mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-18 01:52:05 -05:00
919 lines
51 KiB
Plaintext
919 lines
51 KiB
Plaintext
|
[def __R ['[*R]]]
|
||
|
[def __C ['[*C]]]
|
||
|
[def __H ['[*H]]]
|
||
|
[def __O ['[*O]]]
|
||
|
[def __R3 ['[*'''R<superscript>3</superscript>''']]]
|
||
|
[def __R4 ['[*'''R<superscript>4</superscript>''']]]
|
||
|
[def __quadrulple ('''α,β,γ,δ''')]
|
||
|
[def __quat_formula ['[^q = '''α + βi + γj + δk''']]]
|
||
|
[def __quat_complex_formula ['[^q = ('''α + βi) + (γ + δi)j''' ]]]
|
||
|
[def __not_equal ['[^xy '''≠''' yx]]]
|
||
|
|
||
|
[mathpart quaternions Quaternions]
|
||
|
|
||
|
[section:quat_overview Overview]
|
||
|
|
||
|
Quaternions are a relative of complex numbers.
|
||
|
|
||
|
Quaternions are in fact part of a small hierarchy of structures built
|
||
|
upon the real numbers, which comprise only the set of real numbers
|
||
|
(traditionally named __R), the set of complex numbers (traditionally named __C),
|
||
|
the set of quaternions (traditionally named __H) and the set of octonions
|
||
|
(traditionally named __O), which possess interesting mathematical properties
|
||
|
(chief among which is the fact that they are ['division algebras],
|
||
|
['i.e.] where the following property is true: if ['[^y]] is an element of that
|
||
|
algebra and is [*not equal to zero], then ['[^yx = yx']], where ['[^x]] and ['[^x']]
|
||
|
denote elements of that algebra, implies that ['[^x = x']]).
|
||
|
Each member of the hierarchy is a super-set of the former.
|
||
|
|
||
|
One of the most important aspects of quaternions is that they provide an
|
||
|
efficient way to parameterize rotations in __R3 (the usual three-dimensional space)
|
||
|
and __R4.
|
||
|
|
||
|
In practical terms, a quaternion is simply a quadruple of real numbers __quadrulple,
|
||
|
which we can write in the form __quat_formula, where ['[^i]] is the same object as for complex numbers,
|
||
|
and ['[^j]] and ['[^k]] are distinct objects which play essentially the same kind of role as ['[^i]].
|
||
|
|
||
|
An addition and a multiplication is defined on the set of quaternions,
|
||
|
which generalize their real and complex counterparts. The main novelty
|
||
|
here is that [*the multiplication is not commutative] (i.e. there are
|
||
|
quaternions ['[^x]] and ['[^y]] such that __not_equal). A good mnemotechnical way of remembering
|
||
|
things is by using the formula ['[^i*i = j*j = k*k = -1]].
|
||
|
|
||
|
Quaternions (and their kin) are described in far more details in this
|
||
|
other [@../quaternion/TQE.pdf document]
|
||
|
(with [@../quaternion/TQE_EA.pdf errata and addenda]).
|
||
|
|
||
|
Some traditional constructs, such as the exponential, carry over without
|
||
|
too much change into the realms of quaternions, but other, such as taking
|
||
|
a square root, do not.
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:quat_header Header File]
|
||
|
|
||
|
The interface and implementation are both supplied by the header file
|
||
|
[@../../../../boost/math/quaternion.hpp quaternion.hpp].
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:quat_synopsis Synopsis]
|
||
|
|
||
|
namespace boost{ namespace math{
|
||
|
|
||
|
template<typename T> class ``[link math_toolkit.quat quaternion]``;
|
||
|
template<> class ``[link math_toolkit.spec quaternion<float>]``;
|
||
|
template<> class ``[link math_quaternion_double quaternion<double>]``;
|
||
|
template<> class ``[link math_quaternion_long_double quaternion<long double>]``;
|
||
|
|
||
|
// operators
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.unary_plus operator +]`` (quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.unary_minus operator -]`` (quaternion<T> const & q);
|
||
|
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
template<typename T, typename charT, class traits>
|
||
|
::std::basic_istream<charT,traits>& ``[link math_toolkit.quat_non_mem.stream_extractor operator >>]`` (::std::basic_istream<charT,traits> & is, quaternion<T> & q);
|
||
|
|
||
|
template<typename T, typename charT, class traits>
|
||
|
::std::basic_ostream<charT,traits>& operator ``[link math_toolkit.quat_non_mem.stream_inserter operator <<]`` (::std::basic_ostream<charT,traits> & os, quaternion<T> const & q);
|
||
|
|
||
|
// values
|
||
|
template<typename T> T ``[link math_toolkit.value_op.real_and_unreal real]``(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.value_op.real_and_unreal unreal]``(quaternion<T> const & q);
|
||
|
|
||
|
template<typename T> T ``[link math_toolkit.value_op.sup sup]``(quaternion<T> const & q);
|
||
|
template<typename T> T ``[link math_toolkit.value_op.l1 l1]``(quaternion<T> const & q);
|
||
|
template<typename T> T ``[link math_toolkit.value_op.abs abs]``(quaternion<T> const & q);
|
||
|
template<typename T> T ``[link math_toolkit.value_op.norm norm]``(quaternion<T>const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.value_op.conj conj]``(quaternion<T> const & q);
|
||
|
|
||
|
template<typename T> quaternion<T> ``[link math_quaternions.creation_spherical]``(T const & rho, T const & theta, T const & phi1, T const & phi2);
|
||
|
template<typename T> quaternion<T> ``[link math_quaternions.creation_semipolar semipolar]``(T const & rho, T const & alpha, T const & theta1, T const & theta2);
|
||
|
template<typename T> quaternion<T> ``[link math_quaternions.creation_multipolar multipolar]``(T const & rho1, T const & theta1, T const & rho2, T const & theta2);
|
||
|
template<typename T> quaternion<T> ``[link math_quaternions.creation_cylindrospherical cylindrospherical]``(T const & t, T const & radius, T const & longitude, T const & latitude);
|
||
|
template<typename T> quaternion<T> ``[link math_quaternions.creation_cylindrical cylindrical]``(T const & r, T const & angle, T const & h1, T const & h2);
|
||
|
|
||
|
// transcendentals
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.trans.exp exp]``(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.trans.cos cos]``(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.trans.sin sin]``(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.trans.tan tan]``(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.trans.cosh cosh]``(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.trans.sinh sinh]``(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.trans.tanh tanh]``(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> ``[link math_toolkit.trans.pow pow]``(quaternion<T> const & q, int n);
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace boost
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:quat Template Class quaternion]
|
||
|
|
||
|
namespace boost{ namespace math{
|
||
|
|
||
|
template<typename T>
|
||
|
class quaternion
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
typedef T ``[link math_toolkit.mem_typedef value_type]``;
|
||
|
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(T const & requested_a = T(), T const & requested_b = T(), T const & requested_c = T(), T const & requested_d = T());
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(::std::complex<T> const & z0, ::std::complex<T> const & z1 = ::std::complex<T>());
|
||
|
template<typename X>
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<X> const & a_recopier);
|
||
|
|
||
|
T ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts real]``() const;
|
||
|
quaternion<T> ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts unreal]``() const;
|
||
|
T ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_1]``() const;
|
||
|
T ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_2]``() const;
|
||
|
T ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_3]``() const;
|
||
|
T ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_4]``() const;
|
||
|
::std::complex<T> ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_1]``() const;
|
||
|
::std::complex<T> ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_2]``() const;
|
||
|
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<T> const & a_affecter);
|
||
|
template<typename X>
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<X> const & a_affecter);
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(T const & a_affecter);
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(::std::complex<T> const & a_affecter);
|
||
|
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(T const & rhs);
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(::std::complex<T> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(T const & rhs);
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(::std::complex<T> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(T const & rhs);
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(::std::complex<T> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(T const & rhs);
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(::std::complex<T> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<T>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(quaternion<X> const & rhs);
|
||
|
};
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace boost
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:spec Quaternion Specializations]
|
||
|
|
||
|
namespace boost{ namespace math{
|
||
|
|
||
|
template<>
|
||
|
class quaternion<float>
|
||
|
{
|
||
|
public:
|
||
|
typedef float ``[link math_toolkit.mem_typedef value_type]``;
|
||
|
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(float const & requested_a = 0.0f, float const & requested_b = 0.0f, float const & requested_c = 0.0f, float const & requested_d = 0.0f);
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(::std::complex<float> const & z0, ::std::complex<float> const & z1 = ::std::complex<float>());
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<double> const & a_recopier);
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<long double> const & a_recopier);
|
||
|
|
||
|
float ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts real]``() const;
|
||
|
quaternion<float> ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts unreal]``() const;
|
||
|
float ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_1]``() const;
|
||
|
float ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_2]``() const;
|
||
|
float ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_3]``() const;
|
||
|
float ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_4]``() const;
|
||
|
::std::complex<float> ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_1]``() const;
|
||
|
::std::complex<float> ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_2]``() const;
|
||
|
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<float> const & a_affecter);
|
||
|
template<typename X>
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<X> const & a_affecter);
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(float const & a_affecter);
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(::std::complex<float> const & a_affecter);
|
||
|
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(float const & rhs);
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(::std::complex<float> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(float const & rhs);
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(::std::complex<float> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(float const & rhs);
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(::std::complex<float> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(float const & rhs);
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(::std::complex<float> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<float>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(quaternion<X> const & rhs);
|
||
|
};
|
||
|
|
||
|
[#math_quaternion_double]
|
||
|
|
||
|
template<>
|
||
|
class quaternion<double>
|
||
|
{
|
||
|
public:
|
||
|
typedef double ``[link math_toolkit.mem_typedef value_type]``;
|
||
|
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(double const & requested_a = 0.0, double const & requested_b = 0.0, double const & requested_c = 0.0, double const & requested_d = 0.0);
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(::std::complex<double> const & z0, ::std::complex<double> const & z1 = ::std::complex<double>());
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<float> const & a_recopier);
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<long double> const & a_recopier);
|
||
|
|
||
|
double ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts real]``() const;
|
||
|
quaternion<double> ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts unreal]``() const;
|
||
|
double ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_1]``() const;
|
||
|
double ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_2]``() const;
|
||
|
double ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_3]``() const;
|
||
|
double ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_4]``() const;
|
||
|
::std::complex<double> ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_1]``() const;
|
||
|
::std::complex<double> ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_2]``() const;
|
||
|
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<double> const & a_affecter);
|
||
|
template<typename X>
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<X> const & a_affecter);
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(double const & a_affecter);
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(::std::complex<double> const & a_affecter);
|
||
|
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(double const & rhs);
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(::std::complex<double> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(double const & rhs);
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(::std::complex<double> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(double const & rhs);
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(::std::complex<double> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(double const & rhs);
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(::std::complex<double> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<double>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(quaternion<X> const & rhs);
|
||
|
};
|
||
|
|
||
|
[#math_quaternion_long_double]
|
||
|
|
||
|
template<>
|
||
|
class quaternion<long double>
|
||
|
{
|
||
|
public:
|
||
|
typedef long double ``[link math_toolkit.mem_typedef value_type]``;
|
||
|
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(long double const & requested_a = 0.0L, long double const & requested_b = 0.0L, long double const & requested_c = 0.0L, long double const & requested_d = 0.0L);
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(::std::complex<long double> const & z0, ::std::complex<long double> const & z1 = ::std::complex<long double>());
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<float> const & a_recopier);
|
||
|
explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<double> const & a_recopier);
|
||
|
|
||
|
long double ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts real]``() const;
|
||
|
quaternion<long double> ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts unreal]``() const;
|
||
|
long double ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_1]``() const;
|
||
|
long double ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_2]``() const;
|
||
|
long double ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_3]``() const;
|
||
|
long double ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_4]``() const;
|
||
|
::std::complex<long double> ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_1]``() const;
|
||
|
::std::complex<long double> ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_2]``() const;
|
||
|
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<long double> const & a_affecter);
|
||
|
template<typename X>
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<X> const & a_affecter);
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(long double const & a_affecter);
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(::std::complex<long double> const & a_affecter);
|
||
|
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(long double const & rhs);
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(::std::complex<long double> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(long double const & rhs);
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(::std::complex<long double> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(long double const & rhs);
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(::std::complex<long double> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(quaternion<X> const & rhs);
|
||
|
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(long double const & rhs);
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(::std::complex<long double> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<long double>& ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(quaternion<X> const & rhs);
|
||
|
};
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace boost
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:mem_typedef Quaternion Member Typedefs]
|
||
|
|
||
|
[*value_type]
|
||
|
|
||
|
Template version:
|
||
|
|
||
|
typedef T value_type;
|
||
|
|
||
|
Float specialization version:
|
||
|
|
||
|
typedef float value_type;
|
||
|
|
||
|
Double specialization version:
|
||
|
|
||
|
typedef double value_type;
|
||
|
|
||
|
Long double specialization version:
|
||
|
|
||
|
typedef long double value_type;
|
||
|
|
||
|
These provide easy acces to the type the template is built upon.
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:quat_mem_fun Quaternion Member Functions]
|
||
|
[h3 Constructors]
|
||
|
|
||
|
Template version:
|
||
|
|
||
|
explicit quaternion(T const & requested_a = T(), T const & requested_b = T(), T const & requested_c = T(), T const & requested_d = T());
|
||
|
explicit quaternion(::std::complex<T> const & z0, ::std::complex<T> const & z1 = ::std::complex<T>());
|
||
|
template<typename X>
|
||
|
explicit quaternion(quaternion<X> const & a_recopier);
|
||
|
|
||
|
Float specialization version:
|
||
|
|
||
|
explicit quaternion(float const & requested_a = 0.0f, float const & requested_b = 0.0f, float const & requested_c = 0.0f, float const & requested_d = 0.0f);
|
||
|
explicit quaternion(::std::complex<float> const & z0,::std::complex<float> const & z1 = ::std::complex<float>());
|
||
|
explicit quaternion(quaternion<double> const & a_recopier);
|
||
|
explicit quaternion(quaternion<long double> const & a_recopier);
|
||
|
|
||
|
Double specialization version:
|
||
|
|
||
|
explicit quaternion(double const & requested_a = 0.0, double const & requested_b = 0.0, double const & requested_c = 0.0, double const & requested_d = 0.0);
|
||
|
explicit quaternion(::std::complex<double> const & z0, ::std::complex<double> const & z1 = ::std::complex<double>());
|
||
|
explicit quaternion(quaternion<float> const & a_recopier);
|
||
|
explicit quaternion(quaternion<long double> const & a_recopier);
|
||
|
|
||
|
Long double specialization version:
|
||
|
|
||
|
explicit quaternion(long double const & requested_a = 0.0L, long double const & requested_b = 0.0L, long double const & requested_c = 0.0L, long double const & requested_d = 0.0L);
|
||
|
explicit quaternion( ::std::complex<long double> const & z0, ::std::complex<long double> const & z1 = ::std::complex<long double>());
|
||
|
explicit quaternion(quaternion<float> const & a_recopier);
|
||
|
explicit quaternion(quaternion<double> const & a_recopier);
|
||
|
|
||
|
A default constructor is provided for each form, which initializes
|
||
|
each component to the default values for their type
|
||
|
(i.e. zero for floating numbers). This constructor can also accept
|
||
|
one to four base type arguments. A constructor is also provided to
|
||
|
build quaternions from one or two complex numbers sharing the same
|
||
|
base type. The unspecialized template also sports a templarized copy
|
||
|
constructor, while the specialized forms have copy constructors
|
||
|
from the other two specializations, which are explicit when a risk of
|
||
|
precision loss exists. For the unspecialized form, the base type's
|
||
|
constructors must not throw.
|
||
|
|
||
|
Destructors and untemplated copy constructors (from the same type) are
|
||
|
provided by the compiler. Converting copy constructors make use of a
|
||
|
templated helper function in a "detail" subnamespace.
|
||
|
|
||
|
[h3 Other member functions]
|
||
|
[h4 Real and Unreal Parts]
|
||
|
|
||
|
T real() const;
|
||
|
quaternion<T> unreal() const;
|
||
|
|
||
|
Like complex number, quaternions do have a meaningful notion of "real part",
|
||
|
but unlike them there is no meaningful notion of "imaginary part".
|
||
|
Instead there is an "unreal part" which itself is a quaternion,
|
||
|
and usually nothing simpler (as opposed to the complex number case).
|
||
|
These are returned by the first two functions.
|
||
|
|
||
|
[h4 Individual Real Components]
|
||
|
|
||
|
T R_component_1() const;
|
||
|
T R_component_2() const;
|
||
|
T R_component_3() const;
|
||
|
T R_component_4() const;
|
||
|
|
||
|
A quaternion having four real components, these are returned by these four
|
||
|
functions. Hence real and R_component_1 return the same value.
|
||
|
|
||
|
[h4 Individual Complex Components]
|
||
|
|
||
|
::std::complex<T> C_component_1() const;
|
||
|
::std::complex<T> C_component_2() const;
|
||
|
|
||
|
A quaternion likewise has two complex components, and as we have seen above,
|
||
|
for any quaternion __quat_formula we also have __quat_complex_formula. These functions return them.
|
||
|
The real part of `q.C_component_1()` is the same as `q.real()`.
|
||
|
|
||
|
[h3 Quaternion Member Operators]
|
||
|
[h4 Assignment Operators]
|
||
|
|
||
|
quaternion<T>& operator = (quaternion<T> const & a_affecter);
|
||
|
template<typename X>
|
||
|
quaternion<T>& operator = (quaternion<X> const& a_affecter);
|
||
|
quaternion<T>& operator = (T const& a_affecter);
|
||
|
quaternion<T>& operator = (::std::complex<T> const& a_affecter);
|
||
|
|
||
|
These perform the expected assignment, with type modification if necessary
|
||
|
(for instance, assigning from a base type will set the real part to that
|
||
|
value, and all other components to zero). For the unspecialized form,
|
||
|
the base type's assignment operators must not throw.
|
||
|
|
||
|
[h4 Addition Operators]
|
||
|
|
||
|
quaternion<T>& operator += (T const & rhs)
|
||
|
quaternion<T>& operator += (::std::complex<T> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<T>& operator += (quaternion<X> const & rhs);
|
||
|
|
||
|
These perform the mathematical operation `(*this)+rhs` and store the result in
|
||
|
`*this`. The unspecialized form has exception guards, which the specialized
|
||
|
forms do not, so as to insure exception safety. For the unspecialized form,
|
||
|
the base type's assignment operators must not throw.
|
||
|
|
||
|
[h4 Subtraction Operators]
|
||
|
|
||
|
quaternion<T>& operator -= (T const & rhs)
|
||
|
quaternion<T>& operator -= (::std::complex<T> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<T>& operator -= (quaternion<X> const & rhs);
|
||
|
|
||
|
These perform the mathematical operation `(*this)-rhs` and store the result
|
||
|
in `*this`. The unspecialized form has exception guards, which the
|
||
|
specialized forms do not, so as to insure exception safety.
|
||
|
For the unspecialized form, the base type's assignment operators
|
||
|
must not throw.
|
||
|
|
||
|
[h4 Multiplication Operators]
|
||
|
|
||
|
quaternion<T>& operator *= (T const & rhs)
|
||
|
quaternion<T>& operator *= (::std::complex<T> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<T>& operator *= (quaternion<X> const & rhs);
|
||
|
|
||
|
These perform the mathematical operation `(*this)*rhs` [*in this order]
|
||
|
(order is important as multiplication is not commutative for quaternions)
|
||
|
and store the result in `*this`. The unspecialized form has exception guards,
|
||
|
which the specialized forms do not, so as to insure exception safety.
|
||
|
For the unspecialized form, the base type's assignment operators must not throw.
|
||
|
|
||
|
[h4 Division Operators]
|
||
|
|
||
|
quaternion<T>& operator /= (T const & rhs)
|
||
|
quaternion<T>& operator /= (::std::complex<T> const & rhs);
|
||
|
template<typename X>
|
||
|
quaternion<T>& operator /= (quaternion<X> const & rhs);
|
||
|
|
||
|
These perform the mathematical operation `(*this)*inverse_of(rhs)` [*in this
|
||
|
order] (order is important as multiplication is not commutative for quaternions)
|
||
|
and store the result in `*this`. The unspecialized form has exception guards,
|
||
|
which the specialized forms do not, so as to insure exception safety.
|
||
|
For the unspecialized form, the base type's assignment operators must not throw.
|
||
|
|
||
|
[endsect]
|
||
|
[section:quat_non_mem Quaternion Non-Member Operators]
|
||
|
|
||
|
[h4 Unary Plus]
|
||
|
|
||
|
template<typename T>
|
||
|
quaternion<T> operator + (quaternion<T> const & q);
|
||
|
|
||
|
This unary operator simply returns q.
|
||
|
|
||
|
[h4 Unary Minus]
|
||
|
|
||
|
template<typename T>
|
||
|
quaternion<T> operator - (quaternion<T> const & q);
|
||
|
|
||
|
This unary operator returns the opposite of q.
|
||
|
|
||
|
[h4 Binary Addition Operators]
|
||
|
|
||
|
template<typename T> quaternion<T> operator + (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> quaternion<T> operator + (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
These operators return `quaternion<T>(lhs) += rhs`.
|
||
|
|
||
|
[h4 Binary Subtraction Operators]
|
||
|
|
||
|
template<typename T> quaternion<T> operator - (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> quaternion<T> operator - (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
These operators return `quaternion<T>(lhs) -= rhs`.
|
||
|
|
||
|
[h4 Binary Multiplication Operators]
|
||
|
|
||
|
template<typename T> quaternion<T> operator * (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> quaternion<T> operator * (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
These operators return `quaternion<T>(lhs) *= rhs`.
|
||
|
|
||
|
[h4 Binary Division Operators]
|
||
|
|
||
|
template<typename T> quaternion<T> operator / (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> quaternion<T> operator / (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
These operators return `quaternion<T>(lhs) /= rhs`. It is of course still an
|
||
|
error to divide by zero...
|
||
|
|
||
|
[h4 Equality Operators]
|
||
|
|
||
|
template<typename T> bool operator == (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> bool operator == (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> bool operator == (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> bool operator == (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> bool operator == (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
These return true if and only if the four components of `quaternion<T>(lhs)`
|
||
|
are equal to their counterparts in `quaternion<T>(rhs)`. As with any
|
||
|
floating-type entity, this is essentially meaningless.
|
||
|
|
||
|
[h4 Inequality Operators]
|
||
|
|
||
|
template<typename T> bool operator != (T const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> bool operator != (quaternion<T> const & lhs, T const & rhs);
|
||
|
template<typename T> bool operator != (::std::complex<T> const & lhs, quaternion<T> const & rhs);
|
||
|
template<typename T> bool operator != (quaternion<T> const & lhs, ::std::complex<T> const & rhs);
|
||
|
template<typename T> bool operator != (quaternion<T> const & lhs, quaternion<T> const & rhs);
|
||
|
|
||
|
These return true if and only if `quaternion<T>(lhs) == quaternion<T>(rhs)` is
|
||
|
false. As with any floating-type entity, this is essentially meaningless.
|
||
|
|
||
|
[h4 Stream Extractor]
|
||
|
|
||
|
template<typename T, typename charT, class traits>
|
||
|
::std::basic_istream<charT,traits>& operator >> (::std::basic_istream<charT,traits> & is, quaternion<T> & q);
|
||
|
|
||
|
Extracts a quaternion q of one of the following forms
|
||
|
(with a, b, c and d of type `T`):
|
||
|
|
||
|
[^a (a), (a,b), (a,b,c), (a,b,c,d) (a,(c)), (a,(c,d)), ((a)), ((a),c), ((a),(c)), ((a),(c,d)), ((a,b)), ((a,b),c), ((a,b),(c)), ((a,b),(c,d))]
|
||
|
|
||
|
The input values must be convertible to `T`. If bad input is encountered,
|
||
|
calls `is.setstate(ios::failbit)` (which may throw ios::failure (27.4.5.3)).
|
||
|
|
||
|
[*Returns:] `is`.
|
||
|
|
||
|
The rationale for the list of accepted formats is that either we have a
|
||
|
list of up to four reals, or else we have a couple of complex numbers,
|
||
|
and in that case if it formated as a proper complex number, then it should
|
||
|
be accepted. Thus potential ambiguities are lifted (for instance (a,b) is
|
||
|
(a,b,0,0) and not (a,0,b,0), i.e. it is parsed as a list of two real numbers
|
||
|
and not two complex numbers which happen to have imaginary parts equal to zero).
|
||
|
|
||
|
[h4 Stream Inserter]
|
||
|
|
||
|
template<typename T, typename charT, class traits>
|
||
|
::std::basic_ostream<charT,traits>& operator << (::std::basic_ostream<charT,traits> & os, quaternion<T> const & q);
|
||
|
|
||
|
Inserts the quaternion q onto the stream `os` as if it were implemented as follows:
|
||
|
|
||
|
template<typename T, typename charT, class traits>
|
||
|
::std::basic_ostream<charT,traits>& operator << (
|
||
|
::std::basic_ostream<charT,traits> & os,
|
||
|
quaternion<T> const & q)
|
||
|
{
|
||
|
::std::basic_ostringstream<charT,traits> s;
|
||
|
|
||
|
s.flags(os.flags());
|
||
|
s.imbue(os.getloc());
|
||
|
s.precision(os.precision());
|
||
|
|
||
|
s << '(' << q.R_component_1() << ','
|
||
|
<< q.R_component_2() << ','
|
||
|
<< q.R_component_3() << ','
|
||
|
<< q.R_component_4() << ')';
|
||
|
|
||
|
return os << s.str();
|
||
|
}
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:value_op Quaternion Value Operations]
|
||
|
|
||
|
[h4 real and unreal]
|
||
|
|
||
|
template<typename T> T real(quaternion<T> const & q);
|
||
|
template<typename T> quaternion<T> unreal(quaternion<T> const & q);
|
||
|
|
||
|
These return `q.real()` and `q.unreal()` respectively.
|
||
|
|
||
|
[h4 conj]
|
||
|
|
||
|
template<typename T> quaternion<T> conj(quaternion<T> const & q);
|
||
|
|
||
|
This returns the conjugate of the quaternion.
|
||
|
|
||
|
[h4 sup]
|
||
|
|
||
|
template<typename T> T sup(quaternion<T> const & q);
|
||
|
|
||
|
This return the sup norm (the greatest among
|
||
|
`abs(q.R_component_1())...abs(q.R_component_4()))` of the quaternion.
|
||
|
|
||
|
[h4 l1]
|
||
|
|
||
|
template<typename T> T l1(quaternion<T> const & q);
|
||
|
|
||
|
This return the l1 norm `(abs(q.R_component_1())+...+abs(q.R_component_4()))`
|
||
|
of the quaternion.
|
||
|
|
||
|
[h4 abs]
|
||
|
|
||
|
template<typename T> T abs(quaternion<T> const & q);
|
||
|
|
||
|
This return the magnitude (Euclidian norm) of the quaternion.
|
||
|
|
||
|
[h4 norm]
|
||
|
|
||
|
template<typename T> T norm(quaternion<T>const & q);
|
||
|
|
||
|
This return the (Cayley) norm of the quaternion.
|
||
|
The term "norm" might be confusing, as most people associate it with the
|
||
|
Euclidian norm (and quadratic functionals). For this version of
|
||
|
(the mathematical objects known as) quaternions, the Euclidian norm
|
||
|
(also known as magnitude) is the square root of the Cayley norm.
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:create Quaternion Creation Functions]
|
||
|
|
||
|
template<typename T> quaternion<T> spherical(T const & rho, T const & theta, T const & phi1, T const & phi2);
|
||
|
template<typename T> quaternion<T> semipolar(T const & rho, T const & alpha, T const & theta1, T const & theta2);
|
||
|
template<typename T> quaternion<T> multipolar(T const & rho1, T const & theta1, T const & rho2, T const & theta2);
|
||
|
template<typename T> quaternion<T> cylindrospherical(T const & t, T const & radius, T const & longitude, T const & latitude);
|
||
|
template<typename T> quaternion<T> cylindrical(T const & r, T const & angle, T const & h1, T const & h2);
|
||
|
|
||
|
These build quaternions in a way similar to the way polar builds complex
|
||
|
numbers, as there is no strict equivalent to polar coordinates for quaternions.
|
||
|
|
||
|
[#math_quaternions.creation_spherical] `spherical` is a simple transposition of `polar`, it takes as inputs
|
||
|
a (positive) magnitude and a point on the hypersphere, given by three angles.
|
||
|
The first of these, `theta` has a natural range of `-pi` to `+pi`, and the other
|
||
|
two have natural ranges of `-pi/2` to `+pi/2` (as is the case with the usual
|
||
|
spherical coordinates in __R3). Due to the many symmetries and periodicities,
|
||
|
nothing untoward happens if the magnitude is negative or the angles are
|
||
|
outside their natural ranges. The expected degeneracies (a magnitude of
|
||
|
zero ignores the angles settings...) do happen however.
|
||
|
|
||
|
[#math_quaternions.creation_cylindrical] `cylindrical` is likewise a simple transposition of the usual
|
||
|
cylindrical coordinates in __R3, which in turn is another derivative of
|
||
|
planar polar coordinates. The first two inputs are the polar coordinates of
|
||
|
the first __C component of the quaternion. The third and fourth inputs
|
||
|
are placed into the third and fourth __R components of the quaternion,
|
||
|
respectively.
|
||
|
|
||
|
[#math_quaternions.creation_multipolar] `multipolar` is yet another simple generalization of polar coordinates.
|
||
|
This time, both __C components of the quaternion are given in polar coordinates.
|
||
|
|
||
|
[#math_quaternions.creation_cylindrospherical] `cylindrospherical` is specific to quaternions. It is often interesting to
|
||
|
consider __H as the cartesian product of __R by __R3 (the quaternionic
|
||
|
multiplication as then a special form, as given here). This function
|
||
|
therefore builds a quaternion from this representation, with the __R3
|
||
|
component given in usual __R3 spherical coordinates.
|
||
|
|
||
|
[#math_quaternions.creation_semipolar] `semipolar` is another generator which is specific to quaternions.
|
||
|
It takes as a first input the magnitude of the quaternion, as a
|
||
|
second input an angle in the range `0` to `+pi/2` such that magnitudes
|
||
|
of the first two __C components of the quaternion are the product of the
|
||
|
first input and the sine and cosine of this angle, respectively, and finally
|
||
|
as third and fourth inputs angles in the range `-pi/2` to `+pi/2` which
|
||
|
represent the arguments of the first and second __C components of
|
||
|
the quaternion, respectively. As usual, nothing untoward happens if
|
||
|
what should be magnitudes are negative numbers or angles are out of their
|
||
|
natural ranges, as symmetries and periodicities kick in.
|
||
|
|
||
|
In this version of our implementation of quaternions, there is no
|
||
|
analogue of the complex value operation `arg` as the situation is
|
||
|
somewhat more complicated. Unit quaternions are linked both to
|
||
|
rotations in __R3 and in __R4, and the correspondences are not too complicated,
|
||
|
but there is currently a lack of standard (de facto or de jure) matrix
|
||
|
library with which the conversions could work. This should be remedied in
|
||
|
a further revision. In the mean time, an example of how this could be
|
||
|
done is presented here for
|
||
|
[@../../example/HSO3.hpp __R3], and here for
|
||
|
[@../../example/HSO4.hpp __R4]
|
||
|
([@../../example/HSO3SO4.cpp example test file]).
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:trans Quaternion Transcendentals]
|
||
|
|
||
|
There is no `log` or `sqrt` provided for quaternions in this implementation,
|
||
|
and `pow` is likewise restricted to integral powers of the exponent.
|
||
|
There are several reasons to this: on the one hand, the equivalent of
|
||
|
analytic continuation for quaternions ("branch cuts") remains to be
|
||
|
investigated thoroughly (by me, at any rate...), and we wish to avoid the
|
||
|
nonsense introduced in the standard by exponentiations of complexes by
|
||
|
complexes (which is well defined, but not in the standard...).
|
||
|
Talking of nonsense, saying that `pow(0,0)` is "implementation defined" is just
|
||
|
plain brain-dead...
|
||
|
|
||
|
We do, however provide several transcendentals, chief among which is the
|
||
|
exponential. This author claims the complete proof of the "closed formula"
|
||
|
as his own, as well as its independant invention (there are claims to prior
|
||
|
invention of the formula, such as one by Professor Shoemake, and it is
|
||
|
possible that the formula had been known a couple of centuries back, but in
|
||
|
absence of bibliographical reference, the matter is pending, awaiting further
|
||
|
investigation; on the other hand, the definition and existence of the
|
||
|
exponential on the quaternions, is of course a fact known for a very long time).
|
||
|
Basically, any converging power series with real coefficients which allows for a
|
||
|
closed formula in __C can be transposed to __H. More transcendentals of this
|
||
|
type could be added in a further revision upon request. It should be
|
||
|
noted that it is these functions which force the dependency upon the
|
||
|
[@../../../../boost/math/special_functions/sinc.hpp boost/math/special_functions/sinc.hpp] and the
|
||
|
[@../../../../boost/math/special_functions/sinhc.hpp boost/math/special_functions/sinhc.hpp] headers.
|
||
|
|
||
|
[h4 exp]
|
||
|
|
||
|
template<typename T> quaternion<T> exp(quaternion<T> const & q);
|
||
|
|
||
|
Computes the exponential of the quaternion.
|
||
|
|
||
|
[h4 cos]
|
||
|
|
||
|
template<typename T> quaternion<T> cos(quaternion<T> const & q);
|
||
|
|
||
|
Computes the cosine of the quaternion
|
||
|
|
||
|
[h4 sin]
|
||
|
|
||
|
template<typename T> quaternion<T> sin(quaternion<T> const & q);
|
||
|
|
||
|
Computes the sine of the quaternion.
|
||
|
|
||
|
[h4 tan]
|
||
|
|
||
|
template<typename T> quaternion<T> tan(quaternion<T> const & q);
|
||
|
|
||
|
Computes the tangent of the quaternion.
|
||
|
|
||
|
[h4 cosh]
|
||
|
|
||
|
template<typename T> quaternion<T> cosh(quaternion<T> const & q);
|
||
|
|
||
|
Computes the hyperbolic cosine of the quaternion.
|
||
|
|
||
|
[h4 sinh]
|
||
|
|
||
|
template<typename T> quaternion<T> sinh(quaternion<T> const & q);
|
||
|
|
||
|
Computes the hyperbolic sine of the quaternion.
|
||
|
|
||
|
[h4 tanh]
|
||
|
|
||
|
template<typename T> quaternion<T> tanh(quaternion<T> const & q);
|
||
|
|
||
|
Computes the hyperbolic tangent of the quaternion.
|
||
|
|
||
|
[h4 pow]
|
||
|
|
||
|
template<typename T> quaternion<T> pow(quaternion<T> const & q, int n);
|
||
|
|
||
|
Computes the n-th power of the quaternion q.
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:quat_tests Test Program]
|
||
|
|
||
|
The [@../../test/quaternion_test.cpp quaternion_test.cpp]
|
||
|
test program tests quaternions specializations for float, double and long double
|
||
|
([@../quaternion/output.txt sample output], with message output
|
||
|
enabled).
|
||
|
|
||
|
If you define the symbol TEST_VERBOSE, you will get
|
||
|
additional output ([@../quaternion/output_more.txt verbose output]);
|
||
|
this will only be helpfull if you enable message output at the same time,
|
||
|
of course (by uncommenting the relevant line in the test or by adding
|
||
|
[^--log_level=messages] to your command line,...). In that case, and if you
|
||
|
are running interactively, you may in addition define the symbol
|
||
|
BOOST_INTERACTIVE_TEST_INPUT_ITERATOR to interactively test the input
|
||
|
operator with input of your choice from the standard input
|
||
|
(instead of hard-coding it in the test).
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:exp The Quaternionic Exponential]
|
||
|
|
||
|
Please refer to the following PDF's:
|
||
|
|
||
|
*[@../quaternion/TQE.pdf The Quaternionic Exponential (and beyond)]
|
||
|
*[@../quaternion/TQE_EA.pdf The Quaternionic Exponential (and beyond) ERRATA & ADDENDA]
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:acknowledgement Acknowledgements]
|
||
|
|
||
|
The mathematical text has been typeset with
|
||
|
[@http://www.nisus-soft.com/ Nisus Writer]. Jens Maurer has helped with
|
||
|
portability and standard adherence, and was the Review Manager
|
||
|
for this library. More acknowledgements in the History section.
|
||
|
Thank you to all who contributed to the discution about this library.
|
||
|
|
||
|
[endsect]
|
||
|
|
||
|
[section:quat_history History]
|
||
|
|
||
|
* 1.5.9 - 13/5/2013: Incorporated into Boost.Math.
|
||
|
* 1.5.8 - 17/12/2005: Converted documentation to Quickbook Format.
|
||
|
* 1.5.7 - 24/02/2003: transitionned to the unit test framework; <boost/config.hpp> now included by the library header (rather than the test files).
|
||
|
* 1.5.6 - 15/10/2002: Gcc2.95.x and stlport on linux compatibility by Alkis Evlogimenos (alkis@routescience.com).
|
||
|
* 1.5.5 - 27/09/2002: Microsoft VCPP 7 compatibility, by Michael Stevens (michael@acfr.usyd.edu.au); requires the /Za compiler option.
|
||
|
* 1.5.4 - 19/09/2002: fixed problem with multiple inclusion (in different translation units); attempt at an improved compatibility with Microsoft compilers, by Michael Stevens (michael@acfr.usyd.edu.au) and Fredrik Blomqvist; other compatibility fixes.
|
||
|
* 1.5.3 - 01/02/2002: bugfix and Gcc 2.95.3 compatibility by Douglas Gregor (gregod@cs.rpi.edu).
|
||
|
* 1.5.2 - 07/07/2001: introduced namespace math.
|
||
|
* 1.5.1 - 07/06/2001: (end of Boost review) now includes <boost/math/special_functions/sinc.hpp> and <boost/math/special_functions/sinhc.hpp> instead of <boost/special_functions.hpp>; corrected bug in sin (Daryle Walker); removed check for self-assignment (Gary Powel); made converting functions explicit (Gary Powel); added overflow guards for division operators and abs (Peter Schmitteckert); added sup and l1; used Vesa Karvonen's CPP metaprograming technique to simplify code.
|
||
|
* 1.5.0 - 26/03/2001: boostification, inlining of all operators except input, output and pow, fixed exception safety of some members (template version) and output operator, added spherical, semipolar, multipolar, cylindrospherical and cylindrical.
|
||
|
* 1.4.0 - 09/01/2001: added tan and tanh.
|
||
|
* 1.3.1 - 08/01/2001: cosmetic fixes.
|
||
|
* 1.3.0 - 12/07/2000: pow now uses Maarten Hilferink's (mhilferink@tip.nl) algorithm.
|
||
|
* 1.2.0 - 25/05/2000: fixed the division operators and output; changed many signatures.
|
||
|
* 1.1.0 - 23/05/2000: changed sinc into sinc_pi; added sin, cos, sinh, cosh.
|
||
|
* 1.0.0 - 10/08/1999: first public version.
|
||
|
|
||
|
[endsect]
|
||
|
[section:quat_todo To Do]
|
||
|
|
||
|
* Improve testing.
|
||
|
* Rewrite input operatore using Spirit (creates a dependency).
|
||
|
* Put in place an Expression Template mechanism (perhaps borrowing from uBlas).
|
||
|
* Use uBlas for the link with rotations (and move from the
|
||
|
[@../../example/HSO3SO4.cpp example]
|
||
|
implementation to an efficient one).
|
||
|
|
||
|
[endsect]
|
||
|
[endmathpart]
|
||
|
|
||
|
[/
|
||
|
Copyright 1999, 2005, 2013 Hubert Holin.
|
||
|
Distributed under the Boost Software License, Version 1.0.
|
||
|
(See accompanying file LICENSE_1_0.txt or copy at
|
||
|
http://www.boost.org/LICENSE_1_0.txt).
|
||
|
]
|
||
|
|
||
|
|
||
|
|
||
|
|