = " << tolerance * 100 << "%." << endl; | ||
|  | 
 | ||
|  |   // RealType teneps = boost::math::tools::epsilon<RealType>() * 10;
 | ||
|  | 
 | ||
|  |   // Sources of spot test values:
 | ||
|  | 
 | ||
|  |   // MathCAD defines dbeta(x, s1, s2) pdf, s1 == alpha, s2 = beta, x = x in Wolfram
 | ||
|  |   // pbeta(x, s1, s2) cdf and qbeta(x, s1, s2) inverse of cdf
 | ||
|  |   // returns pr(X ,= x) when random variable X
 | ||
|  |   // has the beta distribution with parameters s1)alpha) and s2(beta).
 | ||
|  |   // s1 > 0 and s2 >0 and 0 < x < 1 (but allows x == 0! and x == 1!)
 | ||
|  |   // dbeta(0,1,1) = 0
 | ||
|  |   // dbeta(0.5,1,1) = 1
 | ||
|  | 
 | ||
|  |   using boost::math::beta_distribution; | ||
|  |   using  ::boost::math::cdf; | ||
|  |   using  ::boost::math::pdf; | ||
|  | 
 | ||
|  |   // Tests that should throw:
 | ||
|  |   BOOST_MATH_CHECK_THROW(mode(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), std::domain_error); | ||
|  |   // mode is undefined, and throws domain_error!
 | ||
|  | 
 | ||
|  |  // BOOST_MATH_CHECK_THROW(median(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), std::domain_error);
 | ||
|  |   // median is undefined, and throws domain_error!
 | ||
|  |   // But now median IS provided via derived accessor as quantile(half).
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( // For various bad arguments.
 | ||
|  |        pdf( | ||
|  |           beta_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(1)), // bad alpha < 0.
 | ||
|  |           static_cast<RealType>(1)), std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |        pdf( | ||
|  |           beta_distribution<RealType>(static_cast<RealType>(0), static_cast<RealType>(1)), // bad alpha == 0.
 | ||
|  |           static_cast<RealType>(1)), std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |        pdf( | ||
|  |           beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(0)), // bad beta == 0.
 | ||
|  |           static_cast<RealType>(1)), std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |        pdf( | ||
|  |           beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(-1)), // bad beta < 0.
 | ||
|  |           static_cast<RealType>(1)), std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |        pdf( | ||
|  |           beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), // bad x < 0.
 | ||
|  |           static_cast<RealType>(-1)), std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |        pdf( | ||
|  |           beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), // bad x > 1.
 | ||
|  |           static_cast<RealType>(999)), std::domain_error); | ||
|  | 
 | ||
|  |   // Some exact pdf values.
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( // a = b = 1 is uniform distribution.
 | ||
|  |      pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), | ||
|  |      static_cast<RealType>(1)),  // x
 | ||
|  |      static_cast<RealType>(1)); | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |      pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), | ||
|  |      static_cast<RealType>(0)),  // x
 | ||
|  |      static_cast<RealType>(1)); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      pdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), | ||
|  |      static_cast<RealType>(0.5)),  // x
 | ||
|  |      static_cast<RealType>(1), | ||
|  |      tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |      beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)).alpha(), | ||
|  |      static_cast<RealType>(1) ); //
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |      mean(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1))), | ||
|  |      static_cast<RealType>(0.5) ); // Exact one half.
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.5)),  // x
 | ||
|  |      static_cast<RealType>(1.5), // Exactly 3/2
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.5)),  // x
 | ||
|  |      static_cast<RealType>(1.5), // Exactly 3/2
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   // CDF
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.1)),  // x
 | ||
|  |      static_cast<RealType>(0.02800000000000000000000000000000000000000L), // Seems exact.
 | ||
|  |      // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=2&b=2&digits=40
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.0001)),  // x
 | ||
|  |      static_cast<RealType>(2.999800000000000000000000000000000000000e-8L), | ||
|  |      // http://members.aol.com/iandjmsmith/BETAEX.HTM 2.9998000000004
 | ||
|  |      // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.0001&a=2&b=2&digits=40
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.0001)),  // x
 | ||
|  |      static_cast<RealType>(0.0005999400000000004L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
 | ||
|  |      // Slightly higher tolerance for real concept:
 | ||
|  |      (std::numeric_limits<RealType>::is_specialized ? 1 : 10) * tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.9999)),  // x
 | ||
|  |      static_cast<RealType>(0.999999970002L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
 | ||
|  |      // Wolfram 0.9999999700020000000000000000000000000000
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.9)),  // x
 | ||
|  |      static_cast<RealType>(0.9961174629530394895796514664963063381217L), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)), | ||
|  |      static_cast<RealType>(0.1)),  // x
 | ||
|  |      static_cast<RealType>(0.2048327646991334516491978475505189480977L), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)), | ||
|  |      static_cast<RealType>(0.9)),  // x
 | ||
|  |      static_cast<RealType>(0.7951672353008665483508021524494810519023L), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)), | ||
|  |      static_cast<RealType>(0.7951672353008665483508021524494810519023L)),  // x
 | ||
|  |      static_cast<RealType>(0.9), | ||
|  |      // Wolfram
 | ||
|  |      tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)), | ||
|  |      static_cast<RealType>(0.6)),  // x
 | ||
|  |      static_cast<RealType>(0.5640942168489749316118742861695149357858L), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      quantile(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)), | ||
|  |      static_cast<RealType>(0.5640942168489749316118742861695149357858L)),  // x
 | ||
|  |      static_cast<RealType>(0.6), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), | ||
|  |      static_cast<RealType>(0.6)),  // x
 | ||
|  |      static_cast<RealType>(0.1778078083562213736802876784474931812329L), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), | ||
|  |      static_cast<RealType>(0.1778078083562213736802876784474931812329L)),  // x
 | ||
|  |      static_cast<RealType>(0.6), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); // gives
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), | ||
|  |      static_cast<RealType>(0.1)),  // x
 | ||
|  |      static_cast<RealType>(0.1),  // 0.1000000000000000000000000000000000000000
 | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      quantile(beta_distribution<RealType>(static_cast<RealType>(1), static_cast<RealType>(1)), | ||
|  |      static_cast<RealType>(0.1)),  // x
 | ||
|  |      static_cast<RealType>(0.1),  // 0.1000000000000000000000000000000000000000
 | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(complement(beta_distribution<RealType>(static_cast<RealType>(0.5), static_cast<RealType>(0.5)), | ||
|  |      static_cast<RealType>(0.1))),  // complement of x
 | ||
|  |      static_cast<RealType>(0.7951672353008665483508021524494810519023L), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      quantile(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.0280000000000000000000000000000000000L)),  // x
 | ||
|  |      static_cast<RealType>(0.1), | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      cdf(complement(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.1))),  // x
 | ||
|  |      static_cast<RealType>(0.9720000000000000000000000000000000000000L), // Exact.
 | ||
|  |      // Wolfram
 | ||
|  |       tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |      pdf(beta_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(2)), | ||
|  |      static_cast<RealType>(0.9999)),  // x
 | ||
|  |      static_cast<RealType>(0.0005999399999999344L), // http://members.aol.com/iandjmsmith/BETAEX.HTM
 | ||
|  |       tolerance*10); // Note loss of precision calculating 1-p test value.
 | ||
|  | 
 | ||
|  |   //void test_spot(
 | ||
|  |   //   RealType a,    // alpha a
 | ||
|  |   //   RealType b,    // beta b
 | ||
|  |   //   RealType x,    // Probability
 | ||
|  |   //   RealType P,    // CDF of beta(a, b)
 | ||
|  |   //   RealType Q,    // Complement of CDF
 | ||
|  |   //   RealType tol)  // Test tolerance.
 | ||
|  | 
 | ||
|  |    // These test quantiles and complements, and parameter estimates as well.
 | ||
|  |   // Spot values using, for example:
 | ||
|  |   // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized&ptype=0&z=0.1&a=0.5&b=3&digits=40
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(1),   // alpha a
 | ||
|  |      static_cast<RealType>(1),   // beta b
 | ||
|  |      static_cast<RealType>(0.1), // Probability  p
 | ||
|  |      static_cast<RealType>(0.1), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(0.9),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(2),   // alpha a
 | ||
|  |      static_cast<RealType>(2),   // beta b
 | ||
|  |      static_cast<RealType>(0.1), // Probability  p
 | ||
|  |      static_cast<RealType>(0.0280000000000000000000000000000000000L), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1 - 0.0280000000000000000000000000000000000L),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(2),   // alpha a
 | ||
|  |      static_cast<RealType>(2),   // beta b
 | ||
|  |      static_cast<RealType>(0.5), // Probability  p
 | ||
|  |      static_cast<RealType>(0.5), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(0.5),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(2),   // alpha a
 | ||
|  |      static_cast<RealType>(2),   // beta b
 | ||
|  |      static_cast<RealType>(0.9), // Probability  p
 | ||
|  |      static_cast<RealType>(0.972000000000000), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1-0.972000000000000),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(2),   // alpha a
 | ||
|  |      static_cast<RealType>(2),   // beta b
 | ||
|  |      static_cast<RealType>(0.01), // Probability  p
 | ||
|  |      static_cast<RealType>(0.0002980000000000000000000000000000000000000L), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1-0.0002980000000000000000000000000000000000000L),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(2),   // alpha a
 | ||
|  |      static_cast<RealType>(2),   // beta b
 | ||
|  |      static_cast<RealType>(0.001), // Probability  p
 | ||
|  |      static_cast<RealType>(2.998000000000000000000000000000000000000E-6L), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1-2.998000000000000000000000000000000000000E-6L),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(2),   // alpha a
 | ||
|  |      static_cast<RealType>(2),   // beta b
 | ||
|  |      static_cast<RealType>(0.0001), // Probability  p
 | ||
|  |      static_cast<RealType>(2.999800000000000000000000000000000000000E-8L), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1-2.999800000000000000000000000000000000000E-8L),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(2),   // alpha a
 | ||
|  |      static_cast<RealType>(2),   // beta b
 | ||
|  |      static_cast<RealType>(0.99), // Probability  p
 | ||
|  |      static_cast<RealType>(0.9997020000000000000000000000000000000000L), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1-0.9997020000000000000000000000000000000000L),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(0.5),   // alpha a
 | ||
|  |      static_cast<RealType>(2),   // beta b
 | ||
|  |      static_cast<RealType>(0.5), // Probability  p
 | ||
|  |      static_cast<RealType>(0.8838834764831844055010554526310612991060L), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1-0.8838834764831844055010554526310612991060L),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(0.5),   // alpha a
 | ||
|  |      static_cast<RealType>(3.),   // beta b
 | ||
|  |      static_cast<RealType>(0.7), // Probability  p
 | ||
|  |      static_cast<RealType>(0.9903963064097119299191611355232156905687L), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1-0.9903963064097119299191611355232156905687L),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |   test_spot( | ||
|  |      static_cast<RealType>(0.5),   // alpha a
 | ||
|  |      static_cast<RealType>(3.),   // beta b
 | ||
|  |      static_cast<RealType>(0.1), // Probability  p
 | ||
|  |      static_cast<RealType>(0.5545844446520295253493059553548880128511L), // Probability of result (CDF of beta), P
 | ||
|  |      static_cast<RealType>(1-0.5545844446520295253493059553548880128511L),  // Complement of CDF Q = 1 - P
 | ||
|  |      tolerance); // Test tolerance.
 | ||
|  | 
 | ||
|  |     //
 | ||
|  |    // Error checks:
 | ||
|  |    // Construction with 'bad' parameters.
 | ||
|  |    BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, -1), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(-1, 1), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, 0), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(0, 1), std::domain_error); | ||
|  | 
 | ||
|  |    beta_distribution<> dist; | ||
|  |    BOOST_MATH_CHECK_THROW(pdf(dist, -1), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(cdf(dist, -1), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(cdf(complement(dist, -1)), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error); | ||
|  | 
 | ||
|  |  // No longer allow any parameter to be NaN or inf, so all these tests should throw.
 | ||
|  |    if (std::numeric_limits<RealType>::has_quiet_NaN) | ||
|  |    {  | ||
|  |     // Attempt to construct from non-finite should throw.
 | ||
|  |      RealType nan = std::numeric_limits<RealType>::quiet_NaN(); | ||
|  | #ifndef BOOST_NO_EXCEPTIONS
 | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(nan), std::domain_error); | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, nan), std::domain_error); | ||
|  | #else
 | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(nan), std::domain_error); | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, nan), std::domain_error); | ||
|  | #endif
 | ||
|  |       | ||
|  |     // Non-finite parameters should throw.
 | ||
|  |      beta_distribution<RealType> w(RealType(1));  | ||
|  |      BOOST_MATH_CHECK_THROW(pdf(w, +nan), std::domain_error); // x = NaN
 | ||
|  |      BOOST_MATH_CHECK_THROW(cdf(w, +nan), std::domain_error); // x = NaN
 | ||
|  |      BOOST_MATH_CHECK_THROW(cdf(complement(w, +nan)), std::domain_error); // x = + nan
 | ||
|  |      BOOST_MATH_CHECK_THROW(quantile(w, +nan), std::domain_error); // p = + nan
 | ||
|  |      BOOST_MATH_CHECK_THROW(quantile(complement(w, +nan)), std::domain_error); // p = + nan
 | ||
|  |   } // has_quiet_NaN
 | ||
|  | 
 | ||
|  |   if (std::numeric_limits<RealType>::has_infinity) | ||
|  |   { | ||
|  |      // Attempt to construct from non-finite should throw.
 | ||
|  |      RealType inf = std::numeric_limits<RealType>::infinity();  | ||
|  | #ifndef BOOST_NO_EXCEPTIONS
 | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(inf), std::domain_error); | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, inf), std::domain_error); | ||
|  | #else
 | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(inf), std::domain_error); | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, inf), std::domain_error); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     // Non-finite parameters should throw.
 | ||
|  |      beta_distribution<RealType> w(RealType(1));  | ||
|  | #ifndef BOOST_NO_EXCEPTIONS
 | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(inf), std::domain_error); | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType> w(1, inf), std::domain_error); | ||
|  | #else
 | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(inf), std::domain_error); | ||
|  |      BOOST_MATH_CHECK_THROW(beta_distribution<RealType>(1, inf), std::domain_error); | ||
|  | #endif
 | ||
|  |      BOOST_MATH_CHECK_THROW(pdf(w, +inf), std::domain_error); // x = inf
 | ||
|  |      BOOST_MATH_CHECK_THROW(cdf(w, +inf), std::domain_error); // x = inf
 | ||
|  |      BOOST_MATH_CHECK_THROW(cdf(complement(w, +inf)), std::domain_error); // x = + inf
 | ||
|  |      BOOST_MATH_CHECK_THROW(quantile(w, +inf), std::domain_error); // p = + inf
 | ||
|  |      BOOST_MATH_CHECK_THROW(quantile(complement(w, +inf)), std::domain_error); // p = + inf
 | ||
|  |    } // has_infinity
 | ||
|  | 
 | ||
|  |    // Error handling checks:
 | ||
|  |    check_out_of_range<boost::math::beta_distribution<RealType> >(1, 1); // (All) valid constructor parameter values.
 | ||
|  |    // and range and non-finite.
 | ||
|  | 
 | ||
|  |    // Not needed??????
 | ||
|  |    BOOST_MATH_CHECK_THROW(pdf(boost::math::beta_distribution<RealType>(0, 1), 0), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(pdf(boost::math::beta_distribution<RealType>(-1, 1), 0), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(quantile(boost::math::beta_distribution<RealType>(1, 1), -1), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(quantile(boost::math::beta_distribution<RealType>(1, 1), 2), std::domain_error); | ||
|  | 
 | ||
|  | 
 | ||
|  | } // template <class RealType>void test_spots(RealType)
 | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE( test_main ) | ||
|  | { | ||
|  |    BOOST_MATH_CONTROL_FP; | ||
|  |    // Check that can generate beta distribution using one convenience methods:
 | ||
|  |    beta_distribution<> mybeta11(1., 1.); // Using default RealType double.
 | ||
|  |    // but that
 | ||
|  |    // boost::math::beta mybeta1(1., 1.); // Using typedef fails.
 | ||
|  |    // error C2039: 'beta' : is not a member of 'boost::math'
 | ||
|  | 
 | ||
|  |    // Basic sanity-check spot values.
 | ||
|  | 
 | ||
|  |    // Some simple checks using double only.
 | ||
|  |    BOOST_CHECK_EQUAL(mybeta11.alpha(), 1); //
 | ||
|  |    BOOST_CHECK_EQUAL(mybeta11.beta(), 1); | ||
|  |    BOOST_CHECK_EQUAL(mean(mybeta11), 0.5); // 1 / (1 + 1) = 1/2 exactly
 | ||
|  |    BOOST_MATH_CHECK_THROW(mode(mybeta11), std::domain_error); | ||
|  |    beta_distribution<> mybeta22(2., 2.); // pdf is dome shape.
 | ||
|  |    BOOST_CHECK_EQUAL(mode(mybeta22), 0.5); // 2-1 / (2+2-2) = 1/2 exactly.
 | ||
|  |    beta_distribution<> mybetaH2(0.5, 2.); //
 | ||
|  |    beta_distribution<> mybetaH3(0.5, 3.); //
 | ||
|  | 
 | ||
|  |    // Check a few values using double.
 | ||
|  |    BOOST_CHECK_EQUAL(pdf(mybeta11, 1), 1); // is uniform unity over 0 to 1,
 | ||
|  |    BOOST_CHECK_EQUAL(pdf(mybeta11, 0), 1); // including zero and unity.
 | ||
|  |    // Although these next three have an exact result, internally they're
 | ||
|  |    // *not* treated as special cases, and may be out by a couple of eps:
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.5), 1.0, 5*std::numeric_limits<double>::epsilon()); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.0001), 1.0, 5*std::numeric_limits<double>::epsilon()); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta11, 0.9999), 1.0, 5*std::numeric_limits<double>::epsilon()); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.1), 0.1, 2 * std::numeric_limits<double>::epsilon()); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.5), 0.5, 2 * std::numeric_limits<double>::epsilon()); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta11, 0.9), 0.9, 2 * std::numeric_limits<double>::epsilon()); | ||
|  |    BOOST_CHECK_EQUAL(cdf(mybeta11, 1), 1.); // Exact unity expected.
 | ||
|  | 
 | ||
|  |    double tol = std::numeric_limits<double>::epsilon() * 10; | ||
|  |    BOOST_CHECK_EQUAL(pdf(mybeta22, 1), 0); // is dome shape.
 | ||
|  |    BOOST_CHECK_EQUAL(pdf(mybeta22, 0), 0); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.5), 1.5, tol); // top of dome, expect exactly 3/2.
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.0001), 5.9994000000000E-4, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(pdf(mybeta22, 0.9999), 5.9994000000000E-4, tol*50); | ||
|  | 
 | ||
|  |    BOOST_CHECK_EQUAL(cdf(mybeta22, 0.), 0); // cdf is a curved line from 0 to 1.
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.028000000000000, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.5), 0.5, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.9), 0.972000000000000, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.0001), 2.999800000000000000000000000000000000000E-8, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.001), 2.998000000000000000000000000000000000000E-6, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.01), 0.0002980000000000000000000000000000000000000, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.1), 0.02800000000000000000000000000000000000000, tol); // exact
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(mybeta22, 0.99), 0.9997020000000000000000000000000000000000, tol); | ||
|  | 
 | ||
|  |    BOOST_CHECK_EQUAL(cdf(mybeta22, 1), 1.); // Exact unity expected.
 | ||
|  | 
 | ||
|  |    // Complement
 | ||
|  | 
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(cdf(complement(mybeta22, 0.9)), 0.028000000000000, tol); | ||
|  | 
 | ||
|  |    // quantile.
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(quantile(mybeta22, 0.028), 0.1, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(quantile(complement(mybeta22, 1 - 0.028)), 0.1, tol); | ||
|  |    BOOST_CHECK_EQUAL(kurtosis(mybeta11), 3+ kurtosis_excess(mybeta11)); // Check kurtosis_excess = kurtosis - 3;
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(variance(mybeta22), 0.05, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(mean(mybeta22), 0.5, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(mode(mybeta22), 0.5, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(median(mybeta22), 0.5, sqrt(tol)); // Theoretical maximum accuracy using Brent is sqrt(epsilon).
 | ||
|  | 
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(skewness(mybeta22), 0.0, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(mybeta22), -144.0 / 168, tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(skewness(beta_distribution<>(3, 5)), 0.30983866769659335081434123198259, tol); | ||
|  | 
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::find_alpha(mean(mybeta22), variance(mybeta22)), mybeta22.alpha(), tol); // mean, variance, probability.
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(beta_distribution<double>::find_beta(mean(mybeta22), variance(mybeta22)), mybeta22.beta(), tol);// mean, variance, probability.
 | ||
|  | 
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(mybeta22.find_alpha(mybeta22.beta(), 0.8, cdf(mybeta22, 0.8)), mybeta22.alpha(), tol); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(mybeta22.find_beta(mybeta22.alpha(), 0.8, cdf(mybeta22, 0.8)), mybeta22.beta(), tol); | ||
|  | 
 | ||
|  | 
 | ||
|  |    beta_distribution<real_concept> rcbeta22(2, 2); // Using RealType real_concept.
 | ||
|  |    cout << "numeric_limits<real_concept>::is_specialized " << numeric_limits<real_concept>::is_specialized << endl; | ||
|  |    cout << "numeric_limits<real_concept>::digits " << numeric_limits<real_concept>::digits << endl; | ||
|  |    cout << "numeric_limits<real_concept>::digits10 " << numeric_limits<real_concept>::digits10 << endl; | ||
|  |    cout << "numeric_limits<real_concept>::epsilon " << numeric_limits<real_concept>::epsilon() << endl; | ||
|  | 
 | ||
|  |    // (Parameter value, arbitrarily zero, only communicates the floating point type).
 | ||
|  |    test_spots(0.0F); // Test float.
 | ||
|  |    test_spots(0.0); // Test double.
 | ||
|  | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | ||
|  |    test_spots(0.0L); // Test long double.
 | ||
|  | #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
 | ||
|  |    test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  | } // BOOST_AUTO_TEST_CASE( test_main )
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | Output is: | ||
|  | 
 | ||
|  | -Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_beta_dist.exe" | ||
|  | Running 1 test case... | ||
|  | numeric_limits<real_concept>::is_specialized 0 | ||
|  | numeric_limits<real_concept>::digits 0 | ||
|  | numeric_limits<real_concept>::digits10 0 | ||
|  | numeric_limits<real_concept>::epsilon 0 | ||
|  | Boost::math::tools::epsilon = 1.19209e-007 | ||
|  | std::numeric_limits::epsilon = 1.19209e-007 | ||
|  | epsilon = 1.19209e-007, Tolerance = 0.0119209%. | ||
|  | Boost::math::tools::epsilon = 2.22045e-016 | ||
|  | std::numeric_limits::epsilon = 2.22045e-016 | ||
|  | epsilon = 2.22045e-016, Tolerance = 2.22045e-011%. | ||
|  | Boost::math::tools::epsilon = 2.22045e-016 | ||
|  | std::numeric_limits::epsilon = 2.22045e-016 | ||
|  | epsilon = 2.22045e-016, Tolerance = 2.22045e-011%. | ||
|  | Boost::math::tools::epsilon = 2.22045e-016 | ||
|  | std::numeric_limits::epsilon = 0 | ||
|  | epsilon = 2.22045e-016, Tolerance = 2.22045e-011%. | ||
|  | *** No errors detected | ||
|  | 
 | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 |