mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-17 17:42:02 -05:00
124 lines
4.6 KiB
C++
124 lines
4.6 KiB
C++
|
// Copyright John Maddock 2015.
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
# pragma warning(disable : 4756) // overflow in constant arithmetic
|
||
|
// Constants are too big for float case, but this doesn't matter for test.
|
||
|
#endif
|
||
|
|
||
|
#include <boost/math/concepts/real_concept.hpp>
|
||
|
#define BOOST_TEST_MAIN
|
||
|
#include <boost/test/unit_test.hpp>
|
||
|
#include <boost/test/floating_point_comparison.hpp>
|
||
|
#include <boost/math/special_functions/math_fwd.hpp>
|
||
|
#include <boost/array.hpp>
|
||
|
#include "functor.hpp"
|
||
|
|
||
|
#include "handle_test_result.hpp"
|
||
|
#include "table_type.hpp"
|
||
|
|
||
|
#ifndef SC_
|
||
|
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
|
||
|
#endif
|
||
|
|
||
|
template <class Real, typename T>
|
||
|
void do_test_ellint_d2(const T& data, const char* type_name, const char* test)
|
||
|
{
|
||
|
#if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_D2_FUNCTION_TO_TEST))
|
||
|
typedef Real value_type;
|
||
|
|
||
|
std::cout << "Testing: " << test << std::endl;
|
||
|
|
||
|
#ifdef ELLINT_D2_FUNCTION_TO_TEST
|
||
|
value_type(*fp2)(value_type, value_type) = ELLINT_D2_FUNCTION_TO_TEST;
|
||
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
||
|
value_type (*fp2)(value_type, value_type) = boost::math::ellint_d<value_type, value_type>;
|
||
|
#else
|
||
|
value_type (*fp2)(value_type, value_type) = boost::math::ellint_d;
|
||
|
#endif
|
||
|
boost::math::tools::test_result<value_type> result;
|
||
|
|
||
|
result = boost::math::tools::test_hetero<Real>(
|
||
|
data,
|
||
|
bind_func<Real>(fp2, 1, 0),
|
||
|
extract_result<Real>(2));
|
||
|
handle_test_result(result, data[result.worst()], result.worst(),
|
||
|
type_name, "ellint_d", test);
|
||
|
|
||
|
std::cout << std::endl;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
template <class Real, typename T>
|
||
|
void do_test_ellint_d1(T& data, const char* type_name, const char* test)
|
||
|
{
|
||
|
#if !(defined(ERROR_REPORTING_MODE) && !defined(ELLINT_D1_FUNCTION_TO_TEST))
|
||
|
typedef Real value_type;
|
||
|
boost::math::tools::test_result<value_type> result;
|
||
|
|
||
|
std::cout << "Testing: " << test << std::endl;
|
||
|
|
||
|
#ifdef ELLINT_D1_FUNCTION_TO_TEST
|
||
|
value_type(*fp1)(value_type) = ELLINT_D1_FUNCTION_TO_TEST;
|
||
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
||
|
value_type (*fp1)(value_type) = boost::math::ellint_d<value_type>;
|
||
|
#else
|
||
|
value_type (*fp1)(value_type) = boost::math::ellint_d;
|
||
|
#endif
|
||
|
result = boost::math::tools::test_hetero<Real>(
|
||
|
data,
|
||
|
bind_func<Real>(fp1, 0),
|
||
|
extract_result<Real>(1));
|
||
|
handle_test_result(result, data[result.worst()], result.worst(),
|
||
|
type_name, "ellint_d (complete)", test);
|
||
|
|
||
|
std::cout << std::endl;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void test_spots(T, const char* type_name)
|
||
|
{
|
||
|
BOOST_MATH_STD_USING
|
||
|
// Function values calculated on http://functions.wolfram.com/
|
||
|
// Note that Mathematica's EllipticE accepts k^2 as the second parameter.
|
||
|
static const boost::array<boost::array<T, 3>, 10> data1 = {{
|
||
|
{ { SC_(0.5), SC_(0.5), SC_(0.040348098248931543984282958654503585) } },
|
||
|
{{ SC_(0), SC_(0.5), SC_(0) }},
|
||
|
{ { SC_(1), SC_(0.5), SC_(0.28991866293419922467977188008516755) } },
|
||
|
{ { SC_(1), T(1), SC_(0.38472018607562056416055864584160775) } },
|
||
|
{ { SC_(-1), T(1), SC_(-0.38472018607562056416055864584160775) } },
|
||
|
{ { SC_(-1), T(0.5), SC_(-0.28991866293419922467977188008516755) } },
|
||
|
{ { SC_(-10), T(0.5), SC_(-5.2996914501577855803123384771117708) } },
|
||
|
{ { SC_(10), SC_(-0.5), SC_(5.2996914501577855803123384771117708) } },
|
||
|
}};
|
||
|
|
||
|
do_test_ellint_d2<T>(data1, type_name, "Elliptic Integral E: Mathworld Data");
|
||
|
|
||
|
#include "ellint_d2_data.ipp"
|
||
|
|
||
|
do_test_ellint_d2<T>(ellint_d2_data, type_name, "Elliptic Integral D: Random Data");
|
||
|
|
||
|
// Function values calculated on http://functions.wolfram.com/
|
||
|
// Note that Mathematica's EllipticE accepts k^2 as the second parameter.
|
||
|
static const boost::array<boost::array<T, 2>, 3> data2 = {{
|
||
|
{ { SC_(0.5), SC_(0.87315258189267554964563356323264341) } },
|
||
|
{ { SC_(1.0) / 1024, SC_(0.78539844427788694671464428063604776) } },
|
||
|
{ { boost::math::tools::root_epsilon<T>(), SC_(0.78539816339744830961566084581987572) } }
|
||
|
}};
|
||
|
|
||
|
do_test_ellint_d1<T>(data2, type_name, "Elliptic Integral E: Mathworld Data");
|
||
|
|
||
|
#include "ellint_d_data.ipp"
|
||
|
|
||
|
do_test_ellint_d1<T>(ellint_d_data, type_name, "Elliptic Integral D: Random Data");
|
||
|
|
||
|
BOOST_MATH_CHECK_THROW(boost::math::ellint_d(T(1)), std::domain_error);
|
||
|
BOOST_MATH_CHECK_THROW(boost::math::ellint_d(T(-1)), std::domain_error);
|
||
|
BOOST_MATH_CHECK_THROW(boost::math::ellint_d(T(1.5)), std::domain_error);
|
||
|
BOOST_MATH_CHECK_THROW(boost::math::ellint_d(T(-1.5)), std::domain_error);
|
||
|
}
|
||
|
|