mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 18:10:21 -04:00 
			
		
		
		
	
		
			
	
	
		
			862 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			862 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // test_negative_binomial.cpp
 | ||
|  | 
 | ||
|  | // Copyright Paul A. Bristow 2007.
 | ||
|  | // Copyright John Maddock 2006.
 | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | // Tests for Negative Binomial Distribution.
 | ||
|  | 
 | ||
|  | // Note that these defines must be placed BEFORE #includes.
 | ||
|  | #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | ||
|  | // because several tests overflow & underflow by design.
 | ||
|  | #define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #  pragma warning(disable: 4127) // conditional expression is constant.
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
 | ||
|  | #  define TEST_FLOAT
 | ||
|  | #  define TEST_DOUBLE
 | ||
|  | #  define TEST_LDOUBLE
 | ||
|  | #  define TEST_REAL_CONCEPT
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <boost/math/tools/test.hpp> // for real_concept
 | ||
|  | #include <boost/math/concepts/real_concept.hpp> // for real_concept
 | ||
|  | using ::boost::math::concepts::real_concept; | ||
|  | 
 | ||
|  | #include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
 | ||
|  | using boost::math::negative_binomial_distribution; | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/gamma.hpp>
 | ||
|  |   using boost::math::lgamma;  // log gamma
 | ||
|  | 
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp> // for test_main
 | ||
|  | #include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
 | ||
|  | #include "table_type.hpp"
 | ||
|  | #include "test_out_of_range.hpp"
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | using std::cout; | ||
|  | using std::endl; | ||
|  | using std::setprecision; | ||
|  | using std::showpoint; | ||
|  | #include <limits>
 | ||
|  | using std::numeric_limits; | ||
|  | 
 | ||
|  | template <class RealType> | ||
|  | void test_spot( // Test a single spot value against 'known good' values.
 | ||
|  |                RealType N,    // Number of successes.
 | ||
|  |                RealType k,    // Number of failures.
 | ||
|  |                RealType p,    // Probability of success_fraction.
 | ||
|  |                RealType P,    // CDF probability.
 | ||
|  |                RealType Q,    // Complement of CDF.
 | ||
|  |                RealType tol)  // Test tolerance.
 | ||
|  | { | ||
|  |    boost::math::negative_binomial_distribution<RealType> bn(N, p); | ||
|  |    BOOST_CHECK_EQUAL(N, bn.successes()); | ||
|  |    BOOST_CHECK_EQUAL(p, bn.success_fraction()); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |      cdf(bn, k), P, tol); | ||
|  | 
 | ||
|  |   if((P < 0.99) && (Q < 0.99)) | ||
|  |   { | ||
|  |     // We can only check this if P is not too close to 1,
 | ||
|  |     // so that we can guarantee that Q is free of error:
 | ||
|  |     //
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |       cdf(complement(bn, k)), Q, tol); | ||
|  |     if(k != 0) | ||
|  |     { | ||
|  |       BOOST_CHECK_CLOSE( | ||
|  |         quantile(bn, P), k, tol); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       // Just check quantile is very small:
 | ||
|  |       if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) | ||
|  |         && (boost::is_floating_point<RealType>::value)) | ||
|  |       { | ||
|  |         // Limit where this is checked: if exponent range is very large we may
 | ||
|  |         // run out of iterations in our root finding algorithm.
 | ||
|  |         BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon<RealType>() * 10); | ||
|  |       } | ||
|  |     } | ||
|  |     if(k != 0) | ||
|  |     { | ||
|  |       BOOST_CHECK_CLOSE( | ||
|  |         quantile(complement(bn, Q)), k, tol); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |       // Just check quantile is very small:
 | ||
|  |       if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent) | ||
|  |         && (boost::is_floating_point<RealType>::value)) | ||
|  |       { | ||
|  |         // Limit where this is checked: if exponent range is very large we may
 | ||
|  |         // run out of iterations in our root finding algorithm.
 | ||
|  |         BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon<RealType>() * 10); | ||
|  |       } | ||
|  |     } | ||
|  |     // estimate success ratio:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |       negative_binomial_distribution<RealType>::find_lower_bound_on_p( | ||
|  |       N+k, N, P), | ||
|  |       p, tol); | ||
|  |     // Note we bump up the sample size here, purely for the sake of the test,
 | ||
|  |     // internally the function has to adjust the sample size so that we get
 | ||
|  |     // the right upper bound, our test undoes this, so we can verify the result.
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |       negative_binomial_distribution<RealType>::find_upper_bound_on_p( | ||
|  |       N+k+1, N, Q), | ||
|  |       p, tol); | ||
|  | 
 | ||
|  |     if(Q < P) | ||
|  |     { | ||
|  |        //
 | ||
|  |        // We check two things here, that the upper and lower bounds
 | ||
|  |        // are the right way around, and that they do actually bracket
 | ||
|  |        // the naive estimate of p = successes / (sample size)
 | ||
|  |        //
 | ||
|  |       BOOST_CHECK( | ||
|  |         negative_binomial_distribution<RealType>::find_lower_bound_on_p( | ||
|  |         N+k, N, Q) | ||
|  |         <= | ||
|  |         negative_binomial_distribution<RealType>::find_upper_bound_on_p( | ||
|  |         N+k, N, Q) | ||
|  |         ); | ||
|  |       BOOST_CHECK( | ||
|  |         negative_binomial_distribution<RealType>::find_lower_bound_on_p( | ||
|  |         N+k, N, Q) | ||
|  |         <= | ||
|  |         N / (N+k) | ||
|  |         ); | ||
|  |       BOOST_CHECK( | ||
|  |         N / (N+k) | ||
|  |         <= | ||
|  |         negative_binomial_distribution<RealType>::find_upper_bound_on_p( | ||
|  |         N+k, N, Q) | ||
|  |         ); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |        // As above but when P is small.
 | ||
|  |       BOOST_CHECK( | ||
|  |         negative_binomial_distribution<RealType>::find_lower_bound_on_p( | ||
|  |         N+k, N, P) | ||
|  |         <= | ||
|  |         negative_binomial_distribution<RealType>::find_upper_bound_on_p( | ||
|  |         N+k, N, P) | ||
|  |         ); | ||
|  |       BOOST_CHECK( | ||
|  |         negative_binomial_distribution<RealType>::find_lower_bound_on_p( | ||
|  |         N+k, N, P) | ||
|  |         <= | ||
|  |         N / (N+k) | ||
|  |         ); | ||
|  |       BOOST_CHECK( | ||
|  |         N / (N+k) | ||
|  |         <= | ||
|  |         negative_binomial_distribution<RealType>::find_upper_bound_on_p( | ||
|  |         N+k, N, P) | ||
|  |         ); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Estimate sample size:
 | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |       negative_binomial_distribution<RealType>::find_minimum_number_of_trials( | ||
|  |       k, p, P), | ||
|  |       N+k, tol); | ||
|  |     BOOST_CHECK_CLOSE( | ||
|  |       negative_binomial_distribution<RealType>::find_maximum_number_of_trials( | ||
|  |          k, p, Q), | ||
|  |       N+k, tol); | ||
|  | 
 | ||
|  |     // Double check consistency of CDF and PDF by computing the finite sum:
 | ||
|  |     RealType sum = 0; | ||
|  |     for(unsigned i = 0; i <= k; ++i) | ||
|  |     { | ||
|  |       sum += pdf(bn, RealType(i)); | ||
|  |     } | ||
|  |     BOOST_CHECK_CLOSE(sum, P, tol); | ||
|  | 
 | ||
|  |     // Complement is not possible since sum is to infinity.
 | ||
|  |   } //
 | ||
|  | } // test_spot
 | ||
|  | 
 | ||
|  | template <class RealType> // Any floating-point type RealType.
 | ||
|  | void test_spots(RealType) | ||
|  | { | ||
|  |   // Basic sanity checks, test data is to double precision only
 | ||
|  |   // so set tolerance to 1000 eps expressed as a percent, or
 | ||
|  |   // 1000 eps of type double expressed as a percent, whichever
 | ||
|  |   // is the larger.
 | ||
|  | 
 | ||
|  |   RealType tolerance = (std::max) | ||
|  |     (boost::math::tools::epsilon<RealType>(), | ||
|  |     static_cast<RealType>(std::numeric_limits<double>::epsilon())); | ||
|  |   tolerance *= 100 * 100000.0f; | ||
|  | 
 | ||
|  |   cout << "Tolerance = " << tolerance << "%." << endl; | ||
|  | 
 | ||
|  |   RealType tol1eps = boost::math::tools::epsilon<RealType>() * 2; // Very tight, suit exact values.
 | ||
|  |   //RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight, suit exact values.
 | ||
|  |   RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
 | ||
|  |   cout << "Tolerance 5 eps = " << tol5eps << "%." << endl; | ||
|  | 
 | ||
|  |   // Sources of spot test values:
 | ||
|  | 
 | ||
|  |   // MathCAD defines pbinom(k, r, p) (at about 64-bit double precision, about 16 decimal digits)
 | ||
|  |   // returns pr(X , k) when random variable X has the binomial distribution with parameters r and p.
 | ||
|  |   // 0 <= k
 | ||
|  |   // r > 0
 | ||
|  |   // 0 <= p <= 1
 | ||
|  |   // P = pbinom(30, 500, 0.05) = 0.869147702104609
 | ||
|  | 
 | ||
|  |   // And functions.wolfram.com
 | ||
|  | 
 | ||
|  |   using boost::math::negative_binomial_distribution; | ||
|  |   using  ::boost::math::negative_binomial; | ||
|  |   using  ::boost::math::cdf; | ||
|  |   using  ::boost::math::pdf; | ||
|  | 
 | ||
|  |   // Test negative binomial using cdf spot values from MathCAD cdf = pnbinom(k, r, p).
 | ||
|  |   // These test quantiles and complements as well.
 | ||
|  | 
 | ||
|  |   test_spot(  // pnbinom(1,2,0.5) = 0.5
 | ||
|  |   static_cast<RealType>(2),   // successes r
 | ||
|  |   static_cast<RealType>(1),   // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.5), // Probability of success as fraction, p
 | ||
|  |   static_cast<RealType>(0.5), // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(0.5),  // complement CCDF Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot( // pbinom(0, 2, 0.25)
 | ||
|  |   static_cast<RealType>(2),    // successes r
 | ||
|  |   static_cast<RealType>(0),    // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.25), | ||
|  |   static_cast<RealType>(0.0625),                    // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(0.9375),                    // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot(  // pbinom(48,8,0.25)
 | ||
|  |   static_cast<RealType>(8),     // successes r
 | ||
|  |   static_cast<RealType>(48),    // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.25),                    // Probability of success, p
 | ||
|  |   static_cast<RealType>(9.826582228110670E-1),     // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(1 - 9.826582228110670E-1),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot(  // pbinom(2,5,0.4)
 | ||
|  |   static_cast<RealType>(5),     // successes r
 | ||
|  |   static_cast<RealType>(2),     // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.4),                    // Probability of success, p
 | ||
|  |   static_cast<RealType>(9.625600000000020E-2),     // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(1 - 9.625600000000020E-2),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot(  // pbinom(10,100,0.9)
 | ||
|  |   static_cast<RealType>(100),     // successes r
 | ||
|  |   static_cast<RealType>(10),     // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.9),                    // Probability of success, p
 | ||
|  |   static_cast<RealType>(4.535522887695670E-1),     // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(1 - 4.535522887695670E-1),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot(  // pbinom(1,100,0.991)
 | ||
|  |   static_cast<RealType>(100),     // successes r
 | ||
|  |   static_cast<RealType>(1),     // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.991),                    // Probability of success, p
 | ||
|  |   static_cast<RealType>(7.693413044217000E-1),     // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(1 - 7.693413044217000E-1),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   test_spot(  // pbinom(10,100,0.991)
 | ||
|  |   static_cast<RealType>(100),     // successes r
 | ||
|  |   static_cast<RealType>(10),     // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.991),                    // Probability of success, p
 | ||
|  |   static_cast<RealType>(9.999999940939000E-1),     // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(1 - 9.999999940939000E-1),   // Q = 1 - P
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  | if(std::numeric_limits<RealType>::is_specialized) | ||
|  | { // An extreme value test that takes 3 minutes using the real concept type
 | ||
|  |   // for which numeric_limits<RealType>::is_specialized == false, deliberately
 | ||
|  |   // and for which there is no Lanczos approximation defined (also deliberately)
 | ||
|  |   // giving a very slow computation, but with acceptable accuracy.
 | ||
|  |   // A possible enhancement might be to use a normal approximation for
 | ||
|  |   // extreme values, but this is not implemented.
 | ||
|  |   test_spot(  // pbinom(100000,100,0.001)
 | ||
|  |   static_cast<RealType>(100),     // successes r
 | ||
|  |   static_cast<RealType>(100000),     // Number of failures, k
 | ||
|  |   static_cast<RealType>(0.001),                    // Probability of success, p
 | ||
|  |   static_cast<RealType>(5.173047534260320E-1),     // Probability of result (CDF), P
 | ||
|  |   static_cast<RealType>(1 - 5.173047534260320E-1),   // Q = 1 - P
 | ||
|  |   tolerance*1000); // *1000 is OK 0.51730475350664229  versus
 | ||
|  | 
 | ||
|  |   // functions.wolfram.com
 | ||
|  |   //   for I[0.001](100, 100000+1) gives:
 | ||
|  |   // Wolfram       0.517304753506834882009032744488738352004003696396461766326713
 | ||
|  |   // JM nonLanczos 0.51730475350664229 differs at the 13th decimal digit.
 | ||
|  |   // MathCAD       0.51730475342603199 differs at 10th decimal digit.
 | ||
|  | 
 | ||
|  |   // Error tests:
 | ||
|  |   check_out_of_range<negative_binomial_distribution<RealType> >(20, 0.5); | ||
|  |   BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(0, 0.5), std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(-2, 0.5), std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, -0.5), std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, 1.5), std::domain_error); | ||
|  | } | ||
|  |  // End of single spot tests using RealType
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   // Tests on PDF:
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), | ||
|  |   static_cast<RealType>(0) ),  // k = 0.
 | ||
|  |   static_cast<RealType>(0.25), // 0
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(4), static_cast<RealType>(0.5)), | ||
|  |   static_cast<RealType>(0)),  // k = 0.
 | ||
|  |   static_cast<RealType>(0.0625), // exact 1/16
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)),  // k = 0
 | ||
|  |   static_cast<RealType>(9.094947017729270E-13), // pbinom(0,20,0.25) = 9.094947017729270E-13
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.2)), | ||
|  |   static_cast<RealType>(0)),  // k = 0
 | ||
|  |   static_cast<RealType>(1.0485760000000003e-014), // MathCAD 1.048576000000000E-14
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(10), static_cast<RealType>(0.1)), | ||
|  |   static_cast<RealType>(0)),  // k = 0.
 | ||
|  |   static_cast<RealType>(1e-10), // MathCAD says zero, but suffers cancellation error?
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.1)), | ||
|  |   static_cast<RealType>(0)),  // k = 0.
 | ||
|  |   static_cast<RealType>(1e-20), // MathCAD says zero, but suffers cancellation error?
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // .
 | ||
|  |   pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.9)), | ||
|  |   static_cast<RealType>(0)),  // k.
 | ||
|  |   static_cast<RealType>(1.215766545905690E-1), // k=20  p = 0.9
 | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   // Tests on cdf:
 | ||
|  |   // MathCAD pbinom k, r, p) == failures, successes, probability.
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE(cdf( | ||
|  |     negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
 | ||
|  |     static_cast<RealType>(0) ), // k = 0
 | ||
|  |     static_cast<RealType>(0.25), // probability 1/4
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE(cdf(complement( | ||
|  |     negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
 | ||
|  |     static_cast<RealType>(0) )), // k = 0
 | ||
|  |     static_cast<RealType>(0.75), // probability 3/4
 | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE( // k = 1.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(1)),  // k =1.
 | ||
|  |   static_cast<RealType>(1.455191522836700E-11), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_SMALL( // Check within an epsilon with CHECK_SMALL
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(1)) - | ||
|  |   static_cast<RealType>(1.455191522836700E-11), | ||
|  |   tolerance ); | ||
|  | 
 | ||
|  |   // Some exact (probably - judging by trailing zeros) values.
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)),  // k.
 | ||
|  |   static_cast<RealType>(1.525878906250000E-5), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)),  // k.
 | ||
|  |   static_cast<RealType>(1.525878906250000E-5), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_SMALL( | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)) - | ||
|  |   static_cast<RealType>(1.525878906250000E-5), | ||
|  |   tolerance ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // k = 1.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(1)),  // k.
 | ||
|  |   static_cast<RealType>(1.068115234375010E-4), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // k = 2.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(2)),  // k.
 | ||
|  |   static_cast<RealType>(4.158020019531300E-4), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // k = 3.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(3)),  // k.bristow
 | ||
|  |   static_cast<RealType>(1.188278198242200E-3), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // k = 4.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(4)),  // k.
 | ||
|  |   static_cast<RealType>(2.781510353088410E-3), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // k = 5.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(5)),  // k.
 | ||
|  |   static_cast<RealType>(5.649328231811500E-3), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // k = 6.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(6)),  // k.
 | ||
|  |   static_cast<RealType>(1.030953228473680E-2), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // k = 7.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(7)),  // k.
 | ||
|  |   static_cast<RealType>(1.729983836412430E-2), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( // k = 8.
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(8)),  // k = n.
 | ||
|  |   static_cast<RealType>(2.712995628826370E-2), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( //
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(48)),  // k
 | ||
|  |   static_cast<RealType>(9.826582228110670E-1), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( //
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(64)),  // k
 | ||
|  |   static_cast<RealType>(9.990295004935590E-1), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( //
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)), | ||
|  |   static_cast<RealType>(26)),  // k
 | ||
|  |   static_cast<RealType>(9.989686246611190E-1), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( //
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)), | ||
|  |   static_cast<RealType>(2)),  // k failures
 | ||
|  |   static_cast<RealType>(9.625600000000020E-2), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( //
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.9)), | ||
|  |   static_cast<RealType>(20)),  // k
 | ||
|  |   static_cast<RealType>(9.999970854144170E-1), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( //
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(500), static_cast<RealType>(0.7)), | ||
|  |   static_cast<RealType>(200)),  // k
 | ||
|  |   static_cast<RealType>(2.172846379930550E-1), | ||
|  |   tolerance* 2); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( //
 | ||
|  |   cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.7)), | ||
|  |   static_cast<RealType>(20)),  // k
 | ||
|  |   static_cast<RealType>(4.550203671301790E-1), | ||
|  |   tolerance); | ||
|  | 
 | ||
|  |   // Tests of other functions, mean and other moments ...
 | ||
|  | 
 | ||
|  |   negative_binomial_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(0.25)); | ||
|  |   using namespace std; // ADL of std names.
 | ||
|  |   // mean:
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |     mean(dist), static_cast<RealType>(8 * (1 - 0.25) /0.25), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |     mode(dist), static_cast<RealType>(21), tol1eps); | ||
|  |   // variance:
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |     variance(dist), static_cast<RealType>(8 * (1 - 0.25) / (0.25 * 0.25)), tol5eps); | ||
|  |   // std deviation:
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |     standard_deviation(dist), // 9.79795897113271239270
 | ||
|  |     static_cast<RealType>(9.797958971132712392789136298823565567864L), // using functions.wolfram.com
 | ||
|  |     //                              9.79795897113271152534  == sqrt(8 * (1 - 0.25) / (0.25 * 0.25)))
 | ||
|  |     tol5eps * 100); | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |     skewness(dist), //
 | ||
|  |     static_cast<RealType>(0.71443450831176036), | ||
|  |     // using http://mathworld.wolfram.com/skewness.html
 | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |     kurtosis_excess(dist), //
 | ||
|  |     static_cast<RealType>(0.7604166666666666666666666666666666666666L), // using Wikipedia Kurtosis(excess) formula
 | ||
|  |     tol5eps * 100); | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |     kurtosis(dist), // true 
 | ||
|  |     static_cast<RealType>(3.76041666666666666666666666666666666666666L), // 
 | ||
|  |     tol5eps * 100); | ||
|  |   // hazard:
 | ||
|  |   RealType x = static_cast<RealType>(0.125); | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   hazard(dist, x) | ||
|  |   , pdf(dist, x) / cdf(complement(dist, x)), tol5eps); | ||
|  |   // cumulative hazard:
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   chf(dist, x), -log(cdf(complement(dist, x))), tol5eps); | ||
|  |   // coefficient_of_variation:
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   coefficient_of_variation(dist) | ||
|  |   , standard_deviation(dist) / mean(dist), tol5eps); | ||
|  | 
 | ||
|  |   // Special cases for PDF:
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   pdf( | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)), //
 | ||
|  |   static_cast<RealType>(0)), | ||
|  |   static_cast<RealType>(0) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   pdf( | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)), | ||
|  |   static_cast<RealType>(0.0001)), | ||
|  |   static_cast<RealType>(0) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   pdf( | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)), | ||
|  |   static_cast<RealType>(0.001)), | ||
|  |   static_cast<RealType>(0) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   pdf( | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)), | ||
|  |   static_cast<RealType>(8)), | ||
|  |   static_cast<RealType>(0) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_SMALL( | ||
|  |   pdf( | ||
|  |    negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0))- | ||
|  |   static_cast<RealType>(0.0625), | ||
|  |   2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
 | ||
|  |   // numeric_limits<RealType>::epsilon()); // Not suitable for real concept!
 | ||
|  | 
 | ||
|  |   // Quantile boundary cases checks:
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(  // zero P < cdf(0) so should be exactly zero.
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)), | ||
|  |   static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(  // min P < cdf(0) so should be exactly zero.
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(boost::math::tools::min_value<RealType>())), | ||
|  |   static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |   quantile(  // Small P < cdf(0) so should be near zero.
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(boost::math::tools::epsilon<RealType>())), // 
 | ||
|  |   static_cast<RealType>(0), | ||
|  |     tol5eps); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE( | ||
|  |   quantile(  // Small P < cdf(0) so should be exactly zero.
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0.0001)), | ||
|  |   static_cast<RealType>(0.95854156929288470), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   //BOOST_CHECK(  // Fails with overflow for real_concept
 | ||
|  |   //quantile(  // Small P near 1 so k failures should be big.
 | ||
|  |   //negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
 | ||
|  |   //static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
 | ||
|  |   //static_cast<RealType>(189.56999032670058)  // 106.462769 for float
 | ||
|  |   //);
 | ||
|  | 
 | ||
|  |   if(std::numeric_limits<RealType>::has_infinity) | ||
|  |   { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
 | ||
|  |     // Note that infinity is not implemented for real_concept, so these tests
 | ||
|  |     // are only done for types, like built-in float, double.. that have infinity.
 | ||
|  |     // Note that these assume that  BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
 | ||
|  |     // #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY ==  throw_on_error would throw here.
 | ||
|  |     // #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
 | ||
|  |     //  so the throw path of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
 | ||
|  | 
 | ||
|  |     BOOST_CHECK( | ||
|  |     quantile(  // At P == 1 so k failures should be infinite.
 | ||
|  |     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(1)) == | ||
|  |     //static_cast<RealType>(boost::math::tools::infinity<RealType>())
 | ||
|  |     static_cast<RealType>(std::numeric_limits<RealType>::infinity()) ); | ||
|  | 
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |     quantile(  // At 1 == P  so should be infinite.
 | ||
|  |     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(1)), //
 | ||
|  |     std::numeric_limits<RealType>::infinity() ); | ||
|  | 
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |     quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
 | ||
|  |     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(0))), | ||
|  |     std::numeric_limits<RealType>::infinity() ); | ||
|  |    } // test for infinity using std::numeric_limits<>::infinity()
 | ||
|  |   else | ||
|  |   { // real_concept case, so check it throws rather than returning infinity.
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |     quantile(  // At P == 1 so k failures should be infinite.
 | ||
|  |     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(1)), | ||
|  |     boost::math::tools::max_value<RealType>() ); | ||
|  | 
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |     quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
 | ||
|  |     negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(0))), | ||
|  |     boost::math::tools::max_value<RealType>()); | ||
|  |   } | ||
|  |   BOOST_CHECK( // Should work for built-in and real_concept.
 | ||
|  |   quantile(complement(  // Q very near to 1 so P nearly 1  < so should be large > 384.
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(boost::math::tools::min_value<RealType>()))) | ||
|  |    >= static_cast<RealType>(384) ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(  //  P ==  0 < cdf(0) so should be zero.
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)), | ||
|  |   static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |   // Quantile Complement boundary cases:
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(complement(  // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(1))), | ||
|  |   static_cast<RealType>(0) | ||
|  |   ); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( | ||
|  |   quantile(complement(  // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))), | ||
|  |   static_cast<RealType>(0) | ||
|  |   ); | ||
|  | 
 | ||
|  |   // Check that duff arguments throw domain_error:
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   pdf( // Negative successes!
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error | ||
|  |   ); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   pdf( // Negative success_fraction!
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error | ||
|  |   ); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   pdf( // Success_fraction > 1!
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)), | ||
|  |   static_cast<RealType>(0)), | ||
|  |   std::domain_error | ||
|  |   ); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   pdf( // Negative k argument !
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(-1)), | ||
|  |   std::domain_error | ||
|  |   ); | ||
|  |   //BOOST_MATH_CHECK_THROW(
 | ||
|  |   //pdf( // Unlike binomial there is NO limit on k (failures)
 | ||
|  |   //negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
 | ||
|  |   //static_cast<RealType>(9)), std::domain_error
 | ||
|  |   //);
 | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   cdf(  // Negative k argument !
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)), | ||
|  |   static_cast<RealType>(-1)), | ||
|  |   std::domain_error | ||
|  |   ); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   cdf( // Negative success_fraction!
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error | ||
|  |   ); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   cdf( // Success_fraction > 1!
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error | ||
|  |   ); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   quantile(  // Negative success_fraction!
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error | ||
|  |   ); | ||
|  |   BOOST_MATH_CHECK_THROW( | ||
|  |   quantile( // Success_fraction > 1!
 | ||
|  |   negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)), | ||
|  |   static_cast<RealType>(0)), std::domain_error | ||
|  |   ); | ||
|  |   // End of check throwing 'duff' out-of-domain values.
 | ||
|  | 
 | ||
|  | #define T RealType
 | ||
|  | #include "negative_binomial_quantile.ipp"
 | ||
|  | 
 | ||
|  |   for(unsigned i = 0; i < negative_binomial_quantile_data.size(); ++i) | ||
|  |   { | ||
|  |      using namespace boost::math::policies; | ||
|  |      typedef policy<discrete_quantile<boost::math::policies::real> > P1; | ||
|  |      typedef policy<discrete_quantile<integer_round_down> > P2; | ||
|  |      typedef policy<discrete_quantile<integer_round_up> > P3; | ||
|  |      typedef policy<discrete_quantile<integer_round_outwards> > P4; | ||
|  |      typedef policy<discrete_quantile<integer_round_inwards> > P5; | ||
|  |      typedef policy<discrete_quantile<integer_round_nearest> > P6; | ||
|  |      RealType tol = boost::math::tools::epsilon<RealType>() * 700; | ||
|  |      if(!boost::is_floating_point<RealType>::value) | ||
|  |         tol *= 10;  // no lanczos approximation implies less accuracy
 | ||
|  |      //
 | ||
|  |      // Check full real value first:
 | ||
|  |      //
 | ||
|  |      negative_binomial_distribution<RealType, P1> p1(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]); | ||
|  |      RealType x = quantile(p1, negative_binomial_quantile_data[i][2]); | ||
|  |      BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][3], tol); | ||
|  |      x = quantile(complement(p1, negative_binomial_quantile_data[i][2])); | ||
|  |      BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][4], tol); | ||
|  |      //
 | ||
|  |      // Now with round down to integer:
 | ||
|  |      //
 | ||
|  |      negative_binomial_distribution<RealType, P2> p2(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]); | ||
|  |      x = quantile(p2, negative_binomial_quantile_data[i][2]); | ||
|  |      BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3])); | ||
|  |      x = quantile(complement(p2, negative_binomial_quantile_data[i][2])); | ||
|  |      BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4])); | ||
|  |      //
 | ||
|  |      // Now with round up to integer:
 | ||
|  |      //
 | ||
|  |      negative_binomial_distribution<RealType, P3> p3(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]); | ||
|  |      x = quantile(p3, negative_binomial_quantile_data[i][2]); | ||
|  |      BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][3])); | ||
|  |      x = quantile(complement(p3, negative_binomial_quantile_data[i][2])); | ||
|  |      BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][4])); | ||
|  |      //
 | ||
|  |      // Now with round to integer "outside":
 | ||
|  |      //
 | ||
|  |      negative_binomial_distribution<RealType, P4> p4(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]); | ||
|  |      x = quantile(p4, negative_binomial_quantile_data[i][2]); | ||
|  |      BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][3]) : ceil(negative_binomial_quantile_data[i][3])); | ||
|  |      x = quantile(complement(p4, negative_binomial_quantile_data[i][2])); | ||
|  |      BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][4]) : floor(negative_binomial_quantile_data[i][4])); | ||
|  |      //
 | ||
|  |      // Now with round to integer "inside":
 | ||
|  |      //
 | ||
|  |      negative_binomial_distribution<RealType, P5> p5(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]); | ||
|  |      x = quantile(p5, negative_binomial_quantile_data[i][2]); | ||
|  |      BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][3]) : floor(negative_binomial_quantile_data[i][3])); | ||
|  |      x = quantile(complement(p5, negative_binomial_quantile_data[i][2])); | ||
|  |      BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][4]) : ceil(negative_binomial_quantile_data[i][4])); | ||
|  |      //
 | ||
|  |      // Now with round to nearest integer:
 | ||
|  |      //
 | ||
|  |      negative_binomial_distribution<RealType, P6> p6(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]); | ||
|  |      x = quantile(p6, negative_binomial_quantile_data[i][2]); | ||
|  |      BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3] + 0.5f)); | ||
|  |      x = quantile(complement(p6, negative_binomial_quantile_data[i][2])); | ||
|  |      BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4] + 0.5f)); | ||
|  |   } | ||
|  | 
 | ||
|  |   return; | ||
|  | } // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.
 | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE( test_main ) | ||
|  | { | ||
|  |   // Check that can generate negative_binomial distribution using the two convenience methods:
 | ||
|  |   using namespace boost::math; | ||
|  |    negative_binomial mynb1(2., 0.5); // Using typedef - default type is double.
 | ||
|  |    negative_binomial_distribution<> myf2(2., 0.5); // Using default RealType double.
 | ||
|  | 
 | ||
|  |   // Basic sanity-check spot values.
 | ||
|  | 
 | ||
|  |   // Test some simple double only examples.
 | ||
|  |   negative_binomial_distribution<double> my8dist(8., 0.25); | ||
|  |   // 8 successes (r), 0.25 success fraction = 35% or 1 in 4 successes.
 | ||
|  |   // Note: double values (matching the distribution definition) avoid the need for any casting.
 | ||
|  | 
 | ||
|  |   // Check accessor functions return exact values for double at least.
 | ||
|  |   BOOST_CHECK_EQUAL(my8dist.successes(), static_cast<double>(8)); | ||
|  |   BOOST_CHECK_EQUAL(my8dist.success_fraction(), static_cast<double>(1./4.)); | ||
|  | 
 | ||
|  |   // (Parameter value, arbitrarily zero, only communicates the floating point type).
 | ||
|  | #ifdef TEST_FLOAT
 | ||
|  |   test_spots(0.0F); // Test float.
 | ||
|  | #endif
 | ||
|  | #ifdef TEST_DOUBLE
 | ||
|  |   test_spots(0.0); // Test double.
 | ||
|  | #endif
 | ||
|  | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | ||
|  | #ifdef TEST_LDOUBLE
 | ||
|  |   test_spots(0.0L); // Test long double.
 | ||
|  | #endif
 | ||
|  | #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
 | ||
|  | #ifdef TEST_REAL_CONCEPT
 | ||
|  |     test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
 | ||
|  | #endif
 | ||
|  |   #endif
 | ||
|  | #else
 | ||
|  |    std::cout << "<note>The long double tests have been disabled on this platform " | ||
|  |       "either because the long double overloads of the usual math functions are " | ||
|  |       "not available at all, or because they are too inaccurate for these tests " | ||
|  |       "to pass.</note>" << std::endl; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |    | ||
|  | } // BOOST_AUTO_TEST_CASE( test_main )
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_negative_binomial.exe" | ||
|  | Running 1 test case... | ||
|  | Tolerance = 0.0119209%. | ||
|  | Tolerance 5 eps = 5.96046e-007%. | ||
|  | Tolerance = 2.22045e-011%. | ||
|  | Tolerance 5 eps = 1.11022e-015%. | ||
|  | Tolerance = 2.22045e-011%. | ||
|  | Tolerance 5 eps = 1.11022e-015%. | ||
|  | Tolerance = 2.22045e-011%. | ||
|  | Tolerance 5 eps = 1.11022e-015%. | ||
|  | *** No errors detected | ||
|  | 
 | ||
|  | */ |