WSJT-X/boost/libs/math/doc/sf/sinc.qbk

111 lines
2.9 KiB
Plaintext
Raw Normal View History

[/ math.qbk
Copyright 2006 Hubert Holin and John Maddock.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:sinc Sinus Cardinal and Hyperbolic Sinus Cardinal Functions]
[section:sinc_overview Sinus Cardinal and Hyperbolic Sinus Cardinal Functions Overview]
The [@http://mathworld.wolfram.com/SincFunction.html Sinus Cardinal family of functions]
(indexed by the family of indices [^a > 0])
is defined by
[equation special_functions_blurb20]
it sees heavy use in signal processing tasks.
By analogy, the
[@http://mathworld.wolfram.com/SinhcFunction.htm Hyperbolic Sinus Cardinal]
family of functions
(also indexed by the family of indices [^a > 0]) is defined by
[equation special_functions_blurb22]
These two families of functions are composed of entire functions.
These functions (__sinc_pi and __sinhc_pi) are needed by
[@http://www.boost.org/libs/math/quaternion/quaternion.html our implementation]
of [@http://mathworld.wolfram.com/Quaternion.html quaternions]
and [@http://mathworld.wolfram.com/Octonion.html octonions].
[: ['[*Sinus Cardinal of index pi (purple) and Hyperbolic Sinus Cardinal of index pi (red) on R]]]
[: [$../graphs/sinc_pi_and_sinhc_pi_on_r.png]]
[endsect]
[section sinc_pi]
``
#include <boost/math/special_functions/sinc.hpp>
``
template<class T>
``__sf_result`` sinc_pi(const T x);
template<class T, class ``__Policy``>
``__sf_result`` sinc_pi(const T x, const ``__Policy``&);
template<class T, template<typename> class U>
U<T> sinc_pi(const U<T> x);
template<class T, template<typename> class U, class ``__Policy``>
U<T> sinc_pi(const U<T> x, const ``__Policy``&);
Computes
[link math_toolkit.sinc.sinc_overview
the Sinus Cardinal] of x:
sinc_pi(x) = sin(x) / x
The second form is for complex numbers,
quaternions, octonions etc. Taylor series are used at the origin
to ensure accuracy.
[graph sinc_pi]
[optional_policy]
[endsect]
[section sinhc_pi]
``
#include <boost/math/special_functions/sinhc.hpp>
``
template<class T>
``__sf_result`` sinhc_pi(const T x);
template<class T, class ``__Policy``>
``__sf_result`` sinhc_pi(const T x, const ``__Policy``&);
template<typename T, template<typename> class U>
U<T> sinhc_pi(const U<T> x);
template<class T, template<typename> class U, class ``__Policy``>
U<T> sinhc_pi(const U<T> x, const ``__Policy``&);
Computes http://mathworld.wolfram.com/SinhcFunction.html
[link math_toolkit.sinc.sinc_overview
the Hyperbolic Sinus Cardinal] of x:
sinhc_pi(x) = sinh(x) / x
The second form is for
complex numbers, quaternions, octonions etc. Taylor series are used at the origin
to ensure accuracy.
The return type of the first form is computed using the __arg_promotion_rules
when T is an integer type.
[optional_policy]
[graph sinhc_pi]
[endsect]
[endsect]