mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
	
	
		
			87 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
		
		
			
		
	
	
			87 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| 
								 | 
							
								<html>
							 | 
						||
| 
								 | 
							
								<head>
							 | 
						||
| 
								 | 
							
								<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
							 | 
						||
| 
								 | 
							
								<title>Overview</title>
							 | 
						||
| 
								 | 
							
								<link rel="stylesheet" href="../math.css" type="text/css">
							 | 
						||
| 
								 | 
							
								<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
							 | 
						||
| 
								 | 
							
								<link rel="home" href="../index.html" title="Math Toolkit 2.5.1">
							 | 
						||
| 
								 | 
							
								<link rel="up" href="../octonions.html" title="Chapter 10. Octonions">
							 | 
						||
| 
								 | 
							
								<link rel="prev" href="../octonions.html" title="Chapter 10. Octonions">
							 | 
						||
| 
								 | 
							
								<link rel="next" href="oct_header.html" title="Header File">
							 | 
						||
| 
								 | 
							
								</head>
							 | 
						||
| 
								 | 
							
								<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
							 | 
						||
| 
								 | 
							
								<table cellpadding="2" width="100%"><tr>
							 | 
						||
| 
								 | 
							
								<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="../../../../../index.html">Home</a></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="../../../../../more/index.htm">More</a></td>
							 | 
						||
| 
								 | 
							
								</tr></table>
							 | 
						||
| 
								 | 
							
								<hr>
							 | 
						||
| 
								 | 
							
								<div class="spirit-nav">
							 | 
						||
| 
								 | 
							
								<a accesskey="p" href="../octonions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../octonions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="oct_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
							 | 
						||
| 
								 | 
							
								</div>
							 | 
						||
| 
								 | 
							
								<div class="section">
							 | 
						||
| 
								 | 
							
								<div class="titlepage"><div><div><h2 class="title" style="clear: both">
							 | 
						||
| 
								 | 
							
								<a name="math_toolkit.oct_overview"></a><a class="link" href="oct_overview.html" title="Overview">Overview</a>
							 | 
						||
| 
								 | 
							
								</h2></div></div></div>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      Octonions, like <a class="link" href="../quaternions.html" title="Chapter 9. Quaternions">quaternions</a>, are a relative
							 | 
						||
| 
								 | 
							
								      of complex numbers.
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      Octonions see some use in theoretical physics.
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      In practical terms, an octonion is simply an octuple of real numbers (α,β,γ,δ,ε,ζ,η,θ), which
							 | 
						||
| 
								 | 
							
								      we can write in the form <span class="emphasis"><em><code class="literal">o = α + βi + γj + δk + εe' + ζi' + ηj' + θk'</code></em></span>, where
							 | 
						||
| 
								 | 
							
								      <span class="emphasis"><em><code class="literal">i</code></em></span>, <span class="emphasis"><em><code class="literal">j</code></em></span>
							 | 
						||
| 
								 | 
							
								      and <span class="emphasis"><em><code class="literal">k</code></em></span> are the same objects as for quaternions,
							 | 
						||
| 
								 | 
							
								      and <span class="emphasis"><em><code class="literal">e'</code></em></span>, <span class="emphasis"><em><code class="literal">i'</code></em></span>,
							 | 
						||
| 
								 | 
							
								      <span class="emphasis"><em><code class="literal">j'</code></em></span> and <span class="emphasis"><em><code class="literal">k'</code></em></span>
							 | 
						||
| 
								 | 
							
								      are distinct objects which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>
							 | 
						||
| 
								 | 
							
								      (or <span class="emphasis"><em><code class="literal">j</code></em></span> or <span class="emphasis"><em><code class="literal">k</code></em></span>).
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      Addition and a multiplication is defined on the set of octonions, which generalize
							 | 
						||
| 
								 | 
							
								      their quaternionic counterparts. The main novelty this time is that <span class="bold"><strong>the multiplication is not only not commutative, is now not even
							 | 
						||
| 
								 | 
							
								      associative</strong></span> (i.e. there are octonions <span class="emphasis"><em><code class="literal">x</code></em></span>,
							 | 
						||
| 
								 | 
							
								      <span class="emphasis"><em><code class="literal">y</code></em></span> and <span class="emphasis"><em><code class="literal">z</code></em></span>
							 | 
						||
| 
								 | 
							
								      such that <span class="emphasis"><em><code class="literal">x(yz) ≠ (xy)z</code></em></span>). A way of remembering
							 | 
						||
| 
								 | 
							
								      things is by using the following multiplication table:
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      <span class="inlinemediaobject"><img src="../../octonion/graphics/octonion_blurb17.jpeg"></span>
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      Octonions (and their kin) are described in far more details in this other
							 | 
						||
| 
								 | 
							
								      <a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata
							 | 
						||
| 
								 | 
							
								      and addenda</a>).
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      Some traditional constructs, such as the exponential, carry over without too
							 | 
						||
| 
								 | 
							
								      much change into the realms of octonions, but other, such as taking a square
							 | 
						||
| 
								 | 
							
								      root, do not (the fact that the exponential has a closed form is a result of
							 | 
						||
| 
								 | 
							
								      the author, but the fact that the exponential exists at all for octonions is
							 | 
						||
| 
								 | 
							
								      known since quite a long time ago).
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								</div>
							 | 
						||
| 
								 | 
							
								<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
							 | 
						||
| 
								 | 
							
								<td align="left"></td>
							 | 
						||
| 
								 | 
							
								<td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal,
							 | 
						||
| 
								 | 
							
								      Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
							 | 
						||
| 
								 | 
							
								      Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam Sewani,
							 | 
						||
| 
								 | 
							
								      Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
							 | 
						||
| 
								 | 
							
								        Distributed under the Boost Software License, Version 1.0. (See accompanying
							 | 
						||
| 
								 | 
							
								        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
							 | 
						||
| 
								 | 
							
								      </p>
							 | 
						||
| 
								 | 
							
								</div></td>
							 | 
						||
| 
								 | 
							
								</tr></table>
							 | 
						||
| 
								 | 
							
								<hr>
							 | 
						||
| 
								 | 
							
								<div class="spirit-nav">
							 | 
						||
| 
								 | 
							
								<a accesskey="p" href="../octonions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../octonions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="oct_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
							 | 
						||
| 
								 | 
							
								</div>
							 | 
						||
| 
								 | 
							
								</body>
							 | 
						||
| 
								 | 
							
								</html>
							 |