WSJT-X/portaudio-v19/pa_linux_alsa/pa_linux_alsa.c

3591 lines
128 KiB
C
Raw Normal View History

/*
* $Id$
* PortAudio Portable Real-Time Audio Library
* Latest Version at: http://www.portaudio.com
* ALSA implementation by Joshua Haberman and Arve Knudsen
*
* Copyright (c) 2002 Joshua Haberman <joshua@haberman.com>
* Copyright (c) 2005 Arve Knudsen <aknuds-1@broadpark.no>
*
* Based on the Open Source API proposed by Ross Bencina
* Copyright (c) 1999-2002 Ross Bencina, Phil Burk
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* Any person wishing to distribute modifications to the Software is
* requested to send the modifications to the original developer so that
* they can be incorporated into the canonical version.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#define ALSA_PCM_NEW_HW_PARAMS_API
#define ALSA_PCM_NEW_SW_PARAMS_API
#include <alsa/asoundlib.h>
#undef ALSA_PCM_NEW_HW_PARAMS_API
#undef ALSA_PCM_NEW_SW_PARAMS_API
#include <sys/poll.h>
#include <string.h> /* strlen() */
#include <limits.h>
#include <math.h>
#include <pthread.h>
#include <signal.h>
#include <time.h>
#include <sys/mman.h>
#include <signal.h> /* For sig_atomic_t */
#include "portaudio.h"
#include "pa_util.h"
#include "../pa_unix/pa_unix_util.h"
#include "pa_allocation.h"
#include "pa_hostapi.h"
#include "pa_stream.h"
#include "pa_cpuload.h"
#include "pa_process.h"
#include "pa_linux_alsa.h"
/* Check return value of ALSA function, and map it to PaError */
#define ENSURE_(expr, code) \
do { \
if( UNLIKELY( (aErr_ = (expr)) < 0 ) ) \
{ \
/* PaUtil_SetLastHostErrorInfo should only be used in the main thread */ \
if( (code) == paUnanticipatedHostError && pthread_self() != callbackThread_ ) \
{ \
PaUtil_SetLastHostErrorInfo( paALSA, aErr_, snd_strerror( aErr_ ) ); \
} \
PaUtil_DebugPrint( "Expression '" #expr "' failed in '" __FILE__ "', line: " STRINGIZE( __LINE__ ) "\n" ); \
if( (code) == paUnanticipatedHostError ) \
PA_DEBUG(( "Host error description: %s\n", snd_strerror( aErr_ ) )); \
result = (code); \
goto error; \
} \
} while( 0 );
#define ENSURE_SYSTEM_(expr, success) \
do { \
if( UNLIKELY( (aErr_ = (expr)) != success ) ) \
{ \
/* PaUtil_SetLastHostErrorInfo should only be used in the main thread */ \
if( pthread_self() != callbackThread_ ) \
{ \
PaUtil_SetLastHostErrorInfo( paALSA, aErr_, strerror( aErr_ ) ); \
} \
PaUtil_DebugPrint( "Expression '" #expr "' failed in '" __FILE__ "', line: " STRINGIZE( __LINE__ ) "\n" ); \
result = paUnanticipatedHostError; \
goto error; \
} \
} while( 0 );
#define ASSERT_CALL_(expr, success) \
aErr_ = (expr); \
assert( success == aErr_ );
static int aErr_; /* Used with ENSURE_ */
static pthread_t callbackThread_;
typedef enum
{
StreamDirection_In,
StreamDirection_Out
} StreamDirection;
/* Threading utility struct */
typedef struct PaAlsaThreading
{
pthread_t watchdogThread;
pthread_t callbackThread;
int watchdogRunning;
int rtSched;
int rtPrio;
int useWatchdog;
unsigned long throttledSleepTime;
volatile PaTime callbackTime;
volatile PaTime callbackCpuTime;
PaUtilCpuLoadMeasurer *cpuLoadMeasurer;
} PaAlsaThreading;
typedef struct
{
PaSampleFormat hostSampleFormat;
unsigned long framesPerBuffer;
int numUserChannels, numHostChannels;
int userInterleaved, hostInterleaved;
snd_pcm_t *pcm;
snd_pcm_uframes_t bufferSize;
snd_pcm_format_t nativeFormat;
unsigned int nfds;
int ready; /* Marked ready from poll */
void **userBuffers;
snd_pcm_uframes_t offset;
StreamDirection streamDir;
snd_pcm_channel_area_t *channelAreas; /* Needed for channel adaption */
} PaAlsaStreamComponent;
/* Implementation specific stream structure */
typedef struct PaAlsaStream
{
PaUtilStreamRepresentation streamRepresentation;
PaUtilCpuLoadMeasurer cpuLoadMeasurer;
PaUtilBufferProcessor bufferProcessor;
PaAlsaThreading threading;
unsigned long framesPerUserBuffer, maxFramesPerHostBuffer;
int primeBuffers;
int callbackMode; /* bool: are we running in callback mode? */
int pcmsSynced; /* Have we successfully synced pcms */
/* the callback thread uses these to poll the sound device(s), waiting
* for data to be ready/available */
struct pollfd* pfds;
int pollTimeout;
/* Used in communication between threads */
volatile sig_atomic_t callback_finished; /* bool: are we in the "callback finished" state? */
volatile sig_atomic_t callbackAbort; /* Drop frames? */
volatile sig_atomic_t callbackStop; /* Signal a stop */
volatile sig_atomic_t isActive; /* Is stream in active state? (Between StartStream and StopStream || !paContinue) */
pthread_mutex_t stateMtx; /* Used to synchronize access to stream state */
pthread_mutex_t startMtx; /* Used to synchronize stream start in callback mode */
pthread_cond_t startCond; /* Wait untill audio is started in callback thread */
int neverDropInput;
PaTime underrun;
PaTime overrun;
PaAlsaStreamComponent capture, playback;
}
PaAlsaStream;
/* PaAlsaHostApiRepresentation - host api datastructure specific to this implementation */
typedef struct PaAlsaHostApiRepresentation
{
PaUtilHostApiRepresentation commonHostApiRep;
PaUtilStreamInterface callbackStreamInterface;
PaUtilStreamInterface blockingStreamInterface;
PaUtilAllocationGroup *allocations;
PaHostApiIndex hostApiIndex;
}
PaAlsaHostApiRepresentation;
typedef struct PaAlsaDeviceInfo
{
PaDeviceInfo commonDeviceInfo;
char *alsaName;
int isPlug;
int minInputChannels;
int minOutputChannels;
}
PaAlsaDeviceInfo;
/* Threading utilities */
static void InitializeThreading( PaAlsaThreading *th, PaUtilCpuLoadMeasurer *clm )
{
th->watchdogRunning = 0;
th->rtSched = 0;
th->callbackTime = 0;
th->callbackCpuTime = 0;
th->useWatchdog = 1;
th->throttledSleepTime = 0;
th->cpuLoadMeasurer = clm;
th->rtPrio = (sched_get_priority_max( SCHED_FIFO ) - sched_get_priority_min( SCHED_FIFO )) / 2
+ sched_get_priority_min( SCHED_FIFO );
}
static PaError KillCallbackThread( PaAlsaThreading *th, int wait, PaError *exitResult, PaError *watchdogExitResult )
{
PaError result = paNoError;
void *pret;
if( exitResult )
*exitResult = paNoError;
if( watchdogExitResult )
*watchdogExitResult = paNoError;
if( th->watchdogRunning )
{
pthread_cancel( th->watchdogThread );
ENSURE_SYSTEM_( pthread_join( th->watchdogThread, &pret ), 0 );
if( pret && pret != PTHREAD_CANCELED )
{
if( watchdogExitResult )
*watchdogExitResult = *(PaError *) pret;
free( pret );
}
}
/* Only kill the thread if it isn't in the process of stopping (flushing adaptation buffers) */
/* TODO: Make join time out */
if( !wait )
{
PA_DEBUG(( "%s: Canceling thread %d\n", __FUNCTION__, th->callbackThread ));
pthread_cancel( th->callbackThread ); /* XXX: Safe to call this if the thread has exited on its own? */
}
PA_DEBUG(( "%s: Joining thread %d\n", __FUNCTION__, th->callbackThread ));
ENSURE_SYSTEM_( pthread_join( th->callbackThread, &pret ), 0 );
if( pret && pret != PTHREAD_CANCELED )
{
if( exitResult )
*exitResult = *(PaError *) pret;
free( pret );
}
error:
return result;
}
/** Lock a pthread_mutex_t.
*
* @concern ThreadCancellation We're disabling thread cancellation while the thread is holding a lock, so mutexes are
* properly unlocked at termination time.
*/
static PaError LockMutex( pthread_mutex_t *mtx )
{
PaError result = paNoError;
int oldState;
ENSURE_SYSTEM_( pthread_setcancelstate( PTHREAD_CANCEL_DISABLE, &oldState ), 0 );
ENSURE_SYSTEM_( pthread_mutex_lock( mtx ), 0 );
error:
return result;
}
/** Unlock a pthread_mutex_t.
*
* @concern ThreadCancellation Thread cancellation is enabled again after the mutex is properly unlocked.
*/
static PaError UnlockMutex( pthread_mutex_t *mtx )
{
PaError result = paNoError;
int oldState;
ENSURE_SYSTEM_( pthread_mutex_unlock( mtx ), 0 );
ENSURE_SYSTEM_( pthread_setcancelstate( PTHREAD_CANCEL_ENABLE, &oldState ), 0 );
error:
return result;
}
static void OnWatchdogExit( void *userData )
{
PaAlsaThreading *th = (PaAlsaThreading *) userData;
struct sched_param spm = { 0 };
assert( th );
ASSERT_CALL_( pthread_setschedparam( th->callbackThread, SCHED_OTHER, &spm ), 0 ); /* Lower before exiting */
PA_DEBUG(( "Watchdog exiting\n" ));
}
static PaError BoostPriority( PaAlsaThreading *th )
{
PaError result = paNoError;
struct sched_param spm = { 0 };
spm.sched_priority = th->rtPrio;
assert( th );
if( pthread_setschedparam( th->callbackThread, SCHED_FIFO, &spm ) != 0 )
{
PA_UNLESS( errno == EPERM, paInternalError ); /* Lack permission to raise priority */
PA_DEBUG(( "Failed bumping priority\n" ));
result = 0;
}
else
result = 1; /* Success */
error:
return result;
}
static void *WatchdogFunc( void *userData )
{
PaError result = paNoError, *pres = NULL;
int err;
PaAlsaThreading *th = (PaAlsaThreading *) userData;
unsigned intervalMsec = 500;
const PaTime maxSeconds = 3.; /* Max seconds between callbacks */
PaTime timeThen = PaUtil_GetTime(), timeNow, timeElapsed, cpuTimeThen, cpuTimeNow, cpuTimeElapsed;
double cpuLoad, avgCpuLoad = 0.;
int throttled = 0;
assert( th );
/* Execute OnWatchdogExit when exiting */
pthread_cleanup_push( &OnWatchdogExit, th );
/* Boost priority of callback thread */
PA_ENSURE( result = BoostPriority( th ) );
if( !result )
{
/* Boost failed, might as well exit */
pthread_exit( NULL );
}
cpuTimeThen = th->callbackCpuTime;
{
int policy;
struct sched_param spm = { 0 };
pthread_getschedparam( pthread_self(), &policy, &spm );
PA_DEBUG(( "%s: Watchdog priority is %d\n", __FUNCTION__, spm.sched_priority ));
}
while( 1 )
{
double lowpassCoeff = 0.9, lowpassCoeff1 = 0.99999 - lowpassCoeff;
/* Test before and after in case whatever underlying sleep call isn't interrupted by pthread_cancel */
pthread_testcancel();
Pa_Sleep( intervalMsec );
pthread_testcancel();
if( PaUtil_GetTime() - th->callbackTime > maxSeconds )
{
PA_DEBUG(( "Watchdog: Terminating callback thread\n" ));
/* Tell thread to terminate */
err = pthread_kill( th->callbackThread, SIGKILL );
pthread_exit( NULL );
}
PA_DEBUG(( "%s: PortAudio reports CPU load: %g\n", __FUNCTION__, PaUtil_GetCpuLoad( th->cpuLoadMeasurer ) ));
/* Check if we should throttle, or unthrottle :P */
cpuTimeNow = th->callbackCpuTime;
cpuTimeElapsed = cpuTimeNow - cpuTimeThen;
cpuTimeThen = cpuTimeNow;
timeNow = PaUtil_GetTime();
timeElapsed = timeNow - timeThen;
timeThen = timeNow;
cpuLoad = cpuTimeElapsed / timeElapsed;
avgCpuLoad = avgCpuLoad * lowpassCoeff + cpuLoad * lowpassCoeff1;
/*
if( throttled )
PA_DEBUG(( "Watchdog: CPU load: %g, %g\n", avgCpuLoad, cpuTimeElapsed ));
*/
if( PaUtil_GetCpuLoad( th->cpuLoadMeasurer ) > .925 )
{
static int policy;
static struct sched_param spm = { 0 };
static const struct sched_param defaultSpm = { 0 };
PA_DEBUG(( "%s: Throttling audio thread, priority %d\n", __FUNCTION__, spm.sched_priority ));
pthread_getschedparam( th->callbackThread, &policy, &spm );
if( !pthread_setschedparam( th->callbackThread, SCHED_OTHER, &defaultSpm ) )
{
throttled = 1;
}
else
PA_DEBUG(( "Watchdog: Couldn't lower priority of audio thread: %s\n", strerror( errno ) ));
/* Give other processes a go, before raising priority again */
PA_DEBUG(( "%s: Watchdog sleeping for %lu msecs before unthrottling\n", __FUNCTION__, th->throttledSleepTime ));
Pa_Sleep( th->throttledSleepTime );
/* Reset callback priority */
if( pthread_setschedparam( th->callbackThread, SCHED_FIFO, &spm ) != 0 )
{
PA_DEBUG(( "%s: Couldn't raise priority of audio thread: %s\n", __FUNCTION__, strerror( errno ) ));
}
if( PaUtil_GetCpuLoad( th->cpuLoadMeasurer ) >= .99 )
intervalMsec = 50;
else
intervalMsec = 100;
/*
lowpassCoeff = .97;
lowpassCoeff1 = .99999 - lowpassCoeff;
*/
}
else if( throttled && avgCpuLoad < .8 )
{
intervalMsec = 500;
throttled = 0;
/*
lowpassCoeff = .9;
lowpassCoeff1 = .99999 - lowpassCoeff;
*/
}
}
pthread_cleanup_pop( 1 ); /* Execute cleanup on exit */
error:
/* Shouldn't get here in the normal case */
/* Pass on error code */
pres = malloc( sizeof (PaError) );
*pres = result;
pthread_exit( pres );
}
static PaError CreateCallbackThread( PaAlsaThreading *th, void *(*callbackThreadFunc)( void * ), PaStream *s )
{
PaError result = paNoError;
pthread_attr_t attr;
int started = 0;
#if defined _POSIX_MEMLOCK && (_POSIX_MEMLOCK != -1)
if( th->rtSched )
{
if( mlockall( MCL_CURRENT | MCL_FUTURE ) < 0 )
{
int savedErrno = errno; /* In case errno gets overwritten */
assert( savedErrno != EINVAL ); /* Most likely a programmer error */
PA_UNLESS( (savedErrno == EPERM), paInternalError );
PA_DEBUG(( "%s: Failed locking memory\n", __FUNCTION__ ));
}
else
PA_DEBUG(( "%s: Successfully locked memory\n", __FUNCTION__ ));
}
#endif
PA_UNLESS( !pthread_attr_init( &attr ), paInternalError );
/* Priority relative to other processes */
PA_UNLESS( !pthread_attr_setscope( &attr, PTHREAD_SCOPE_SYSTEM ), paInternalError );
PA_UNLESS( !pthread_create( &th->callbackThread, &attr, callbackThreadFunc, s ), paInternalError );
started = 1;
if( th->rtSched )
{
if( th->useWatchdog )
{
int err;
struct sched_param wdSpm = { 0 };
/* Launch watchdog, watchdog sets callback thread priority */
int prio = PA_MIN( th->rtPrio + 4, sched_get_priority_max( SCHED_FIFO ) );
wdSpm.sched_priority = prio;
PA_UNLESS( !pthread_attr_init( &attr ), paInternalError );
PA_UNLESS( !pthread_attr_setinheritsched( &attr, PTHREAD_EXPLICIT_SCHED ), paInternalError );
PA_UNLESS( !pthread_attr_setscope( &attr, PTHREAD_SCOPE_SYSTEM ), paInternalError );
PA_UNLESS( !pthread_attr_setschedpolicy( &attr, SCHED_FIFO ), paInternalError );
PA_UNLESS( !pthread_attr_setschedparam( &attr, &wdSpm ), paInternalError );
if( (err = pthread_create( &th->watchdogThread, &attr, &WatchdogFunc, th )) )
{
PA_UNLESS( err == EPERM, paInternalError );
/* Permission error, go on without realtime privileges */
PA_DEBUG(( "Failed bumping priority\n" ));
}
else
{
int policy;
th->watchdogRunning = 1;
ENSURE_SYSTEM_( pthread_getschedparam( th->watchdogThread, &policy, &wdSpm ), 0 );
/* Check if priority is right, policy could potentially differ from SCHED_FIFO (but that's alright) */
if( wdSpm.sched_priority != prio )
{
PA_DEBUG(( "Watchdog priority not set correctly (%d)\n", wdSpm.sched_priority ));
PA_ENSURE( paInternalError );
}
}
}
else
PA_ENSURE( BoostPriority( th ) );
}
end:
return result;
error:
if( started )
KillCallbackThread( th, 0, NULL, NULL );
goto end;
}
static void CallbackUpdate( PaAlsaThreading *th )
{
th->callbackTime = PaUtil_GetTime();
th->callbackCpuTime = PaUtil_GetCpuLoad( th->cpuLoadMeasurer );
}
/* prototypes for functions declared in this file */
static void Terminate( struct PaUtilHostApiRepresentation *hostApi );
static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate );
static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi,
PaStream** s,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate,
unsigned long framesPerBuffer,
PaStreamFlags streamFlags,
PaStreamCallback *callback,
void *userData );
static PaError CloseStream( PaStream* stream );
static PaError StartStream( PaStream *stream );
static PaError StopStream( PaStream *stream );
static PaError AbortStream( PaStream *stream );
static PaError IsStreamStopped( PaStream *s );
static PaError IsStreamActive( PaStream *stream );
static PaTime GetStreamTime( PaStream *stream );
static double GetStreamCpuLoad( PaStream* stream );
static PaError BuildDeviceList( PaAlsaHostApiRepresentation *hostApi );
static int SetApproximateSampleRate( snd_pcm_t *pcm, snd_pcm_hw_params_t *hwParams, double sampleRate );
static int GetExactSampleRate( snd_pcm_hw_params_t *hwParams, double *sampleRate );
/* Callback prototypes */
static void *CallbackThreadFunc( void *userData );
/* Blocking prototypes */
static signed long GetStreamReadAvailable( PaStream* s );
static signed long GetStreamWriteAvailable( PaStream* s );
static PaError ReadStream( PaStream* stream, void *buffer, unsigned long frames );
static PaError WriteStream( PaStream* stream, const void *buffer, unsigned long frames );
static const PaAlsaDeviceInfo *GetDeviceInfo( const PaUtilHostApiRepresentation *hostApi, int device )
{
return (const PaAlsaDeviceInfo *)hostApi->deviceInfos[device];
}
PaError PaAlsa_Initialize( PaUtilHostApiRepresentation **hostApi, PaHostApiIndex hostApiIndex )
{
PaError result = paNoError;
PaAlsaHostApiRepresentation *alsaHostApi = NULL;
PA_UNLESS( alsaHostApi = (PaAlsaHostApiRepresentation*) PaUtil_AllocateMemory(
sizeof(PaAlsaHostApiRepresentation) ), paInsufficientMemory );
PA_UNLESS( alsaHostApi->allocations = PaUtil_CreateAllocationGroup(), paInsufficientMemory );
alsaHostApi->hostApiIndex = hostApiIndex;
*hostApi = (PaUtilHostApiRepresentation*)alsaHostApi;
(*hostApi)->info.structVersion = 1;
(*hostApi)->info.type = paALSA;
(*hostApi)->info.name = "ALSA";
(*hostApi)->Terminate = Terminate;
(*hostApi)->OpenStream = OpenStream;
(*hostApi)->IsFormatSupported = IsFormatSupported;
PA_ENSURE( BuildDeviceList( alsaHostApi ) );
PaUtil_InitializeStreamInterface( &alsaHostApi->callbackStreamInterface,
CloseStream, StartStream,
StopStream, AbortStream,
IsStreamStopped, IsStreamActive,
GetStreamTime, GetStreamCpuLoad,
PaUtil_DummyRead, PaUtil_DummyWrite,
PaUtil_DummyGetReadAvailable,
PaUtil_DummyGetWriteAvailable );
PaUtil_InitializeStreamInterface( &alsaHostApi->blockingStreamInterface,
CloseStream, StartStream,
StopStream, AbortStream,
IsStreamStopped, IsStreamActive,
GetStreamTime, PaUtil_DummyGetCpuLoad,
ReadStream, WriteStream,
GetStreamReadAvailable,
GetStreamWriteAvailable );
return result;
error:
if( alsaHostApi )
{
if( alsaHostApi->allocations )
{
PaUtil_FreeAllAllocations( alsaHostApi->allocations );
PaUtil_DestroyAllocationGroup( alsaHostApi->allocations );
}
PaUtil_FreeMemory( alsaHostApi );
}
return result;
}
static void Terminate( struct PaUtilHostApiRepresentation *hostApi )
{
PaAlsaHostApiRepresentation *alsaHostApi = (PaAlsaHostApiRepresentation*)hostApi;
assert( hostApi );
if( alsaHostApi->allocations )
{
PaUtil_FreeAllAllocations( alsaHostApi->allocations );
PaUtil_DestroyAllocationGroup( alsaHostApi->allocations );
}
PaUtil_FreeMemory( alsaHostApi );
snd_config_update_free_global();
}
/*! Determine max channels and default latencies.
*
* This function provides functionality to grope an opened (might be opened for capture or playback) pcm device for
* traits like max channels, suitable default latencies and default sample rate. Upon error, max channels is set to zero,
* and a suitable result returned. The device is closed before returning.
*/
static PaError GropeDevice( snd_pcm_t *pcm, int *minChannels, int *maxChannels, double *defaultLowLatency,
double *defaultHighLatency, double *defaultSampleRate, int isPlug )
{
PaError result = paNoError;
snd_pcm_hw_params_t *hwParams;
snd_pcm_uframes_t lowLatency = 512, highLatency = 2048;
unsigned int minChans, maxChans;
double defaultSr = *defaultSampleRate;
assert( pcm );
ENSURE_( snd_pcm_nonblock( pcm, 0 ), paUnanticipatedHostError );
snd_pcm_hw_params_alloca( &hwParams );
snd_pcm_hw_params_any( pcm, hwParams );
if( defaultSr >= 0 )
{
/* Could be that the device opened in one mode supports samplerates that the other mode wont have,
* so try again .. */
if( SetApproximateSampleRate( pcm, hwParams, defaultSr ) < 0 )
{
defaultSr = -1.;
PA_DEBUG(( "%s: Original default samplerate failed, trying again ..\n", __FUNCTION__ ));
}
}
if( defaultSr < 0. ) /* Default sample rate not set */
{
unsigned int sampleRate = 44100; /* Will contain approximate rate returned by alsa-lib */
ENSURE_( snd_pcm_hw_params_set_rate_near( pcm, hwParams, &sampleRate, NULL ), paUnanticipatedHostError );
ENSURE_( GetExactSampleRate( hwParams, &defaultSr ), paUnanticipatedHostError );
}
ENSURE_( snd_pcm_hw_params_get_channels_min( hwParams, &minChans ), paUnanticipatedHostError );
ENSURE_( snd_pcm_hw_params_get_channels_max( hwParams, &maxChans ), paUnanticipatedHostError );
assert( maxChans <= INT_MAX );
assert( maxChans > 0 ); /* Weird linking issue could cause wrong version of ALSA symbols to be called,
resulting in zeroed values */
/* XXX: Limit to sensible number (ALSA plugins accept a crazy amount of channels)? */
if( isPlug && maxChans > 128 )
{
maxChans = 128;
PA_DEBUG(( "%s: Limiting number of plugin channels to %u\n", __FUNCTION__, maxChans ));
}
/* TWEAKME:
*
* Giving values for default min and max latency is not
* straightforward. Here are our objectives:
*
* * for low latency, we want to give the lowest value
* that will work reliably. This varies based on the
* sound card, kernel, CPU, etc. I think it is better
* to give sub-optimal latency than to give a number
* too low and cause dropouts. My conservative
* estimate at this point is to base it on 4096-sample
* latency at 44.1 kHz, which gives a latency of 23ms.
* * for high latency we want to give a large enough
* value that dropouts are basically impossible. This
* doesn't really require as much tweaking, since
* providing too large a number will just cause us to
* select the nearest setting that will work at stream
* config time.
*/
ENSURE_( snd_pcm_hw_params_set_buffer_size_near( pcm, hwParams, &lowLatency ), paUnanticipatedHostError );
/* Have to reset hwParams, to set new buffer size */
ENSURE_( snd_pcm_hw_params_any( pcm, hwParams ), paUnanticipatedHostError );
ENSURE_( snd_pcm_hw_params_set_buffer_size_near( pcm, hwParams, &highLatency ), paUnanticipatedHostError );
*minChannels = (int)minChans;
*maxChannels = (int)maxChans;
*defaultSampleRate = defaultSr;
*defaultLowLatency = (double) lowLatency / *defaultSampleRate;
*defaultHighLatency = (double) highLatency / *defaultSampleRate;
end:
snd_pcm_close( pcm );
return result;
error:
goto end;
}
/* Initialize device info with invalid values (maxInputChannels and maxOutputChannels are set to zero since these indicate
* wether input/output is available) */
static void InitializeDeviceInfo( PaDeviceInfo *deviceInfo )
{
deviceInfo->structVersion = -1;
deviceInfo->name = NULL;
deviceInfo->hostApi = -1;
deviceInfo->maxInputChannels = 0;
deviceInfo->maxOutputChannels = 0;
deviceInfo->defaultLowInputLatency = -1.;
deviceInfo->defaultLowOutputLatency = -1.;
deviceInfo->defaultHighInputLatency = -1.;
deviceInfo->defaultHighOutputLatency = -1.;
deviceInfo->defaultSampleRate = -1.;
}
/* Helper struct */
typedef struct
{
char *alsaName;
char *name;
int isPlug;
int hasPlayback;
int hasCapture;
} DeviceNames;
static PaError PaAlsa_StrDup( PaAlsaHostApiRepresentation *alsaApi,
char **dst,
const char *src)
{
PaError result = paNoError;
int len = strlen( src ) + 1;
/* PA_DEBUG(("PaStrDup %s %d\n", src, len)); */
PA_UNLESS( *dst = (char *)PaUtil_GroupAllocateMemory( alsaApi->allocations, len ),
paInsufficientMemory );
strncpy( *dst, src, len );
error:
return result;
}
/* Disregard standard plugins
* XXX: Might want to make the "default" plugin available, if we can make it work
*/
static int IgnorePlugin( const char *pluginId )
{
#define numIgnored 10
static const char *ignoredPlugins[numIgnored] = {"hw", "plughw", "plug", "default", "dsnoop", "dmix", "tee",
"file", "null", "shm"};
int i;
for( i = 0; i < numIgnored; ++i )
{
if( !strcmp( pluginId, ignoredPlugins[i] ) )
{
return 1;
}
}
return 0;
}
/* Build PaDeviceInfo list, ignore devices for which we cannot determine capabilities (possibly busy, sigh) */
static PaError BuildDeviceList( PaAlsaHostApiRepresentation *alsaApi )
{
PaUtilHostApiRepresentation *commonApi = &alsaApi->commonHostApiRep;
PaAlsaDeviceInfo *deviceInfoArray;
int cardIdx = -1, devIdx = 0;
snd_ctl_card_info_t *cardInfo;
PaError result = paNoError;
size_t numDeviceNames = 0, maxDeviceNames = 1, i;
DeviceNames *deviceNames = NULL;
snd_config_t *topNode = NULL;
snd_pcm_info_t *pcmInfo;
int res;
int blocking = SND_PCM_NONBLOCK;
char alsaCardName[50];
if( getenv( "PA_ALSA_INITIALIZE_BLOCK" ) && atoi( getenv( "PA_ALSA_INITIALIZE_BLOCK" ) ) )
blocking = 0;
/* These two will be set to the first working input and output device, respectively */
commonApi->info.defaultInputDevice = paNoDevice;
commonApi->info.defaultOutputDevice = paNoDevice;
/* count the devices by enumerating all the card numbers */
/* snd_card_next() modifies the integer passed to it to be:
* the index of the first card if the parameter is -1
* the index of the next card if the parameter is the index of a card
* -1 if there are no more cards
*
* The function itself returns 0 if it succeeded. */
cardIdx = -1;
snd_ctl_card_info_alloca( &cardInfo );
snd_pcm_info_alloca( &pcmInfo );
while( snd_card_next( &cardIdx ) == 0 && cardIdx >= 0 )
{
char *cardName;
int devIdx = -1;
snd_ctl_t *ctl;
char buf[50];
snprintf( alsaCardName, sizeof (alsaCardName), "hw:%d", cardIdx );
/* Acquire name of card */
if( snd_ctl_open( &ctl, alsaCardName, 0 ) < 0 )
continue; /* Unable to open card :( */
snd_ctl_card_info( ctl, cardInfo );
PA_ENSURE( PaAlsa_StrDup( alsaApi, &cardName, snd_ctl_card_info_get_name( cardInfo )) );
while( snd_ctl_pcm_next_device( ctl, &devIdx ) == 0 && devIdx >= 0 )
{
char *alsaDeviceName, *deviceName;
size_t len;
int hasPlayback = 0, hasCapture = 0;
snprintf( buf, sizeof (buf), "%s:%d,%d", "hw", cardIdx, devIdx );
/* Obtain info about this particular device */
snd_pcm_info_set_device( pcmInfo, devIdx );
snd_pcm_info_set_subdevice( pcmInfo, 0 );
snd_pcm_info_set_stream( pcmInfo, SND_PCM_STREAM_CAPTURE );
if( snd_ctl_pcm_info( ctl, pcmInfo ) >= 0 )
hasCapture = 1;
snd_pcm_info_set_stream( pcmInfo, SND_PCM_STREAM_PLAYBACK );
if( snd_ctl_pcm_info( ctl, pcmInfo ) >= 0 )
hasPlayback = 1;
if( !hasPlayback && !hasCapture )
{
continue; /* Error */
}
/* The length of the string written by snprintf plus terminating 0 */
len = snprintf( NULL, 0, "%s: %s (%s)", cardName, snd_pcm_info_get_name( pcmInfo ), buf ) + 1;
PA_UNLESS( deviceName = (char *)PaUtil_GroupAllocateMemory( alsaApi->allocations, len ),
paInsufficientMemory );
snprintf( deviceName, len, "%s: %s (%s)", cardName,
snd_pcm_info_get_name( pcmInfo ), buf );
++numDeviceNames;
if( !deviceNames || numDeviceNames > maxDeviceNames )
{
maxDeviceNames *= 2;
PA_UNLESS( deviceNames = (DeviceNames *) realloc( deviceNames, maxDeviceNames * sizeof (DeviceNames) ),
paInsufficientMemory );
}
PA_ENSURE( PaAlsa_StrDup( alsaApi, &alsaDeviceName, buf ) );
deviceNames[ numDeviceNames - 1 ].alsaName = alsaDeviceName;
deviceNames[ numDeviceNames - 1 ].name = deviceName;
deviceNames[ numDeviceNames - 1 ].isPlug = 0;
deviceNames[ numDeviceNames - 1 ].hasPlayback = hasPlayback;
deviceNames[ numDeviceNames - 1 ].hasCapture = hasCapture;
}
snd_ctl_close( ctl );
}
/* Iterate over plugin devices */
if( NULL == snd_config )
{
/* snd_config_update is called implicitly by some functions, if this hasn't happened snd_config will be NULL (bleh) */
ENSURE_( snd_config_update(), paUnanticipatedHostError );
PA_DEBUG(( "Updating snd_config\n" ));
}
assert( snd_config );
if( (res = snd_config_search( snd_config, "pcm", &topNode )) >= 0 )
{
snd_config_iterator_t i, next;
snd_config_for_each( i, next, topNode )
{
const char *tpStr = NULL, *idStr = NULL;
char *alsaDeviceName, *deviceName;
snd_config_t *n = snd_config_iterator_entry( i ), *tp = NULL;
if( snd_config_get_type( n ) != SND_CONFIG_TYPE_COMPOUND )
continue;
ENSURE_( snd_config_search( n, "type", &tp ), paUnanticipatedHostError );
ENSURE_( snd_config_get_string( tp, &tpStr ), paUnanticipatedHostError );
ENSURE_( snd_config_get_id( n, &idStr ), paUnanticipatedHostError );
if( IgnorePlugin( idStr ) )
{
PA_DEBUG(( "%s: Ignoring ALSA plugin device %s of type %s\n", __FUNCTION__, idStr, tpStr ));
continue;
}
PA_DEBUG(( "%s: Found plugin %s of type %s\n", __FUNCTION__, idStr, tpStr ));
PA_UNLESS( alsaDeviceName = (char*)PaUtil_GroupAllocateMemory( alsaApi->allocations,
strlen(idStr) + 6 ), paInsufficientMemory );
strcpy( alsaDeviceName, idStr );
PA_UNLESS( deviceName = (char*)PaUtil_GroupAllocateMemory( alsaApi->allocations,
strlen(idStr) + 1 ), paInsufficientMemory );
strcpy( deviceName, idStr );
++numDeviceNames;
if( !deviceNames || numDeviceNames > maxDeviceNames )
{
maxDeviceNames *= 2;
PA_UNLESS( deviceNames = (DeviceNames *) realloc( deviceNames, maxDeviceNames * sizeof (DeviceNames) ),
paInsufficientMemory );
}
deviceNames[numDeviceNames - 1].alsaName = alsaDeviceName;
deviceNames[numDeviceNames - 1].name = deviceName;
deviceNames[numDeviceNames - 1].isPlug = 1;
deviceNames[numDeviceNames - 1].hasPlayback = 1;
deviceNames[numDeviceNames - 1].hasCapture = 1;
}
}
else
PA_DEBUG(( "%s: Iterating over ALSA plugins failed: %s\n", __FUNCTION__, snd_strerror( res ) ));
/* allocate deviceInfo memory based on the number of devices */
PA_UNLESS( commonApi->deviceInfos = (PaDeviceInfo**)PaUtil_GroupAllocateMemory(
alsaApi->allocations, sizeof(PaDeviceInfo*) * (numDeviceNames) ), paInsufficientMemory );
/* allocate all device info structs in a contiguous block */
PA_UNLESS( deviceInfoArray = (PaAlsaDeviceInfo*)PaUtil_GroupAllocateMemory(
alsaApi->allocations, sizeof(PaAlsaDeviceInfo) * numDeviceNames ), paInsufficientMemory );
/* Loop over list of cards, filling in info, if a device is deemed unavailable (can't get name),
* it's ignored.
*/
/* while( snd_card_next( &cardIdx ) == 0 && cardIdx >= 0 ) */
for( i = 0, devIdx = 0; i < numDeviceNames; ++i )
{
snd_pcm_t *pcm;
PaAlsaDeviceInfo *deviceInfo = &deviceInfoArray[devIdx];
PaDeviceInfo *commonDeviceInfo = &deviceInfo->commonDeviceInfo;
/* Zero fields */
InitializeDeviceInfo( commonDeviceInfo );
/* to determine device capabilities, we must open the device and query the
* hardware parameter configuration space */
/* Query capture */
if( deviceNames[i].hasCapture &&
snd_pcm_open( &pcm, deviceNames[i].alsaName, SND_PCM_STREAM_CAPTURE, blocking ) >= 0 )
{
if( GropeDevice( pcm, &deviceInfo->minInputChannels, &commonDeviceInfo->maxInputChannels,
&commonDeviceInfo->defaultLowInputLatency, &commonDeviceInfo->defaultHighInputLatency,
&commonDeviceInfo->defaultSampleRate, deviceNames[i].isPlug ) != paNoError )
continue; /* Error */
}
/* Query playback */
if( deviceNames[i].hasPlayback &&
snd_pcm_open( &pcm, deviceNames[i].alsaName, SND_PCM_STREAM_PLAYBACK, blocking ) >= 0 )
{
if( GropeDevice( pcm, &deviceInfo->minOutputChannels, &commonDeviceInfo->maxOutputChannels,
&commonDeviceInfo->defaultLowOutputLatency, &commonDeviceInfo->defaultHighOutputLatency,
&commonDeviceInfo->defaultSampleRate, deviceNames[i].isPlug ) != paNoError )
continue; /* Error */
}
commonDeviceInfo->structVersion = 2;
commonDeviceInfo->hostApi = alsaApi->hostApiIndex;
commonDeviceInfo->name = deviceNames[i].name;
deviceInfo->alsaName = deviceNames[i].alsaName;
deviceInfo->isPlug = deviceNames[i].isPlug;
/* A: Storing pointer to PaAlsaDeviceInfo object as pointer to PaDeviceInfo object.
* Should now be safe to add device info, unless the device supports neither capture nor playback
*/
if( commonDeviceInfo->maxInputChannels > 0 || commonDeviceInfo->maxOutputChannels > 0 )
{
if( commonApi->info.defaultInputDevice == paNoDevice && commonDeviceInfo->maxInputChannels > 0 )
commonApi->info.defaultInputDevice = devIdx;
if( commonApi->info.defaultOutputDevice == paNoDevice && commonDeviceInfo->maxOutputChannels > 0 )
commonApi->info.defaultOutputDevice = devIdx;
commonApi->deviceInfos[devIdx++] = (PaDeviceInfo *) deviceInfo;
}
}
free( deviceNames );
commonApi->info.deviceCount = devIdx; /* Number of successfully queried devices */
end:
return result;
error:
/* No particular action */
goto end;
}
/* Check against known device capabilities */
static PaError ValidateParameters( const PaStreamParameters *parameters, PaUtilHostApiRepresentation *hostApi, StreamDirection mode )
{
PaError result = paNoError;
int maxChans;
const PaAlsaDeviceInfo *deviceInfo = NULL;
assert( parameters );
if( parameters->device != paUseHostApiSpecificDeviceSpecification )
{
assert( parameters->device < hostApi->info.deviceCount );
PA_UNLESS( parameters->hostApiSpecificStreamInfo == NULL, paBadIODeviceCombination );
deviceInfo = GetDeviceInfo( hostApi, parameters->device );
}
else
{
const PaAlsaStreamInfo *streamInfo = parameters->hostApiSpecificStreamInfo;
PA_UNLESS( parameters->device == paUseHostApiSpecificDeviceSpecification, paInvalidDevice );
PA_UNLESS( streamInfo->size == sizeof (PaAlsaStreamInfo) && streamInfo->version == 1,
paIncompatibleHostApiSpecificStreamInfo );
PA_UNLESS( streamInfo->deviceString != NULL, paInvalidDevice );
/* Skip further checking */
return paNoError;
}
assert( deviceInfo );
assert( parameters->hostApiSpecificStreamInfo == NULL );
maxChans = (StreamDirection_In == mode ? deviceInfo->commonDeviceInfo.maxInputChannels :
deviceInfo->commonDeviceInfo.maxOutputChannels);
PA_UNLESS( parameters->channelCount <= maxChans, paInvalidChannelCount );
error:
return result;
}
/* Given an open stream, what sample formats are available? */
static PaSampleFormat GetAvailableFormats( snd_pcm_t *pcm )
{
PaSampleFormat available = 0;
snd_pcm_hw_params_t *hwParams;
snd_pcm_hw_params_alloca( &hwParams );
snd_pcm_hw_params_any( pcm, hwParams );
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_FLOAT ) >= 0)
available |= paFloat32;
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S32 ) >= 0)
available |= paInt32;
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S24 ) >= 0)
available |= paInt24;
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S16 ) >= 0)
available |= paInt16;
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_U8 ) >= 0)
available |= paUInt8;
if( snd_pcm_hw_params_test_format( pcm, hwParams, SND_PCM_FORMAT_S8 ) >= 0)
available |= paInt8;
return available;
}
static snd_pcm_format_t Pa2AlsaFormat( PaSampleFormat paFormat )
{
switch( paFormat )
{
case paFloat32:
return SND_PCM_FORMAT_FLOAT;
case paInt16:
return SND_PCM_FORMAT_S16;
case paInt24:
return SND_PCM_FORMAT_S24;
case paInt32:
return SND_PCM_FORMAT_S32;
case paInt8:
return SND_PCM_FORMAT_S8;
case paUInt8:
return SND_PCM_FORMAT_U8;
default:
return SND_PCM_FORMAT_UNKNOWN;
}
}
/** Open an ALSA pcm handle.
*
* The device to be open can be specified in a custom PaAlsaStreamInfo struct, or it will be a device number. In case of a
* device number, it maybe specified through an env variable (PA_ALSA_PLUGHW) that we should open the corresponding plugin
* device.
*/
static PaError AlsaOpen( const PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *params, StreamDirection
streamDir, snd_pcm_t **pcm )
{
PaError result = paNoError;
int ret;
const char *deviceName = alloca( 50 );
const PaAlsaDeviceInfo *deviceInfo = NULL;
PaAlsaStreamInfo *streamInfo = (PaAlsaStreamInfo *)params->hostApiSpecificStreamInfo;
if( !streamInfo )
{
int usePlug = 0;
deviceInfo = GetDeviceInfo( hostApi, params->device );
/* If device name starts with hw: and PA_ALSA_PLUGHW is 1, we open the plughw device instead */
if( !strncmp( "hw:", deviceInfo->alsaName, 3 ) && getenv( "PA_ALSA_PLUGHW" ) )
usePlug = atoi( getenv( "PA_ALSA_PLUGHW" ) );
if( usePlug )
snprintf( (char *) deviceName, 50, "plug%s", deviceInfo->alsaName );
else
deviceName = deviceInfo->alsaName;
}
else
deviceName = streamInfo->deviceString;
PA_DEBUG(( "%s: Opening device %s\n", __FUNCTION__, deviceName ));
if( (ret = snd_pcm_open( pcm, deviceName, streamDir == StreamDirection_In ? SND_PCM_STREAM_CAPTURE : SND_PCM_STREAM_PLAYBACK,
SND_PCM_NONBLOCK )) < 0 )
{
/* Not to be closed */
*pcm = NULL;
ENSURE_( ret, ret == -EBUSY ? paDeviceUnavailable : paBadIODeviceCombination );
}
ENSURE_( snd_pcm_nonblock( *pcm, 0 ), paUnanticipatedHostError );
end:
return result;
error:
goto end;
}
static PaError TestParameters( const PaUtilHostApiRepresentation *hostApi, const PaStreamParameters *parameters,
double sampleRate, StreamDirection streamDir )
{
PaError result = paNoError;
snd_pcm_t *pcm = NULL;
PaSampleFormat availableFormats;
/* We are able to adapt to a number of channels less than what the device supports */
unsigned int numHostChannels;
PaSampleFormat hostFormat;
snd_pcm_hw_params_t *hwParams;
snd_pcm_hw_params_alloca( &hwParams );
if( !parameters->hostApiSpecificStreamInfo )
{
const PaAlsaDeviceInfo *devInfo = GetDeviceInfo( hostApi, parameters->device );
numHostChannels = PA_MAX( parameters->channelCount, StreamDirection_In == streamDir ?
devInfo->minInputChannels : devInfo->minOutputChannels );
}
else
numHostChannels = parameters->channelCount;
PA_ENSURE( AlsaOpen( hostApi, parameters, streamDir, &pcm ) );
snd_pcm_hw_params_any( pcm, hwParams );
if( SetApproximateSampleRate( pcm, hwParams, sampleRate ) < 0 )
{
result = paInvalidSampleRate;
goto error;
}
if( snd_pcm_hw_params_set_channels( pcm, hwParams, numHostChannels ) < 0 )
{
result = paInvalidChannelCount;
goto error;
}
/* See if we can find a best possible match */
availableFormats = GetAvailableFormats( pcm );
PA_ENSURE( hostFormat = PaUtil_SelectClosestAvailableFormat( availableFormats, parameters->sampleFormat ) );
ENSURE_( snd_pcm_hw_params_set_format( pcm, hwParams, Pa2AlsaFormat( hostFormat ) ), paUnanticipatedHostError );
{
/* It happens that this call fails because the device is busy */
int ret = 0;
if( (ret = snd_pcm_hw_params( pcm, hwParams )) < 0)
{
ENSURE_( ret, ret == -EBUSY ? paDeviceUnavailable : paUnanticipatedHostError );
}
}
end:
if( pcm )
{
snd_pcm_close( pcm );
}
return result;
error:
goto end;
}
static PaError IsFormatSupported( struct PaUtilHostApiRepresentation *hostApi,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate )
{
int inputChannelCount = 0, outputChannelCount = 0;
PaSampleFormat inputSampleFormat, outputSampleFormat;
PaError result = paFormatIsSupported;
if( inputParameters )
{
PA_ENSURE( ValidateParameters( inputParameters, hostApi, StreamDirection_In ) );
inputChannelCount = inputParameters->channelCount;
inputSampleFormat = inputParameters->sampleFormat;
}
if( outputParameters )
{
PA_ENSURE( ValidateParameters( outputParameters, hostApi, StreamDirection_Out ) );
outputChannelCount = outputParameters->channelCount;
outputSampleFormat = outputParameters->sampleFormat;
}
if( inputChannelCount )
{
if( (result = TestParameters( hostApi, inputParameters, sampleRate, StreamDirection_In ))
!= paNoError )
goto error;
}
if ( outputChannelCount )
{
if( (result = TestParameters( hostApi, outputParameters, sampleRate, StreamDirection_Out ))
!= paNoError )
goto error;
}
return paFormatIsSupported;
error:
return result;
}
static PaError PaAlsaStreamComponent_Initialize( PaAlsaStreamComponent *self, PaAlsaHostApiRepresentation *alsaApi,
const PaStreamParameters *params, StreamDirection streamDir, int callbackMode )
{
PaError result = paNoError;
PaSampleFormat userSampleFormat = params->sampleFormat, hostSampleFormat;
assert( params->channelCount > 0 );
/* Make sure things have an initial value */
memset( self, 0, sizeof (PaAlsaStreamComponent) );
if( NULL == params->hostApiSpecificStreamInfo )
{
const PaAlsaDeviceInfo *devInfo = GetDeviceInfo( &alsaApi->commonHostApiRep, params->device );
self->numHostChannels = PA_MAX( params->channelCount, StreamDirection_In == streamDir ? devInfo->minInputChannels
: devInfo->minOutputChannels );
}
else
{
/* We're blissfully unaware of the minimum channelCount */
self->numHostChannels = params->channelCount;
}
PA_ENSURE( AlsaOpen( &alsaApi->commonHostApiRep, params, streamDir, &self->pcm ) );
self->nfds = snd_pcm_poll_descriptors_count( self->pcm );
hostSampleFormat = PaUtil_SelectClosestAvailableFormat( GetAvailableFormats( self->pcm ), userSampleFormat );
self->hostSampleFormat = hostSampleFormat;
self->nativeFormat = Pa2AlsaFormat( hostSampleFormat );
self->hostInterleaved = self->userInterleaved = !(userSampleFormat & paNonInterleaved);
self->numUserChannels = params->channelCount;
self->streamDir = streamDir;
if( !callbackMode && !self->userInterleaved )
{
/* Pre-allocate non-interleaved user provided buffers */
PA_UNLESS( self->userBuffers = PaUtil_AllocateMemory( sizeof (void *) * self->numUserChannels ),
paInsufficientMemory );
}
error:
return result;
}
static void PaAlsaStreamComponent_Terminate( PaAlsaStreamComponent *self )
{
snd_pcm_close( self->pcm );
if( self->userBuffers )
PaUtil_FreeMemory( self->userBuffers );
}
int nearbyint_(float value) {
if( value - (int)value > .5 )
return (int)ceil( value );
return (int)floor( value );
}
/** Initiate configuration, preparing for determining a period size suitable for both capture and playback components.
*
*/
static PaError PaAlsaStreamComponent_InitialConfigure( PaAlsaStreamComponent *self, const PaStreamParameters *params,
int primeBuffers, snd_pcm_hw_params_t *hwParams, double *sampleRate )
{
/* Configuration consists of setting all of ALSA's parameters.
* These parameters come in two flavors: hardware parameters
* and software paramters. Hardware parameters will affect
* the way the device is initialized, software parameters
* affect the way ALSA interacts with me, the user-level client.
*/
PaError result = paNoError;
snd_pcm_access_t accessMode, alternateAccessMode;
int dir = 0;
snd_pcm_t *pcm = self->pcm;
double sr = *sampleRate;
unsigned int minPeriods = 2;
/* self->framesPerBuffer = framesPerHostBuffer; */
/* ... fill up the configuration space with all possibile
* combinations of parameters this device will accept */
ENSURE_( snd_pcm_hw_params_any( pcm, hwParams ), paUnanticipatedHostError );
ENSURE_( snd_pcm_hw_params_set_periods_integer( pcm, hwParams ), paUnanticipatedHostError );
ENSURE_( snd_pcm_hw_params_set_period_size_integer( pcm, hwParams ), paUnanticipatedHostError );
/* I think there should be at least 2 periods (even though ALSA doesn't appear to enforce this) */
dir = 0;
ENSURE_( snd_pcm_hw_params_set_periods_min( pcm, hwParams, &minPeriods, &dir ), paUnanticipatedHostError );
if( self->userInterleaved )
{
accessMode = SND_PCM_ACCESS_MMAP_INTERLEAVED;
alternateAccessMode = SND_PCM_ACCESS_MMAP_NONINTERLEAVED;
}
else
{
accessMode = SND_PCM_ACCESS_MMAP_NONINTERLEAVED;
alternateAccessMode = SND_PCM_ACCESS_MMAP_INTERLEAVED;
}
/* If requested access mode fails, try alternate mode */
if( snd_pcm_hw_params_set_access( pcm, hwParams, accessMode ) < 0 )
{
ENSURE_( snd_pcm_hw_params_set_access( pcm, hwParams, alternateAccessMode ), paUnanticipatedHostError );
/* Flip mode */
self->hostInterleaved = !self->userInterleaved;
}
ENSURE_( snd_pcm_hw_params_set_format( pcm, hwParams, self->nativeFormat ), paUnanticipatedHostError );
ENSURE_( SetApproximateSampleRate( pcm, hwParams, sr ), paInvalidSampleRate );
ENSURE_( GetExactSampleRate( hwParams, &sr ), paUnanticipatedHostError );
/* reject if there's no sample rate within 1% of the one requested */
if( (fabs( *sampleRate - sr ) / *sampleRate) > 0.01 )
{
PA_DEBUG(("%s: Wanted %f, closest sample rate was %d\n", __FUNCTION__, sampleRate, sr ));
PA_ENSURE( paInvalidSampleRate );
}
ENSURE_( snd_pcm_hw_params_set_channels( pcm, hwParams, self->numHostChannels ), paInvalidChannelCount );
*sampleRate = sr;
end:
return result;
error:
/* No particular action */
goto end;
}
static PaError PaAlsaStreamComponent_FinishConfigure( PaAlsaStreamComponent *self, snd_pcm_hw_params_t* hwParams,
const PaStreamParameters *params, int primeBuffers, double sampleRate, PaTime* returnedLatency )
{
PaError result = paNoError;
snd_pcm_sw_params_t* swParams;
snd_pcm_uframes_t bufSz = 0;
*returnedLatency = -1.;
snd_pcm_sw_params_alloca( &swParams );
bufSz = (params->suggestedLatency * sampleRate) + self->framesPerBuffer; /* One period does not count as latency */
ENSURE_( snd_pcm_hw_params_set_buffer_size_near( self->pcm, hwParams, &bufSz ), paUnanticipatedHostError );
/* Set the parameters! */
ENSURE_( snd_pcm_hw_params( self->pcm, hwParams ), paUnanticipatedHostError );
ENSURE_( snd_pcm_hw_params_get_buffer_size( hwParams, &self->bufferSize ), paUnanticipatedHostError );
/* Latency in seconds, one period is not counted as latency */
*returnedLatency = (self->bufferSize - self->framesPerBuffer) / sampleRate;
/* Now software parameters... */
ENSURE_( snd_pcm_sw_params_current( self->pcm, swParams ), paUnanticipatedHostError );
ENSURE_( snd_pcm_sw_params_set_start_threshold( self->pcm, swParams, self->framesPerBuffer ), paUnanticipatedHostError );
ENSURE_( snd_pcm_sw_params_set_stop_threshold( self->pcm, swParams, self->bufferSize ), paUnanticipatedHostError );
/* Silence buffer in the case of underrun */
if( !primeBuffers ) /* XXX: Make sense? */
{
snd_pcm_uframes_t boundary;
ENSURE_( snd_pcm_sw_params_get_boundary( swParams, &boundary ), paUnanticipatedHostError );
ENSURE_( snd_pcm_sw_params_set_silence_threshold( self->pcm, swParams, 0 ), paUnanticipatedHostError );
ENSURE_( snd_pcm_sw_params_set_silence_size( self->pcm, swParams, boundary ), paUnanticipatedHostError );
}
ENSURE_( snd_pcm_sw_params_set_avail_min( self->pcm, swParams, self->framesPerBuffer ), paUnanticipatedHostError );
ENSURE_( snd_pcm_sw_params_set_xfer_align( self->pcm, swParams, 1 ), paUnanticipatedHostError );
ENSURE_( snd_pcm_sw_params_set_tstamp_mode( self->pcm, swParams, SND_PCM_TSTAMP_MMAP ), paUnanticipatedHostError );
/* Set the parameters! */
ENSURE_( snd_pcm_sw_params( self->pcm, swParams ), paUnanticipatedHostError );
error:
return result;
}
static PaError PaAlsaStream_Initialize( PaAlsaStream *self, PaAlsaHostApiRepresentation *alsaApi, const PaStreamParameters *inParams,
const PaStreamParameters *outParams, double sampleRate, unsigned long framesPerUserBuffer, PaStreamCallback callback,
PaStreamFlags streamFlags, void *userData )
{
PaError result = paNoError;
assert( self );
memset( self, 0, sizeof (PaAlsaStream) );
if( NULL != callback )
{
PaUtil_InitializeStreamRepresentation( &self->streamRepresentation,
&alsaApi->callbackStreamInterface,
callback, userData );
self->callbackMode = 1;
}
else
{
PaUtil_InitializeStreamRepresentation( &self->streamRepresentation,
&alsaApi->blockingStreamInterface,
NULL, userData );
}
self->framesPerUserBuffer = framesPerUserBuffer;
self->neverDropInput = streamFlags & paNeverDropInput;
/* XXX: Ignore paPrimeOutputBuffersUsingStreamCallback untill buffer priming is fully supported in pa_process.c */
/*
if( outParams & streamFlags & paPrimeOutputBuffersUsingStreamCallback )
self->primeBuffers = 1;
*/
memset( &self->capture, 0, sizeof (PaAlsaStreamComponent) );
memset( &self->playback, 0, sizeof (PaAlsaStreamComponent) );
if( inParams )
PA_ENSURE( PaAlsaStreamComponent_Initialize( &self->capture, alsaApi, inParams, StreamDirection_In, NULL != callback ) );
if( outParams )
PA_ENSURE( PaAlsaStreamComponent_Initialize( &self->playback, alsaApi, outParams, StreamDirection_Out, NULL != callback ) );
assert( self->capture.nfds || self->playback.nfds );
PA_UNLESS( self->pfds = (struct pollfd*)PaUtil_AllocateMemory( (self->capture.nfds +
self->playback.nfds) * sizeof (struct pollfd) ), paInsufficientMemory );
PaUtil_InitializeCpuLoadMeasurer( &self->cpuLoadMeasurer, sampleRate );
InitializeThreading( &self->threading, &self->cpuLoadMeasurer );
ASSERT_CALL_( pthread_mutex_init( &self->stateMtx, NULL ), 0 );
ASSERT_CALL_( pthread_mutex_init( &self->startMtx, NULL ), 0 );
ASSERT_CALL_( pthread_cond_init( &self->startCond, NULL ), 0 );
error:
return result;
}
/** Free resources associated with stream, and eventually stream itself.
*
* Frees allocated memory, and terminates individual StreamComponents.
*/
static void PaAlsaStream_Terminate( PaAlsaStream *self )
{
assert( self );
if( self->capture.pcm )
{
PaAlsaStreamComponent_Terminate( &self->capture );
}
if( self->playback.pcm )
{
PaAlsaStreamComponent_Terminate( &self->playback );
}
PaUtil_FreeMemory( self->pfds );
ASSERT_CALL_( pthread_mutex_destroy( &self->stateMtx ), 0 );
ASSERT_CALL_( pthread_mutex_destroy( &self->startMtx ), 0 );
ASSERT_CALL_( pthread_cond_destroy( &self->startCond ), 0 );
PaUtil_FreeMemory( self );
}
/** Calculate polling timeout
*
* @param frames Time to wait
* @return Polling timeout in milliseconds
*/
static int CalculatePollTimeout( const PaAlsaStream *stream, unsigned long frames )
{
assert( stream->streamRepresentation.streamInfo.sampleRate > 0.0 );
/* Period in msecs, rounded up */
return (int)ceil( 1000 * frames / stream->streamRepresentation.streamInfo.sampleRate );
}
static PaError PaAlsaStreamComponent_DetermineFramesPerBuffer( PaAlsaStreamComponent* self, const PaStreamParameters* params,
unsigned long framesPerUserBuffer, double sampleRate, snd_pcm_hw_params_t* hwParams )
{
PaError result = paNoError;
unsigned long bufferSize = params->suggestedLatency * sampleRate, framesPerHostBuffer;
int dir = 0;
{
snd_pcm_uframes_t tmp;
snd_pcm_hw_params_get_buffer_size_min(hwParams, &tmp);
bufferSize = PA_MAX(bufferSize, tmp);
snd_pcm_hw_params_get_buffer_size_max(hwParams, &tmp);
bufferSize = PA_MIN(bufferSize, tmp);
}
assert(bufferSize > 0);
if( framesPerUserBuffer != paFramesPerBufferUnspecified )
{
/* Preferably the host buffer size should be a multiple of the user buffer size */
if( bufferSize > framesPerUserBuffer )
{
snd_pcm_uframes_t remainder = bufferSize % framesPerUserBuffer;
if( remainder > framesPerUserBuffer / 2. )
bufferSize += framesPerUserBuffer - remainder;
else
bufferSize -= remainder;
assert( bufferSize % framesPerUserBuffer == 0 );
}
else if( framesPerUserBuffer % bufferSize != 0 )
{
/* Find a good compromise between user specified latency and buffer size */
if( bufferSize > framesPerUserBuffer * .75 )
{
bufferSize = framesPerUserBuffer;
}
else
{
snd_pcm_uframes_t newSz = framesPerUserBuffer;
while( newSz / 2 >= bufferSize )
{
if( framesPerUserBuffer % (newSz / 2) != 0 )
{
/* No use dividing any further */
break;
}
newSz /= 2;
}
bufferSize = newSz;
}
assert( framesPerUserBuffer % bufferSize == 0 );
}
}
/* Using 5 as a base number of periods, we try to approximate the suggested latency (+1 period),
finding a combination of period/buffer size which best fits these constraints */
{
unsigned numPeriods = 4, maxPeriods = 0;
/* It may be that the device only supports 2 periods for instance */
dir = 0;
ENSURE_( snd_pcm_hw_params_get_periods_max( hwParams, &maxPeriods, &dir ), paUnanticipatedHostError );
assert( maxPeriods > 1 );
/* One period is not counted as latency */
maxPeriods -= 1;
numPeriods = PA_MIN( maxPeriods, numPeriods );
if( framesPerUserBuffer != paFramesPerBufferUnspecified )
{
framesPerHostBuffer = framesPerUserBuffer;
if( framesPerHostBuffer < bufferSize )
{
while( bufferSize / framesPerHostBuffer > numPeriods )
{
framesPerHostBuffer *= 2;
}
}
else
{
while( bufferSize / framesPerHostBuffer < numPeriods )
{
if( framesPerUserBuffer % (framesPerHostBuffer / 2) != 0 )
{
/* Can't be divided any further */
break;
}
framesPerHostBuffer /= 2;
}
}
if( framesPerHostBuffer < framesPerUserBuffer )
{
assert( framesPerUserBuffer % framesPerHostBuffer == 0 );
if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer, 0 ) < 0 )
{
if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer * 2, 0 ) == 0 )
framesPerHostBuffer *= 2;
else if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer / 2, 0 ) == 0 )
framesPerHostBuffer /= 2;
}
}
else
{
assert( framesPerHostBuffer % framesPerUserBuffer == 0 );
if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer, 0 ) < 0 )
{
if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer + framesPerUserBuffer, 0 ) == 0 )
framesPerHostBuffer += framesPerUserBuffer;
else if( snd_pcm_hw_params_test_period_size( self->pcm, hwParams, framesPerHostBuffer - framesPerUserBuffer, 0 ) == 0 )
framesPerHostBuffer -= framesPerUserBuffer;
}
}
}
else
{
framesPerHostBuffer = bufferSize / numPeriods;
}
}
assert( framesPerHostBuffer > 0 );
dir = 0;
ENSURE_( snd_pcm_hw_params_set_period_size_near( self->pcm, hwParams, &framesPerHostBuffer, &dir ), paUnanticipatedHostError );
self->framesPerBuffer = framesPerHostBuffer;
error:
return result;
}
/* We need to determine how many frames per host buffer (period) to use. Our
* goals are to provide the best possible performance, but also to
* honor the requested latency settings as closely as we can. Therefore this
* decision is based on:
*
* - the period sizes that playback and/or capture support. The
* host buffer size has to be one of these.
* - the number of periods that playback and/or capture support.
*
* We want to make period_size*(num_periods-1) to be as close as possible
* to latency*rate for both playback and capture.
*
* This method will determine suitable period sizes for capture and playback handles, and report the maximum number of
* frames per host buffer. The latter is relevant, in case we should be so unfortunate that the period size differs
* between capture and playback. If this should happen, the stream's hostBufferSizeMode attribute will be set to
* paUtilBoundedHostBufferSize, because the best we can do is limit the size of individual host buffers to the upper
* bound. The size of host buffers scheduled for processing should only matter if the user has specified a buffer size,
* but when he/she does we must strive for an optimal configuration. By default we'll opt for a fixed host buffer size,
* which should be fine if the period size is the same for capture and playback. In general, if there is a specified user
* buffer size, this method tries it best to determine a period size which is a multiple of the user buffer size.
*
* The framesPerBuffer attributes of the individual capture and playback components of the stream are set to corresponding
* values determined here. Since these should be reported as
*
* This is one of those blocks of code that will just take a lot of
* refinement to be any good.
*
* In the full-duplex case it is possible that the routine was unable
* to find a number of frames per buffer acceptable to both devices
* TODO: Implement an algorithm to find the value closest to acceptance
* by both devices, to minimize difference between period sizes?
*/
static PaError PaAlsaStream_DetermineFramesPerBuffer( PaAlsaStream* self, double sampleRate, const PaStreamParameters* inputParameters,
const PaStreamParameters* outputParameters, unsigned long framesPerUserBuffer, snd_pcm_hw_params_t* hwParamsCapture,
snd_pcm_hw_params_t* hwParamsPlayback, PaUtilHostBufferSizeMode* hostBufferSizeMode )
{
PaError result = paNoError;
unsigned long framesPerHostBuffer = 0;
int dir = 0;
if( self->capture.pcm && self->playback.pcm )
{
if( framesPerUserBuffer == paFramesPerBufferUnspecified )
{
snd_pcm_uframes_t desiredLatency, e, minPeriodSize, maxPeriodSize, optimalPeriodSize, periodSize,
minCapture, minPlayback, maxCapture, maxPlayback;
/* Come up with a common desired latency */
dir = 0;
ENSURE_( snd_pcm_hw_params_get_period_size_min( hwParamsCapture, &minCapture, &dir ), paUnanticipatedHostError );
dir = 0;
ENSURE_( snd_pcm_hw_params_get_period_size_min( hwParamsPlayback, &minPlayback, &dir ), paUnanticipatedHostError );
dir = 0;
ENSURE_( snd_pcm_hw_params_get_period_size_max( hwParamsCapture, &maxCapture, &dir ), paUnanticipatedHostError );
dir = 0;
ENSURE_( snd_pcm_hw_params_get_period_size_max( hwParamsPlayback, &maxPlayback, &dir ), paUnanticipatedHostError );
minPeriodSize = PA_MAX( minPlayback, minCapture );
maxPeriodSize = PA_MIN( maxPlayback, maxCapture );
PA_UNLESS( minPeriodSize <= maxPeriodSize, paBadIODeviceCombination );
desiredLatency = (snd_pcm_uframes_t)(PA_MIN( outputParameters->suggestedLatency, inputParameters->suggestedLatency )
* sampleRate);
/* Clamp desiredLatency */
{
snd_pcm_uframes_t maxBufferSize;
snd_pcm_uframes_t maxBufferSizeCapture, maxBufferSizePlayback;
ENSURE_( snd_pcm_hw_params_get_buffer_size_max( hwParamsCapture, &maxBufferSizeCapture ), paUnanticipatedHostError );
ENSURE_( snd_pcm_hw_params_get_buffer_size_max( hwParamsPlayback, &maxBufferSizePlayback ), paUnanticipatedHostError );
maxBufferSize = PA_MIN( maxBufferSizeCapture, maxBufferSizePlayback );
desiredLatency = PA_MIN( desiredLatency, maxBufferSize );
}
/* Find the closest power of 2 */
e = ilogb( minPeriodSize );
if( minPeriodSize & (minPeriodSize - 1) )
e += 1;
periodSize = (snd_pcm_uframes_t)pow( 2, e );
while( periodSize <= maxPeriodSize )
{
if( snd_pcm_hw_params_test_period_size( self->playback.pcm, hwParamsPlayback, periodSize, 0 ) >= 0 &&
snd_pcm_hw_params_test_period_size( self->capture.pcm, hwParamsCapture, periodSize, 0 ) >= 0 )
break; /* Ok! */
periodSize *= 2;
}
/* 4 periods considered optimal */
optimalPeriodSize = PA_MAX( desiredLatency / 4, minPeriodSize );
optimalPeriodSize = PA_MIN( optimalPeriodSize, maxPeriodSize );
/* Find the closest power of 2 */
e = ilogb( optimalPeriodSize );
if( optimalPeriodSize & (optimalPeriodSize - 1) )
e += 1;
optimalPeriodSize = (snd_pcm_uframes_t)pow( 2, e );
while( optimalPeriodSize >= periodSize )
{
if( snd_pcm_hw_params_test_period_size( self->capture.pcm, hwParamsCapture, optimalPeriodSize, 0 ) < 0 )
continue;
if( snd_pcm_hw_params_test_period_size( self->playback.pcm, hwParamsPlayback, optimalPeriodSize, 0 ) >= 0 )
break;
optimalPeriodSize /= 2;
}
if( optimalPeriodSize > periodSize )
periodSize = optimalPeriodSize;
if( periodSize <= maxPeriodSize )
{
/* Looks good, the periodSize _should_ be acceptable by both devices */
ENSURE_( snd_pcm_hw_params_set_period_size( self->capture.pcm, hwParamsCapture, periodSize, 0 ),
paUnanticipatedHostError );
ENSURE_( snd_pcm_hw_params_set_period_size( self->playback.pcm, hwParamsPlayback, periodSize, 0 ),
paUnanticipatedHostError );
self->capture.framesPerBuffer = self->playback.framesPerBuffer = periodSize;
framesPerHostBuffer = periodSize;
}
else
{
/* Unable to find a common period size, oh well */
optimalPeriodSize = PA_MAX( desiredLatency / 4, minPeriodSize );
optimalPeriodSize = PA_MIN( optimalPeriodSize, maxPeriodSize );
self->capture.framesPerBuffer = optimalPeriodSize;
dir = 0;
ENSURE_( snd_pcm_hw_params_set_period_size_near( self->capture.pcm, hwParamsCapture, &self->capture.framesPerBuffer, &dir ),
paUnanticipatedHostError );
self->playback.framesPerBuffer = optimalPeriodSize;
dir = 0;
ENSURE_( snd_pcm_hw_params_set_period_size_near( self->playback.pcm, hwParamsPlayback, &self->playback.framesPerBuffer, &dir ),
paUnanticipatedHostError );
framesPerHostBuffer = PA_MAX( self->capture.framesPerBuffer, self->playback.framesPerBuffer );
*hostBufferSizeMode = paUtilBoundedHostBufferSize;
}
}
else
{
/* We choose the simple route and determine a suitable number of frames per buffer for one component of
* the stream, then we hope that this will work for the other component too (it should!).
*/
unsigned maxPeriods = 0;
PaAlsaStreamComponent* first = &self->capture, * second = &self->playback;
const PaStreamParameters* firstStreamParams = inputParameters;
snd_pcm_hw_params_t* firstHwParams = hwParamsCapture, * secondHwParams = hwParamsPlayback;
dir = 0;
ENSURE_( snd_pcm_hw_params_get_periods_max( hwParamsPlayback, &maxPeriods, &dir ), paUnanticipatedHostError );
if( maxPeriods < 4 )
{
/* The playback component is tricker to get right, try that first */
first = &self->playback;
second = &self->capture;
firstStreamParams = outputParameters;
firstHwParams = hwParamsPlayback;
secondHwParams = hwParamsCapture;
}
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( first, firstStreamParams, framesPerUserBuffer,
sampleRate, firstHwParams ) );
second->framesPerBuffer = first->framesPerBuffer;
dir = 0;
ENSURE_( snd_pcm_hw_params_set_period_size_near( second->pcm, secondHwParams, &second->framesPerBuffer, &dir ),
paUnanticipatedHostError );
if( self->capture.framesPerBuffer == self->playback.framesPerBuffer )
{
framesPerHostBuffer = self->capture.framesPerBuffer;
}
else
{
framesPerHostBuffer = PA_MAX( self->capture.framesPerBuffer, self->playback.framesPerBuffer );
*hostBufferSizeMode = paUtilBoundedHostBufferSize;
}
}
}
else /* half-duplex is a slightly simpler case */
{
if( self->capture.pcm )
{
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( &self->capture, inputParameters, framesPerUserBuffer,
sampleRate, hwParamsCapture) );
framesPerHostBuffer = self->capture.framesPerBuffer;
}
else
{
assert( self->playback.pcm );
PA_ENSURE( PaAlsaStreamComponent_DetermineFramesPerBuffer( &self->playback, outputParameters, framesPerUserBuffer,
sampleRate, hwParamsPlayback ) );
framesPerHostBuffer = self->playback.framesPerBuffer;
}
}
PA_UNLESS( framesPerHostBuffer != 0, paInternalError );
self->maxFramesPerHostBuffer = framesPerHostBuffer;
error:
return result;
}
/** Set up ALSA stream parameters.
*
*/
static PaError PaAlsaStream_Configure( PaAlsaStream *self, const PaStreamParameters *inParams, const PaStreamParameters*
outParams, double sampleRate, unsigned long framesPerUserBuffer, double* inputLatency, double* outputLatency,
PaUtilHostBufferSizeMode* hostBufferSizeMode )
{
PaError result = paNoError;
double realSr = sampleRate;
snd_pcm_hw_params_t* hwParamsCapture, * hwParamsPlayback;
snd_pcm_hw_params_alloca( &hwParamsCapture );
snd_pcm_hw_params_alloca( &hwParamsPlayback );
if( self->capture.pcm )
PA_ENSURE( PaAlsaStreamComponent_InitialConfigure( &self->capture, inParams, self->primeBuffers, hwParamsCapture,
&realSr ) );
if( self->playback.pcm )
PA_ENSURE( PaAlsaStreamComponent_InitialConfigure( &self->playback, outParams, self->primeBuffers, hwParamsPlayback,
&realSr ) );
PA_ENSURE( PaAlsaStream_DetermineFramesPerBuffer( self, realSr, inParams, outParams, framesPerUserBuffer,
hwParamsCapture, hwParamsPlayback, hostBufferSizeMode ) );
if( self->capture.pcm )
{
assert( self->capture.framesPerBuffer != 0 );
PA_ENSURE( PaAlsaStreamComponent_FinishConfigure( &self->capture, hwParamsCapture, inParams, self->primeBuffers, realSr,
inputLatency ) );
PA_DEBUG(( "%s: Capture period size: %lu, latency: %f\n", __FUNCTION__, self->capture.framesPerBuffer, *inputLatency ));
}
if( self->playback.pcm )
{
assert( self->playback.framesPerBuffer != 0 );
PA_ENSURE( PaAlsaStreamComponent_FinishConfigure( &self->playback, hwParamsPlayback, outParams, self->primeBuffers, realSr,
outputLatency ) );
PA_DEBUG(( "%s: Playback period size: %lu, latency: %f\n", __FUNCTION__, self->playback.framesPerBuffer, *outputLatency ));
}
/* Should be exact now */
self->streamRepresentation.streamInfo.sampleRate = realSr;
/* this will cause the two streams to automatically start/stop/prepare in sync.
* We only need to execute these operations on one of the pair.
* A: We don't want to do this on a blocking stream.
*/
if( self->callbackMode && self->capture.pcm && self->playback.pcm )
{
int err = snd_pcm_link( self->capture.pcm, self->playback.pcm );
if( err == 0 )
self->pcmsSynced = 1;
else
PA_DEBUG(( "%s: Unable to sync pcms: %s\n", __FUNCTION__, snd_strerror( err ) ));
}
{
unsigned long minFramesPerHostBuffer = PA_MIN( self->capture.pcm ? self->capture.framesPerBuffer : ULONG_MAX,
self->playback.pcm ? self->playback.framesPerBuffer : ULONG_MAX );
self->pollTimeout = CalculatePollTimeout( self, minFramesPerHostBuffer ); /* Period in msecs, rounded up */
/* Time before watchdog unthrottles realtime thread == 1/4 of period time in msecs */
self->threading.throttledSleepTime = (unsigned long) (minFramesPerHostBuffer / sampleRate / 4 * 1000);
}
if( self->callbackMode )
{
/* If the user expects a certain number of frames per callback we will either have to rely on block adaption
* (framesPerHostBuffer is not an integer multiple of framesPerBuffer) or we can simply align the number
* of host buffer frames with what the user specified */
if( self->framesPerUserBuffer != paFramesPerBufferUnspecified )
{
/* self->alignFrames = 1; */
/* Unless the ratio between number of host and user buffer frames is an integer we will have to rely
* on block adaption */
/*
if( framesPerHostBuffer % framesPerBuffer != 0 || (self->capture.pcm && self->playback.pcm &&
self->capture.framesPerBuffer != self->playback.framesPerBuffer) )
self->useBlockAdaption = 1;
else
self->alignFrames = 1;
*/
}
}
error:
return result;
}
static PaError OpenStream( struct PaUtilHostApiRepresentation *hostApi,
PaStream** s,
const PaStreamParameters *inputParameters,
const PaStreamParameters *outputParameters,
double sampleRate,
unsigned long framesPerBuffer,
PaStreamFlags streamFlags,
PaStreamCallback* callback,
void *userData )
{
PaError result = paNoError;
PaAlsaHostApiRepresentation *alsaHostApi = (PaAlsaHostApiRepresentation*)hostApi;
PaAlsaStream *stream = NULL;
PaSampleFormat hostInputSampleFormat = 0, hostOutputSampleFormat = 0;
PaSampleFormat inputSampleFormat = 0, outputSampleFormat = 0;
int numInputChannels = 0, numOutputChannels = 0;
PaTime inputLatency, outputLatency;
PaUtilHostBufferSizeMode hostBufferSizeMode = paUtilFixedHostBufferSize;
if( (streamFlags & paPlatformSpecificFlags) != 0 )
return paInvalidFlag;
if( inputParameters )
{
PA_ENSURE( ValidateParameters( inputParameters, hostApi, StreamDirection_In ) );
numInputChannels = inputParameters->channelCount;
inputSampleFormat = inputParameters->sampleFormat;
}
if( outputParameters )
{
PA_ENSURE( ValidateParameters( outputParameters, hostApi, StreamDirection_Out ) );
numOutputChannels = outputParameters->channelCount;
outputSampleFormat = outputParameters->sampleFormat;
}
/* XXX: Why do we support this anyway? */
if( framesPerBuffer == paFramesPerBufferUnspecified && getenv( "PA_ALSA_PERIODSIZE" ) != NULL )
{
PA_DEBUG(( "%s: Getting framesPerBuffer from environment\n", __FUNCTION__ ));
framesPerBuffer = atoi( getenv("PA_ALSA_PERIODSIZE") );
}
PA_UNLESS( stream = (PaAlsaStream*)PaUtil_AllocateMemory( sizeof(PaAlsaStream) ), paInsufficientMemory );
PA_ENSURE( PaAlsaStream_Initialize( stream, alsaHostApi, inputParameters, outputParameters, sampleRate,
framesPerBuffer, callback, streamFlags, userData ) );
PA_ENSURE( PaAlsaStream_Configure( stream, inputParameters, outputParameters, sampleRate, framesPerBuffer,
&inputLatency, &outputLatency, &hostBufferSizeMode ) );
if( stream->capture.pcm && stream->playback.pcm )
{
/* In full-duplex mode, host buffers should be of a fixed size unless we were unable to match the period
* sizes of the two handles */
if( hostBufferSizeMode == paUtilFixedHostBufferSize )
{
PA_UNLESS( stream->capture.framesPerBuffer == stream->playback.framesPerBuffer, paInternalError );
}
else
{
assert( hostBufferSizeMode == paUtilBoundedHostBufferSize );
PA_UNLESS( stream->capture.framesPerBuffer != stream->playback.framesPerBuffer, paInternalError );
}
}
else
{
if( stream->capture.pcm )
{
PA_UNLESS( stream->maxFramesPerHostBuffer == stream->capture.framesPerBuffer, paInternalError );
}
else
{
PA_UNLESS( stream->maxFramesPerHostBuffer == stream->playback.framesPerBuffer, paInternalError );
}
}
hostInputSampleFormat = stream->capture.hostSampleFormat;
hostOutputSampleFormat = stream->playback.hostSampleFormat;
PA_ENSURE( PaUtil_InitializeBufferProcessor( &stream->bufferProcessor,
numInputChannels, inputSampleFormat, hostInputSampleFormat,
numOutputChannels, outputSampleFormat, hostOutputSampleFormat,
sampleRate, streamFlags, framesPerBuffer, stream->maxFramesPerHostBuffer,
hostBufferSizeMode, callback, userData ) );
/* Ok, buffer processor is initialized, now we can deduce it's latency */
if( numInputChannels > 0 )
stream->streamRepresentation.streamInfo.inputLatency = inputLatency + PaUtil_GetBufferProcessorInputLatency(
&stream->bufferProcessor );
if( numOutputChannels > 0 )
stream->streamRepresentation.streamInfo.outputLatency = outputLatency + PaUtil_GetBufferProcessorOutputLatency(
&stream->bufferProcessor );
*s = (PaStream*)stream;
return result;
error:
if( stream )
{
PA_DEBUG(( "%s: Stream in error, terminating\n", __FUNCTION__ ));
PaAlsaStream_Terminate( stream );
}
return result;
}
static PaError CloseStream( PaStream* s )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
PaUtil_TerminateBufferProcessor( &stream->bufferProcessor );
PaUtil_TerminateStreamRepresentation( &stream->streamRepresentation );
PaAlsaStream_Terminate( stream );
return result;
}
static void SilenceBuffer( PaAlsaStream *stream )
{
const snd_pcm_channel_area_t *areas;
snd_pcm_uframes_t frames = (snd_pcm_uframes_t)snd_pcm_avail_update( stream->playback.pcm ), offset;
snd_pcm_mmap_begin( stream->playback.pcm, &areas, &offset, &frames );
snd_pcm_areas_silence( areas, offset, stream->playback.numHostChannels, frames, stream->playback.nativeFormat );
snd_pcm_mmap_commit( stream->playback.pcm, offset, frames );
}
/** Start/prepare pcm(s) for streaming.
*
* Depending on wether the stream is in callback or blocking mode, we will respectively start or simply
* prepare the playback pcm. If the buffer has _not_ been primed, we will in callback mode prepare and
* silence the buffer before starting playback. In blocking mode we simply prepare, as the playback will
* be started automatically as the user writes to output.
*
* The capture pcm, however, will simply be prepared and started.
*
* PaAlsaStream::startMtx makes sure access is synchronized (useful in callback mode)
*/
static PaError AlsaStart( PaAlsaStream *stream, int priming )
{
PaError result = paNoError;
if( stream->playback.pcm )
{
if( stream->callbackMode )
{
if( !priming )
{
/* Buffer isn't primed, so prepare and silence */
ENSURE_( snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
SilenceBuffer( stream );
}
ENSURE_( snd_pcm_start( stream->playback.pcm ), paUnanticipatedHostError );
}
else
ENSURE_( snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
}
if( stream->capture.pcm && !stream->pcmsSynced )
{
ENSURE_( snd_pcm_prepare( stream->capture.pcm ), paUnanticipatedHostError );
/* For a blocking stream we want to start capture as well, since nothing will happen otherwise */
ENSURE_( snd_pcm_start( stream->capture.pcm ), paUnanticipatedHostError );
}
end:
return result;
error:
goto end;
}
/** Utility function for determining if pcms are in running state.
*
*/
static int IsRunning( PaAlsaStream *stream )
{
int result = 0;
LockMutex( &stream->stateMtx );
if( stream->capture.pcm )
{
snd_pcm_state_t capture_state = snd_pcm_state( stream->capture.pcm );
if( capture_state == SND_PCM_STATE_RUNNING || capture_state == SND_PCM_STATE_XRUN
|| capture_state == SND_PCM_STATE_DRAINING )
{
result = 1;
goto end;
}
}
if( stream->playback.pcm )
{
snd_pcm_state_t playback_state = snd_pcm_state( stream->playback.pcm );
if( playback_state == SND_PCM_STATE_RUNNING || playback_state == SND_PCM_STATE_XRUN
|| playback_state == SND_PCM_STATE_DRAINING )
{
result = 1;
goto end;
}
}
end:
ASSERT_CALL_( UnlockMutex( &stream->stateMtx ), paNoError );
return result;
}
static PaError StartStream( PaStream *s )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
int streamStarted = 0; /* So we can know wether we need to take the stream down */
/* Ready the processor */
PaUtil_ResetBufferProcessor( &stream->bufferProcessor );
/* Set now, so we can test for activity further down */
stream->isActive = 1;
if( stream->callbackMode )
{
int res = 0;
PaTime pt = PaUtil_GetTime();
struct timespec ts;
PA_ENSURE( CreateCallbackThread( &stream->threading, &CallbackThreadFunc, stream ) );
streamStarted = 1;
/* Wait for stream to be started */
ts.tv_sec = (time_t) floor( pt + 1 );
ts.tv_nsec = (long) ((pt - floor( pt )) * 1000000000);
/* Since we'll be holding a lock on the startMtx (when not waiting on the condition), IsRunning won't be checking
* stream state at the same time as the callback thread affects it. We also check IsStreamActive, in the unlikely
* case the callback thread exits in the meantime (the stream will be considered inactive after the thread exits) */
PA_ENSURE( LockMutex( &stream->startMtx ) );
/* Due to possible spurious wakeups, we enclose in a loop */
while( !IsRunning( stream ) && IsStreamActive( s ) && !res )
{
res = pthread_cond_timedwait( &stream->startCond, &stream->startMtx, &ts );
}
PA_ENSURE( UnlockMutex( &stream->startMtx ) );
PA_UNLESS( !res || res == ETIMEDOUT, paInternalError );
PA_DEBUG(( "%s: Waited for %g seconds for stream to start\n", __FUNCTION__, PaUtil_GetTime() - pt ));
if( res == ETIMEDOUT )
{
PA_ENSURE( paTimedOut );
}
}
else
{
PA_ENSURE( AlsaStart( stream, 0 ) );
streamStarted = 1;
}
end:
return result;
error:
if( streamStarted )
AbortStream( stream );
stream->isActive = 0;
goto end;
}
static PaError AlsaStop( PaAlsaStream *stream, int abort )
{
PaError result = paNoError;
if( abort )
{
if( stream->playback.pcm )
{
ENSURE_( snd_pcm_drop( stream->playback.pcm ), paUnanticipatedHostError );
}
if( stream->capture.pcm && !stream->pcmsSynced )
{
ENSURE_( snd_pcm_drop( stream->capture.pcm ), paUnanticipatedHostError );
}
PA_DEBUG(( "%s: Dropped frames\n", __FUNCTION__ ));
}
else
{
if( stream->playback.pcm )
{
ENSURE_( snd_pcm_nonblock( stream->playback.pcm, 0 ), paUnanticipatedHostError );
if( snd_pcm_drain( stream->playback.pcm ) < 0 )
{
PA_DEBUG(( "%s: Draining playback handle failed!\n", __FUNCTION__ ));
}
}
if( stream->capture.pcm && !stream->pcmsSynced )
{
/* We don't need to retrieve any remaining frames */
if( snd_pcm_drop( stream->capture.pcm ) < 0 )
{
PA_DEBUG(( "%s: Draining capture handle failed!\n", __FUNCTION__ ));
}
}
}
end:
return result;
error:
goto end;
}
/** Stop or abort stream.
*
* If a stream is in callback mode we will have to inspect wether the background thread has
* finished, or we will have to take it out. In either case we join the thread before
* returning. In blocking mode, we simply tell ALSA to stop abruptly (abort) or finish
* buffers (drain)
*
* Stream will be considered inactive (!PaAlsaStream::isActive) after a call to this function
*/
static PaError RealStop( PaAlsaStream *stream, int abort )
{
PaError result = paNoError;
/* First deal with the callback thread, cancelling and/or joining
* it if necessary
*/
if( stream->callbackMode )
{
PaError threadRes, watchdogRes;
stream->callbackAbort = abort;
if( !abort )
{
PA_DEBUG(( "Stopping callback\n" ));
stream->callbackStop = 1;
}
PA_ENSURE( KillCallbackThread( &stream->threading, !abort, &threadRes, &watchdogRes ) );
if( threadRes != paNoError )
PA_DEBUG(( "Callback thread returned: %d\n", threadRes ));
if( watchdogRes != paNoError )
PA_DEBUG(( "Watchdog thread returned: %d\n", watchdogRes ));
stream->callbackStop = 0; /* The deed is done */
stream->callback_finished = 0;
}
else
{
PA_ENSURE( AlsaStop( stream, abort ) );
}
stream->isActive = 0;
end:
return result;
error:
goto end;
}
static PaError StopStream( PaStream *s )
{
return RealStop( (PaAlsaStream *) s, 0 );
}
static PaError AbortStream( PaStream *s )
{
return RealStop( (PaAlsaStream * ) s, 1 );
}
/** The stream is considered stopped before StartStream, or AFTER a call to Abort/StopStream (callback
* returning !paContinue is not considered)
*
*/
static PaError IsStreamStopped( PaStream *s )
{
PaAlsaStream *stream = (PaAlsaStream *)s;
/* callback_finished indicates we need to join callback thread (ie. in Abort/StopStream) */
return !IsStreamActive( s ) && !stream->callback_finished;
}
static PaError IsStreamActive( PaStream *s )
{
PaAlsaStream *stream = (PaAlsaStream*)s;
return stream->isActive;
}
static PaTime GetStreamTime( PaStream *s )
{
PaAlsaStream *stream = (PaAlsaStream*)s;
snd_timestamp_t timestamp;
snd_pcm_status_t *status;
snd_pcm_status_alloca( &status );
/* TODO: what if we have both? does it really matter? */
/* TODO: if running in callback mode, this will mean
* libasound routines are being called from multiple threads.
* need to verify that libasound is thread-safe. */
if( stream->capture.pcm )
{
snd_pcm_status( stream->capture.pcm, status );
}
else if( stream->playback.pcm )
{
snd_pcm_status( stream->playback.pcm, status );
}
snd_pcm_status_get_tstamp( status, &timestamp );
return timestamp.tv_sec + (PaTime)timestamp.tv_usec / 1000000.0;
}
static double GetStreamCpuLoad( PaStream* s )
{
PaAlsaStream *stream = (PaAlsaStream*)s;
return PaUtil_GetCpuLoad( &stream->cpuLoadMeasurer );
}
static int SetApproximateSampleRate( snd_pcm_t *pcm, snd_pcm_hw_params_t *hwParams, double sampleRate )
{
unsigned long approx = (unsigned long) sampleRate;
int dir = 0;
double fraction = sampleRate - approx;
assert( pcm && hwParams );
if( fraction > 0.0 )
{
if( fraction > 0.5 )
{
++approx;
dir = -1;
}
else
dir = 1;
}
return snd_pcm_hw_params_set_rate( pcm, hwParams, approx, dir );
}
/* Return exact sample rate in param sampleRate */
static int GetExactSampleRate( snd_pcm_hw_params_t *hwParams, double *sampleRate )
{
unsigned int num, den;
int err;
assert( hwParams );
err = snd_pcm_hw_params_get_rate_numden( hwParams, &num, &den );
*sampleRate = (double) num / den;
return err;
}
/* Utility functions for blocking/callback interfaces */
/* Atomic restart of stream (we don't want the intermediate state visible) */
static PaError AlsaRestart( PaAlsaStream *stream )
{
PaError result = paNoError;
PA_ENSURE( LockMutex( &stream->stateMtx ) );
PA_ENSURE( AlsaStop( stream, 0 ) );
PA_ENSURE( AlsaStart( stream, 0 ) );
PA_DEBUG(( "%s: Restarted audio\n", __FUNCTION__ ));
error:
PA_ENSURE( UnlockMutex( &stream->stateMtx ) );
return result;
}
/** Recover from xrun state.
*
*/
static PaError PaAlsaStream_HandleXrun( PaAlsaStream *self )
{
PaError result = paNoError;
snd_pcm_status_t *st;
PaTime now = PaUtil_GetTime();
snd_timestamp_t t;
snd_pcm_status_alloca( &st );
if( self->playback.pcm )
{
snd_pcm_status( self->playback.pcm, st );
if( snd_pcm_status_get_state( st ) == SND_PCM_STATE_XRUN )
{
snd_pcm_status_get_trigger_tstamp( st, &t );
self->underrun = now * 1000 - ((PaTime) t.tv_sec * 1000 + (PaTime) t.tv_usec / 1000);
}
}
if( self->capture.pcm )
{
snd_pcm_status( self->capture.pcm, st );
if( snd_pcm_status_get_state( st ) == SND_PCM_STATE_XRUN )
{
snd_pcm_status_get_trigger_tstamp( st, &t );
self->overrun = now * 1000 - ((PaTime) t.tv_sec * 1000 + (PaTime) t.tv_usec / 1000);
}
}
PA_ENSURE( AlsaRestart( self ) );
end:
return result;
error:
goto end;
}
/** Decide if we should continue polling for specified direction, eventually adjust the poll timeout.
*
*/
static PaError ContinuePoll( const PaAlsaStream *stream, StreamDirection streamDir, int *pollTimeout, int *continuePoll )
{
PaError result = paNoError;
snd_pcm_sframes_t delay, margin;
int err;
const PaAlsaStreamComponent *component = NULL, *otherComponent = NULL;
*continuePoll = 1;
if( StreamDirection_In == streamDir )
{
component = &stream->capture;
otherComponent = &stream->playback;
}
else
{
component = &stream->playback;
otherComponent = &stream->capture;
}
/* ALSA docs say that negative delay should indicate xrun, but in my experience snd_pcm_delay returns -EPIPE */
if( (err = snd_pcm_delay( otherComponent->pcm, &delay )) < 0 )
{
if( err == -EPIPE )
{
/* Xrun */
*continuePoll = 0;
goto error;
}
ENSURE_( err, paUnanticipatedHostError );
}
if( StreamDirection_Out == streamDir )
{
/* Number of eligible frames before capture overrun */
delay = otherComponent->bufferSize - delay;
}
margin = delay - otherComponent->framesPerBuffer / 2;
if( margin < 0 )
{
PA_DEBUG(( "%s: Stopping poll for %s\n", __FUNCTION__, StreamDirection_In == streamDir ? "capture" : "playback" ));
*continuePoll = 0;
}
else if( margin < otherComponent->framesPerBuffer )
{
*pollTimeout = CalculatePollTimeout( stream, margin );
PA_DEBUG(( "%s: Trying to poll again for %s frames, pollTimeout: %d\n",
__FUNCTION__, StreamDirection_In == streamDir ? "capture" : "playback", *pollTimeout ));
}
error:
return result;
}
/* Callback interface */
static void OnExit( void *data )
{
PaAlsaStream *stream = (PaAlsaStream *) data;
assert( data );
PaUtil_ResetCpuLoadMeasurer( &stream->cpuLoadMeasurer );
stream->callback_finished = 1; /* Let the outside world know stream was stopped in callback */
PA_DEBUG(( "%s: Stopping ALSA handles\n", __FUNCTION__ ));
AlsaStop( stream, stream->callbackAbort );
stream->callbackAbort = 0; /* Clear state */
PA_DEBUG(( "%s: Stoppage\n", __FUNCTION__ ));
/* Eventually notify user all buffers have played */
if( stream->streamRepresentation.streamFinishedCallback )
stream->streamRepresentation.streamFinishedCallback( stream->streamRepresentation.userData );
stream->isActive = 0;
}
static void CalculateTimeInfo( PaAlsaStream *stream, PaStreamCallbackTimeInfo *timeInfo )
{
snd_pcm_status_t *capture_status, *playback_status;
snd_timestamp_t capture_timestamp, playback_timestamp;
PaTime capture_time = 0., playback_time = 0.;
snd_pcm_status_alloca( &capture_status );
snd_pcm_status_alloca( &playback_status );
if( stream->capture.pcm )
{
snd_pcm_sframes_t capture_delay;
snd_pcm_status( stream->capture.pcm, capture_status );
snd_pcm_status_get_tstamp( capture_status, &capture_timestamp );
capture_time = capture_timestamp.tv_sec +
((PaTime)capture_timestamp.tv_usec / 1000000.0);
timeInfo->currentTime = capture_time;
capture_delay = snd_pcm_status_get_delay( capture_status );
timeInfo->inputBufferAdcTime = timeInfo->currentTime -
(PaTime)capture_delay / stream->streamRepresentation.streamInfo.sampleRate;
}
if( stream->playback.pcm )
{
snd_pcm_sframes_t playback_delay;
snd_pcm_status( stream->playback.pcm, playback_status );
snd_pcm_status_get_tstamp( playback_status, &playback_timestamp );
playback_time = playback_timestamp.tv_sec +
((PaTime)playback_timestamp.tv_usec / 1000000.0);
if( stream->capture.pcm ) /* Full duplex */
{
/* Hmm, we have both a playback and a capture timestamp.
* Hopefully they are the same... */
if( fabs( capture_time - playback_time ) > 0.01 )
PA_DEBUG(("Capture time and playback time differ by %f\n", fabs(capture_time-playback_time)));
}
else
timeInfo->currentTime = playback_time;
playback_delay = snd_pcm_status_get_delay( playback_status );
timeInfo->outputBufferDacTime = timeInfo->currentTime +
(PaTime)playback_delay / stream->streamRepresentation.streamInfo.sampleRate;
}
}
/** Called after buffer processing is finished.
*
* A number of mmapped frames is committed, it is possible that an xrun has occurred in the meantime.
*
* @param numFrames The number of frames that has been processed
* @param xrun Return whether an xrun has occurred
*/
static PaError PaAlsaStreamComponent_EndProcessing( PaAlsaStreamComponent *self, unsigned long numFrames, int *xrun )
{
PaError result = paNoError;
int res;
/* @concern FullDuplex It is possible that only one direction is marked ready after polling, and processed
* afterwards
*/
if( !self->ready )
goto end;
res = snd_pcm_mmap_commit( self->pcm, self->offset, numFrames );
if( res == -EPIPE || res == -ESTRPIPE )
{
*xrun = 1;
}
else
{
ENSURE_( res, paUnanticipatedHostError );
}
end:
error:
return result;
}
/* Extract buffer from channel area */
static unsigned char *ExtractAddress( const snd_pcm_channel_area_t *area, snd_pcm_uframes_t offset )
{
return (unsigned char *) area->addr + (area->first + offset * area->step) / 8;
}
/** Do necessary adaption between user and host channels.
*
@concern ChannelAdaption Adapting between user and host channels can involve silencing unused channels and
duplicating mono information if host outputs come in pairs.
*/
static PaError PaAlsaStreamComponent_DoChannelAdaption( PaAlsaStreamComponent *self, PaUtilBufferProcessor *bp, int numFrames )
{
PaError result = paNoError;
unsigned char *p;
int i;
int unusedChans = self->numHostChannels - self->numUserChannels;
unsigned char *src, *dst;
int convertMono = (self->numHostChannels % 2) == 0 && (self->numUserChannels % 2) != 0;
assert( StreamDirection_Out == self->streamDir );
if( self->hostInterleaved )
{
int swidth = snd_pcm_format_size( self->nativeFormat, 1 );
unsigned char *buffer = ExtractAddress( self->channelAreas, self->offset );
/* Start after the last user channel */
p = buffer + self->numUserChannels * swidth;
if( convertMono )
{
/* Convert the last user channel into stereo pair */
src = buffer + (self->numUserChannels - 1) * swidth;
for( i = 0; i < numFrames; ++i )
{
dst = src + swidth;
memcpy( dst, src, swidth );
src += self->numHostChannels * swidth;
}
/* Don't touch the channel we just wrote to */
p += swidth;
--unusedChans;
}
if( unusedChans > 0 )
{
/* Silence unused output channels */
for( i = 0; i < numFrames; ++i )
{
memset( p, 0, swidth * unusedChans );
p += self->numHostChannels * swidth;
}
}
}
else
{
/* We extract the last user channel */
if( convertMono )
{
ENSURE_( snd_pcm_area_copy( self->channelAreas + self->numUserChannels, self->offset, self->channelAreas +
(self->numUserChannels - 1), self->offset, numFrames, self->nativeFormat ), paUnanticipatedHostError );
--unusedChans;
}
if( unusedChans > 0 )
{
snd_pcm_areas_silence( self->channelAreas + (self->numHostChannels - unusedChans), self->offset, unusedChans, numFrames,
self->nativeFormat );
}
}
error:
return result;
}
static PaError PaAlsaStream_EndProcessing( PaAlsaStream *self, unsigned long numFrames, int *xrunOccurred )
{
PaError result = paNoError;
int xrun = 0;
if( self->capture.pcm )
{
PA_ENSURE( PaAlsaStreamComponent_EndProcessing( &self->capture, numFrames, &xrun ) );
}
if( self->playback.pcm )
{
if( self->playback.numHostChannels > self->playback.numUserChannels )
PA_ENSURE( PaAlsaStreamComponent_DoChannelAdaption( &self->playback, &self->bufferProcessor, numFrames ) );
PA_ENSURE( PaAlsaStreamComponent_EndProcessing( &self->playback, numFrames, &xrun ) );
}
error:
*xrunOccurred = xrun;
return result;
}
/** Update the number of available frames.
*
*/
static PaError PaAlsaStreamComponent_GetAvailableFrames( PaAlsaStreamComponent *self, unsigned long *numFrames, int *xrunOccurred )
{
PaError result = paNoError;
snd_pcm_sframes_t framesAvail = snd_pcm_avail_update( self->pcm );
*xrunOccurred = 0;
if( -EPIPE == framesAvail )
{
*xrunOccurred = 1;
framesAvail = 0;
}
else
ENSURE_( framesAvail, paUnanticipatedHostError );
*numFrames = framesAvail;
error:
return result;
}
/** Fill in pollfd objects.
*/
static PaError PaAlsaStreamComponent_BeginPolling( PaAlsaStreamComponent* self, struct pollfd* pfds )
{
PaError result = paNoError;
int ret = snd_pcm_poll_descriptors( self->pcm, pfds, self->nfds );
(void)ret; /* Prevent unused variable warning if asserts are turned off */
assert( ret == self->nfds );
self->ready = 0;
return result;
}
/** Examine results from poll().
*
* @param pfds pollfds to inspect
* @param shouldPoll Should we continue to poll
* @param xrun Has an xrun occurred
*/
static PaError PaAlsaStreamComponent_EndPolling( PaAlsaStreamComponent* self, struct pollfd* pfds, int* shouldPoll, int* xrun )
{
PaError result = paNoError;
unsigned short revents;
ENSURE_( snd_pcm_poll_descriptors_revents( self->pcm, pfds, self->nfds, &revents ), paUnanticipatedHostError );
if( revents != 0 )
{
if( revents & POLLERR )
{
*xrun = 1;
}
else
self->ready = 1;
*shouldPoll = 0;
}
error:
return result;
}
/** Return the number of available frames for this stream.
*
* @concern FullDuplex The minimum available for the two directions is calculated, it might be desirable to ignore
* one direction however (not marked ready from poll), so this is controlled by queryCapture and queryPlayback.
*
* @param queryCapture Check available for capture
* @param queryPlayback Check available for playback
* @param available The returned number of frames
* @param xrunOccurred Return whether an xrun has occurred
*/
static PaError PaAlsaStream_GetAvailableFrames( PaAlsaStream *self, int queryCapture, int queryPlayback, unsigned long
*available, int *xrunOccurred )
{
PaError result = paNoError;
unsigned long captureFrames, playbackFrames;
*xrunOccurred = 0;
assert( queryCapture || queryPlayback );
if( queryCapture )
{
assert( self->capture.pcm );
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &self->capture, &captureFrames, xrunOccurred ) );
if( *xrunOccurred )
goto end;
}
if( queryPlayback )
{
assert( self->playback.pcm );
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &self->playback, &playbackFrames, xrunOccurred ) );
if( *xrunOccurred )
goto end;
}
if( queryCapture && queryPlayback )
{
*available = PA_MIN( captureFrames, playbackFrames );
/*PA_DEBUG(("capture: %lu, playback: %lu, combined: %lu\n", captureFrames, playbackFrames, *available));*/
}
else if( queryCapture )
{
*available = captureFrames;
}
else
{
*available = playbackFrames;
}
end:
error:
return result;
}
/** Wait for and report available buffer space from ALSA.
*
* Unless ALSA reports a minimum of frames available for I/O, we poll the ALSA filedescriptors for more.
* Both of these operations can uncover xrun conditions.
*
* @concern Xruns Both polling and querying available frames can report an xrun condition.
*
* @param framesAvail Return the number of available frames
* @param xrunOccurred Return whether an xrun has occurred
*/
static PaError PaAlsaStream_WaitForFrames( PaAlsaStream *self, unsigned long *framesAvail, int *xrunOccurred )
{
PaError result = paNoError;
int pollPlayback = self->playback.pcm != NULL, pollCapture = self->capture.pcm != NULL;
int pollTimeout = self->pollTimeout;
int xrun = 0;
assert( self );
assert( framesAvail );
if( !self->callbackMode )
{
/* In blocking mode we will only wait if necessary */
PA_ENSURE( PaAlsaStream_GetAvailableFrames( self, self->capture.pcm != NULL, self->playback.pcm != NULL,
framesAvail, &xrun ) );
if( xrun )
{
goto end;
}
if( *framesAvail > 0 )
{
/* Mark pcms ready from poll */
if( self->capture.pcm )
self->capture.ready = 1;
if( self->playback.pcm )
self->playback.ready = 1;
goto end;
}
}
while( pollPlayback || pollCapture )
{
int totalFds = 0;
struct pollfd *capturePfds = NULL, *playbackPfds = NULL;
pthread_testcancel();
if( pollCapture )
{
capturePfds = self->pfds;
PA_ENSURE( PaAlsaStreamComponent_BeginPolling( &self->capture, capturePfds ) );
totalFds += self->capture.nfds;
}
if( pollPlayback )
{
playbackPfds = self->pfds + (self->capture.pcm ? self->capture.nfds : 0);
PA_ENSURE( PaAlsaStreamComponent_BeginPolling( &self->playback, playbackPfds ) );
totalFds += self->playback.nfds;
}
if( poll( self->pfds, totalFds, pollTimeout ) < 0 )
{
/* XXX: Depend on preprocessor condition? */
if( errno == EINTR ) { /* gdb */
continue;
}
/* TODO: Add macro for checking system calls */
PA_ENSURE( paInternalError );
}
/* check the return status of our pfds */
if( pollCapture )
{
PA_ENSURE( PaAlsaStreamComponent_EndPolling( &self->capture, capturePfds, &pollCapture, &xrun ) );
}
if( pollPlayback )
{
PA_ENSURE( PaAlsaStreamComponent_EndPolling( &self->playback, playbackPfds, &pollPlayback, &xrun ) );
}
if( xrun )
{
break;
}
/* @concern FullDuplex If only one of two pcms is ready we may want to compromise between the two.
* If there is less than half a period's worth of samples left of frames in the other pcm's buffer we will
* stop polling.
*/
if( self->capture.pcm && self->playback.pcm )
{
if( pollCapture && !pollPlayback )
{
PA_ENSURE( ContinuePoll( self, StreamDirection_In, &pollTimeout, &pollCapture ) );
}
else if( pollPlayback && !pollCapture )
{
PA_ENSURE( ContinuePoll( self, StreamDirection_Out, &pollTimeout, &pollPlayback ) );
}
}
}
if( !xrun )
{
/* Get the number of available frames for the pcms that are marked ready.
* @concern FullDuplex If only one direction is marked ready (from poll), the number of frames available for
* the other direction is returned. Output is normally preferred over capture however, so capture frames may be
* discarded to avoid overrun unless paNeverDropInput is specified.
*/
int captureReady = self->capture.pcm ? self->capture.ready : 0,
playbackReady = self->playback.pcm ? self->playback.ready : 0;
PA_ENSURE( PaAlsaStream_GetAvailableFrames( self, captureReady, playbackReady, framesAvail, &xrun ) );
if( self->capture.pcm && self->playback.pcm )
{
if( !self->playback.ready && !self->neverDropInput )
{
/* Drop input, a period's worth */
assert( self->capture.ready );
PaAlsaStreamComponent_EndProcessing( &self->capture, PA_MIN( self->capture.framesPerBuffer,
*framesAvail ), &xrun );
*framesAvail = 0;
self->capture.ready = 0;
}
}
else if( self->capture.pcm )
assert( self->capture.ready );
else
assert( self->playback.ready );
}
end:
error:
if( xrun )
{
/* Recover from the xrun state */
PA_ENSURE( PaAlsaStream_HandleXrun( self ) );
*framesAvail = 0;
}
else
{
if( 0 != *framesAvail )
{
/* If we're reporting frames eligible for processing, one of the handles better be ready */
PA_UNLESS( self->capture.ready || self->playback.ready, paInternalError );
}
}
*xrunOccurred = xrun;
return result;
}
/** Register per-channel ALSA buffer information with buffer processor.
*
* Mmapped buffer space is acquired from ALSA, and registered with the buffer processor. Differences between the
* number of host and user channels is taken into account.
*
* @param numFrames On entrance the number of requested frames, on exit the number of contiguously accessible frames.
*/
static PaError PaAlsaStreamComponent_RegisterChannels( PaAlsaStreamComponent *self, PaUtilBufferProcessor *bp,
unsigned long *numFrames, int *xrun )
{
PaError result = paNoError;
const snd_pcm_channel_area_t *areas, *area;
void (*setChannel)(PaUtilBufferProcessor *, unsigned int, void *, unsigned int) =
StreamDirection_In == self->streamDir ? PaUtil_SetInputChannel : PaUtil_SetOutputChannel;
unsigned char *buffer, *p;
int i;
unsigned long framesAvail;
/* This _must_ be called before mmap_begin */
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( self, &framesAvail, xrun ) );
if( *xrun )
{
*numFrames = 0;
goto end;
}
ENSURE_( snd_pcm_mmap_begin( self->pcm, &areas, &self->offset, numFrames ), paUnanticipatedHostError );
if( self->hostInterleaved )
{
int swidth = snd_pcm_format_size( self->nativeFormat, 1 );
p = buffer = ExtractAddress( areas, self->offset );
for( i = 0; i < self->numUserChannels; ++i )
{
/* We're setting the channels up to userChannels, but the stride will be hostChannels samples */
setChannel( bp, i, p, self->numHostChannels );
p += swidth;
}
}
else
{
for( i = 0; i < self->numUserChannels; ++i )
{
area = areas + i;
buffer = ExtractAddress( area, self->offset );
setChannel( bp, i, buffer, 1 );
}
}
/* @concern ChannelAdaption Buffer address is recorded so we can do some channel adaption later */
self->channelAreas = (snd_pcm_channel_area_t *)areas;
end:
error:
return result;
}
/** Initiate buffer processing.
*
* ALSA buffers are registered with the PA buffer processor and the buffer size (in frames) set.
*
* @concern FullDuplex If both directions are being processed, the minimum amount of frames for the two directions is
* calculated.
*
* @param numFrames On entrance the number of available frames, on exit the number of received frames
* @param xrunOccurred Return whether an xrun has occurred
*/
static PaError PaAlsaStream_SetUpBuffers( PaAlsaStream *self, unsigned long *numFrames, int *xrunOccurred )
{
PaError result = paNoError;
unsigned long captureFrames = ULONG_MAX, playbackFrames = ULONG_MAX, commonFrames = 0;
int xrun = 0;
if( *xrunOccurred )
{
*numFrames = 0;
return result;
}
/* If we got here at least one of the pcm's should be marked ready */
PA_UNLESS( self->capture.ready || self->playback.ready, paInternalError );
/* Extract per-channel ALSA buffer pointers and register them with the buffer processor.
* It is possible that a direction is not marked ready however, because it is out of sync with the other.
*/
if( self->capture.pcm && self->capture.ready )
{
captureFrames = *numFrames;
PA_ENSURE( PaAlsaStreamComponent_RegisterChannels( &self->capture, &self->bufferProcessor, &captureFrames,
&xrun ) );
}
if( self->playback.pcm && self->playback.ready )
{
playbackFrames = *numFrames;
PA_ENSURE( PaAlsaStreamComponent_RegisterChannels( &self->playback, &self->bufferProcessor, &playbackFrames,
&xrun ) );
}
if( xrun )
{
/* Nothing more to do */
assert( 0 == commonFrames );
goto end;
}
commonFrames = PA_MIN( captureFrames, playbackFrames );
/* assert( commonFrames <= *numFrames ); */
if( commonFrames > *numFrames )
{
/* Hmmm ... how come there are more frames available than we requested!? Blah. */
PA_DEBUG(( "%s: Common available frames are reported to be more than number requested: %lu, %lu, callbackMode: %d\n", __FUNCTION__,
commonFrames, *numFrames, self->callbackMode ));
if( self->capture.pcm )
{
PA_DEBUG(( "%s: captureFrames: %lu, capture.ready: %d\n", __FUNCTION__, captureFrames, self->capture.ready ));
}
if( self->playback.pcm )
{
PA_DEBUG(( "%s: playbackFrames: %lu, playback.ready: %d\n", __FUNCTION__, playbackFrames, self->playback.ready ));
}
commonFrames = 0;
goto end;
}
/* Inform PortAudio of the number of frames we got.
* @concern FullDuplex We might be experiencing underflow in either end; if its an input underflow, we go on
* with output. If its output underflow however, depending on the paNeverDropInput flag, we may want to simply
* discard the excess input or call the callback with paOutputOverflow flagged.
*/
if( self->capture.pcm )
{
if( self->capture.ready )
{
PaUtil_SetInputFrameCount( &self->bufferProcessor, commonFrames );
}
else
{
/* We have input underflow */
PaUtil_SetNoInput( &self->bufferProcessor );
}
}
if( self->playback.pcm )
{
if( self->playback.ready )
{
PaUtil_SetOutputFrameCount( &self->bufferProcessor, commonFrames );
}
else
{
/* We have output underflow, but keeping input data (paNeverDropInput) */
assert( self->neverDropInput );
assert( self->capture.pcm != NULL );
PA_DEBUG(( "%s: Setting output buffers to NULL\n", __FUNCTION__ ));
PaUtil_SetNoOutput( &self->bufferProcessor );
}
}
end:
*numFrames = commonFrames;
error:
if( xrun )
{
PA_ENSURE( PaAlsaStream_HandleXrun( self ) );
*numFrames = 0;
}
*xrunOccurred = xrun;
return result;
}
/** Callback thread's function.
*
* Roughly, the workflow can be described in the following way: The number of available frames that can be processed
* directly is obtained from ALSA, we then request as much directly accessible memory as possible within this amount
* from ALSA. The buffer memory is registered with the PA buffer processor and processing is carried out with
* PaUtil_EndBufferProcessing. Finally, the number of processed frames is reported to ALSA. The processing can
* happen in several iterations untill we have consumed the known number of available frames (or an xrun is detected).
*/
static void *CallbackThreadFunc( void *userData )
{
PaError result = paNoError, *pres = NULL;
PaAlsaStream *stream = (PaAlsaStream*) userData;
PaStreamCallbackTimeInfo timeInfo = {0, 0, 0};
snd_pcm_sframes_t startThreshold = 0;
int callbackResult = paContinue;
PaStreamCallbackFlags cbFlags = 0; /* We might want to keep state across iterations */
int streamStarted = 0;
assert( stream );
callbackThread_ = pthread_self();
/* Execute OnExit when exiting */
pthread_cleanup_push( &OnExit, stream );
/* Not implemented */
assert( !stream->primeBuffers );
/* @concern StreamStart If the output is being primed the output pcm needs to be prepared, otherwise the
* stream is started immediately. The latter involves signaling the waiting main thread.
*/
if( stream->primeBuffers )
{
snd_pcm_sframes_t avail;
if( stream->playback.pcm )
ENSURE_( snd_pcm_prepare( stream->playback.pcm ), paUnanticipatedHostError );
if( stream->capture.pcm && !stream->pcmsSynced )
ENSURE_( snd_pcm_prepare( stream->capture.pcm ), paUnanticipatedHostError );
/* We can't be certain that the whole ring buffer is available for priming, but there should be
* at least one period */
avail = snd_pcm_avail_update( stream->playback.pcm );
startThreshold = avail - (avail % stream->playback.framesPerBuffer);
assert( startThreshold >= stream->playback.framesPerBuffer );
}
else
{
PA_ENSURE( LockMutex( &stream->startMtx ) );
PA_ENSURE( AlsaStart( stream, 0 ) ); /* Buffer will be zeroed */
ENSURE_SYSTEM_( pthread_cond_signal( &stream->startCond ), 0 );
PA_ENSURE( UnlockMutex( &stream->startMtx ) );
streamStarted = 1;
}
while( 1 )
{
unsigned long framesAvail, framesGot;
int xrun = 0;
pthread_testcancel();
/* @concern StreamStop if the main thread has requested a stop and the stream has not been effectively
* stopped we signal this condition by modifying callbackResult (we'll want to flush buffered output).
*/
if( stream->callbackStop && paContinue == callbackResult )
{
PA_DEBUG(( "Setting callbackResult to paComplete\n" ));
callbackResult = paComplete;
}
if( paContinue != callbackResult )
{
stream->callbackAbort = (paAbort == callbackResult);
if( stream->callbackAbort ||
/** @concern BlockAdaption: Go on if adaption buffers are empty */
PaUtil_IsBufferProcessorOutputEmpty( &stream->bufferProcessor ) )
goto end;
PA_DEBUG(( "%s: Flushing buffer processor\n", __FUNCTION__ ));
/* There is still buffered output that needs to be processed */
}
/* Wait for data to become available, this comes down to polling the ALSA file descriptors untill we have
* a number of available frames.
*/
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
if( xrun )
{
assert( 0 == framesAvail );
continue;
/* XXX: Report xruns to the user? A situation is conceivable where the callback is never invoked due
* to constant xruns, it might be desirable to notify the user of this.
*/
}
/* Consume buffer space. Once we have a number of frames available for consumption we must retrieve the
* mmapped buffers from ALSA, this is contiguously accessible memory however, so we may receive smaller
* portions at a time than is available as a whole. Therefore we should be prepared to process several
* chunks successively. The buffers are passed to the PA buffer processor.
*/
while( framesAvail > 0 )
{
xrun = 0;
pthread_testcancel();
/** @concern Xruns Under/overflows are to be reported to the callback */
if( stream->underrun > 0.0 )
{
cbFlags |= paOutputUnderflow;
stream->underrun = 0.0;
}
if( stream->overrun > 0.0 )
{
cbFlags |= paInputOverflow;
stream->overrun = 0.0;
}
if( stream->capture.pcm && stream->playback.pcm )
{
/** @concern FullDuplex It's possible that only one direction is being processed to avoid an
* under- or overflow, this should be reported correspondingly */
if( !stream->capture.ready )
{
cbFlags |= paInputUnderflow;
PA_DEBUG(( "%s: Input underflow\n", __FUNCTION__ ));
}
else if( !stream->playback.ready )
{
cbFlags |= paOutputOverflow;
PA_DEBUG(( "%s: Output overflow\n", __FUNCTION__ ));
}
}
CallbackUpdate( &stream->threading );
CalculateTimeInfo( stream, &timeInfo );
PaUtil_BeginBufferProcessing( &stream->bufferProcessor, &timeInfo, cbFlags );
cbFlags = 0;
/* CPU load measurement should include processing activivity external to the stream callback */
PaUtil_BeginCpuLoadMeasurement( &stream->cpuLoadMeasurer );
framesGot = framesAvail;
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
/* Check the host buffer size against the buffer processor configuration */
if( stream->bufferProcessor.hostBufferSizeMode == paUtilFixedHostBufferSize )
{
/* We've committed to a fixed host buffer size, stick to that */
framesGot = framesGot >= stream->maxFramesPerHostBuffer ? stream->maxFramesPerHostBuffer : 0;
}
else
{
/* We've committed to an upper bound on the size of host buffers */
assert( stream->bufferProcessor.hostBufferSizeMode == paUtilBoundedHostBufferSize );
framesGot = PA_MIN( framesGot, stream->maxFramesPerHostBuffer );
}
framesAvail -= framesGot;
if( framesGot > 0 )
{
assert( !xrun );
PaUtil_EndBufferProcessing( &stream->bufferProcessor, &callbackResult );
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
}
PaUtil_EndCpuLoadMeasurement( &stream->cpuLoadMeasurer, framesGot );
if( framesGot == 0 )
{
if( !xrun )
{
PA_DEBUG(( "%s: Received less frames than reported from ALSA, framesAvail: %lu\n", __FUNCTION__,
framesAvail ));
}
/* Go back to polling for more frames */
break;
}
if( paContinue != callbackResult )
break;
}
}
/* Match pthread_cleanup_push */
pthread_cleanup_pop( 1 );
end:
PA_DEBUG(( "%s: Thread %d exiting\n ", __FUNCTION__, pthread_self() ));
pthread_exit( pres );
error:
/* Pass on error code */
pres = malloc( sizeof (PaError) );
*pres = result;
goto end;
}
/* Blocking interface */
static PaError ReadStream( PaStream* s, void *buffer, unsigned long frames )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
unsigned long framesGot, framesAvail;
void *userBuffer;
snd_pcm_t *save = stream->playback.pcm;
assert( stream );
PA_UNLESS( stream->capture.pcm, paCanNotReadFromAnOutputOnlyStream );
/* Disregard playback */
stream->playback.pcm = NULL;
if( stream->overrun > 0. )
{
result = paInputOverflowed;
stream->overrun = 0.0;
}
if( stream->capture.userInterleaved )
{
userBuffer = buffer;
}
else
{
/* Copy channels into local array */
userBuffer = stream->capture.userBuffers;
memcpy( userBuffer, buffer, sizeof (void *) * stream->capture.numUserChannels );
}
/* Start stream if in prepared state */
if( snd_pcm_state( stream->capture.pcm ) == SND_PCM_STATE_PREPARED )
{
ENSURE_( snd_pcm_start( stream->capture.pcm ), paUnanticipatedHostError );
}
while( frames > 0 )
{
int xrun = 0;
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
framesGot = PA_MIN( framesAvail, frames );
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
if( framesGot > 0 )
{
framesGot = PaUtil_CopyInput( &stream->bufferProcessor, &userBuffer, framesGot );
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
frames -= framesGot;
}
}
end:
stream->playback.pcm = save;
return result;
error:
goto end;
}
static PaError WriteStream( PaStream* s, const void *buffer, unsigned long frames )
{
PaError result = paNoError;
signed long err;
PaAlsaStream *stream = (PaAlsaStream*)s;
snd_pcm_uframes_t framesGot, framesAvail;
const void *userBuffer;
snd_pcm_t *save = stream->capture.pcm;
assert( stream );
PA_UNLESS( stream->playback.pcm, paCanNotWriteToAnInputOnlyStream );
/* Disregard capture */
stream->capture.pcm = NULL;
if( stream->underrun > 0. )
{
result = paOutputUnderflowed;
stream->underrun = 0.0;
}
if( stream->playback.userInterleaved )
userBuffer = buffer;
else /* Copy channels into local array */
{
userBuffer = stream->playback.userBuffers;
memcpy( (void *)userBuffer, buffer, sizeof (void *) * stream->playback.numUserChannels );
}
while( frames > 0 )
{
int xrun = 0;
snd_pcm_uframes_t hwAvail;
PA_ENSURE( PaAlsaStream_WaitForFrames( stream, &framesAvail, &xrun ) );
framesGot = PA_MIN( framesAvail, frames );
PA_ENSURE( PaAlsaStream_SetUpBuffers( stream, &framesGot, &xrun ) );
if( framesGot > 0 )
{
framesGot = PaUtil_CopyOutput( &stream->bufferProcessor, &userBuffer, framesGot );
PA_ENSURE( PaAlsaStream_EndProcessing( stream, framesGot, &xrun ) );
frames -= framesGot;
}
/* Start stream after one period of samples worth */
/* Frames residing in buffer */
PA_ENSURE( err = GetStreamWriteAvailable( stream ) );
framesAvail = err;
hwAvail = stream->playback.bufferSize - framesAvail;
if( snd_pcm_state( stream->playback.pcm ) == SND_PCM_STATE_PREPARED &&
hwAvail >= stream->playback.framesPerBuffer )
{
ENSURE_( snd_pcm_start( stream->playback.pcm ), paUnanticipatedHostError );
}
}
end:
stream->capture.pcm = save;
return result;
error:
goto end;
}
/* Return frames available for reading. In the event of an overflow, the capture pcm will be restarted */
static signed long GetStreamReadAvailable( PaStream* s )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
unsigned long avail;
int xrun;
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->capture, &avail, &xrun ) );
if( xrun )
{
PA_ENSURE( PaAlsaStream_HandleXrun( stream ) );
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->capture, &avail, &xrun ) );
if( xrun )
PA_ENSURE( paInputOverflowed );
}
return (signed long)avail;
error:
return result;
}
static signed long GetStreamWriteAvailable( PaStream* s )
{
PaError result = paNoError;
PaAlsaStream *stream = (PaAlsaStream*)s;
unsigned long avail;
int xrun;
PA_ENSURE( PaAlsaStreamComponent_GetAvailableFrames( &stream->playback, &avail, &xrun ) );
if( xrun )
{
snd_pcm_sframes_t savail;
PA_ENSURE( PaAlsaStream_HandleXrun( stream ) );
savail = snd_pcm_avail_update( stream->playback.pcm );
/* savail should not contain -EPIPE now, since PaAlsaStream_HandleXrun will only prepare the pcm */
ENSURE_( savail, paUnanticipatedHostError );
avail = (unsigned long) savail;
}
return (signed long)avail;
error:
return result;
}
/* Extensions */
/* Initialize host api specific structure */
void PaAlsa_InitializeStreamInfo( PaAlsaStreamInfo *info )
{
info->size = sizeof (PaAlsaStreamInfo);
info->hostApiType = paALSA;
info->version = 1;
info->deviceString = NULL;
}
void PaAlsa_EnableRealtimeScheduling( PaStream *s, int enable )
{
PaAlsaStream *stream = (PaAlsaStream *) s;
stream->threading.rtSched = enable;
}
void PaAlsa_EnableWatchdog( PaStream *s, int enable )
{
PaAlsaStream *stream = (PaAlsaStream *) s;
stream->threading.useWatchdog = enable;
}