mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-18 01:52:05 -05:00
131 lines
5.0 KiB
C++
131 lines
5.0 KiB
C++
|
// (C) Copyright John Maddock 2005.
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#include <pch_light.hpp>
|
||
|
|
||
|
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
||
|
#define BOOST_TEST_MAIN
|
||
|
#include <boost/test/unit_test.hpp>
|
||
|
#include <boost/test/floating_point_comparison.hpp>
|
||
|
#include <boost/math/special_functions/math_fwd.hpp>
|
||
|
|
||
|
#include <cmath>
|
||
|
|
||
|
#ifdef BOOST_NO_STDC_NAMESPACE
|
||
|
namespace std{ using ::sqrt; }
|
||
|
#endif
|
||
|
|
||
|
//
|
||
|
// test_boundaries:
|
||
|
// This is an accuracy test, sets the two arguments to hypot to just
|
||
|
// above or just below various boundary conditions, and checks the accuracy
|
||
|
// of the result. The values computed at double precision will use a
|
||
|
// different computation method to those computed at float precision:
|
||
|
// as long as these compute the same values then everything's OK.
|
||
|
//
|
||
|
// Tolerance is 2*epsilon, expressed here as a persentage:
|
||
|
//
|
||
|
static const float tolerance = 200 * (std::numeric_limits<float>::epsilon)();
|
||
|
const float boundaries[] = {
|
||
|
0,
|
||
|
1,
|
||
|
2,
|
||
|
(std::numeric_limits<float>::max)()/2,
|
||
|
(std::numeric_limits<float>::min)(),
|
||
|
std::numeric_limits<float>::epsilon(),
|
||
|
std::sqrt((std::numeric_limits<float>::max)()) / 2,
|
||
|
std::sqrt((std::numeric_limits<float>::min)()),
|
||
|
std::sqrt((std::numeric_limits<float>::max)()) / 4,
|
||
|
std::sqrt((std::numeric_limits<float>::min)()) * 2,
|
||
|
};
|
||
|
|
||
|
void do_test_boundaries(float x, float y)
|
||
|
{
|
||
|
float expected = static_cast<float>((boost::math::hypot)(
|
||
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
||
|
static_cast<long double>(x),
|
||
|
static_cast<long double>(y)));
|
||
|
#else
|
||
|
static_cast<double>(x),
|
||
|
static_cast<double>(y)));
|
||
|
#endif
|
||
|
float found = (boost::math::hypot)(x, y);
|
||
|
BOOST_CHECK_CLOSE(expected, found, tolerance);
|
||
|
}
|
||
|
|
||
|
void test_boundaries(float x, float y)
|
||
|
{
|
||
|
do_test_boundaries(x, y);
|
||
|
do_test_boundaries(-x, y);
|
||
|
do_test_boundaries(-x, -y);
|
||
|
do_test_boundaries(x, -y);
|
||
|
}
|
||
|
|
||
|
void test_boundaries(float x)
|
||
|
{
|
||
|
for(unsigned i = 0; i < sizeof(boundaries)/sizeof(float); ++i)
|
||
|
{
|
||
|
test_boundaries(x, boundaries[i]);
|
||
|
test_boundaries(x, boundaries[i] + std::numeric_limits<float>::epsilon()*boundaries[i]);
|
||
|
test_boundaries(x, boundaries[i] - std::numeric_limits<float>::epsilon()*boundaries[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test_boundaries()
|
||
|
{
|
||
|
for(unsigned i = 0; i < sizeof(boundaries)/sizeof(float); ++i)
|
||
|
{
|
||
|
test_boundaries(boundaries[i]);
|
||
|
test_boundaries(boundaries[i] + std::numeric_limits<float>::epsilon()*boundaries[i]);
|
||
|
test_boundaries(boundaries[i] - std::numeric_limits<float>::epsilon()*boundaries[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test_spots()
|
||
|
{
|
||
|
static const float zero = 0;
|
||
|
for(unsigned i = 0; i < sizeof(boundaries)/sizeof(float); ++i)
|
||
|
{
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(boundaries[i], zero), std::fabs(boundaries[i]));
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-boundaries[i], zero), std::fabs(-boundaries[i]));
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(boundaries[i], -zero), std::fabs(boundaries[i]));
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-boundaries[i], -zero), std::fabs(-boundaries[i]));
|
||
|
for(unsigned j = 0; j < sizeof(boundaries)/sizeof(float); ++j)
|
||
|
{
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(boundaries[i], boundaries[j]), boost::math::hypot(boundaries[j], boundaries[i]));
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(boundaries[i], boundaries[j]), boost::math::hypot(boundaries[i], -boundaries[j]));
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-boundaries[i], -boundaries[j]), boost::math::hypot(-boundaries[j], -boundaries[i]));
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-boundaries[i], -boundaries[j]), boost::math::hypot(-boundaries[i], boundaries[j]));
|
||
|
}
|
||
|
}
|
||
|
if((std::numeric_limits<float>::has_infinity) && (std::numeric_limits<float>::has_quiet_NaN))
|
||
|
{
|
||
|
static const float nan = std::numeric_limits<float>::quiet_NaN();
|
||
|
static const float inf = std::numeric_limits<float>::infinity();
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(inf, nan), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-inf, nan), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(nan, inf), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(nan, -inf), inf);
|
||
|
for(unsigned j = 0; j < sizeof(boundaries)/sizeof(float); ++j)
|
||
|
{
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(boundaries[j], inf), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-boundaries[j], inf), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(inf, boundaries[j]), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(inf, -boundaries[j]), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(boundaries[j], -inf), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-boundaries[j], -inf), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-inf, boundaries[j]), inf);
|
||
|
BOOST_CHECK_EQUAL(boost::math::hypot(-inf, -boundaries[j]), inf);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BOOST_AUTO_TEST_CASE( test_main )
|
||
|
{
|
||
|
BOOST_MATH_CONTROL_FP;
|
||
|
test_boundaries();
|
||
|
test_spots();
|
||
|
}
|