mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-18 01:52:05 -05:00
399 lines
14 KiB
Plaintext
399 lines
14 KiB
Plaintext
|
[template tr1_overview[]
|
||
|
Many of the special functions included in this library are also a part
|
||
|
of the either the [C99] or the [tr1]. Therefore this library
|
||
|
includes a thin wrapper header `boost/math/tr1.hpp` that provides
|
||
|
compatibility with these two standards.
|
||
|
|
||
|
There are various pros and cons to using the library in this way:
|
||
|
|
||
|
Pros:
|
||
|
|
||
|
* The header to include is lightweight (i.e. fast to compile).
|
||
|
* The functions have extern "C" linkage,
|
||
|
and so are usable from other languages (not just C and C++).
|
||
|
* C99 and C++ TR1 Standard compatibility.
|
||
|
|
||
|
Cons:
|
||
|
|
||
|
* You will need to compile and link to the external Boost.Math libraries.
|
||
|
* Limited to support for the types, `float`, `double` and `long double`.
|
||
|
* Error handling is handled via setting ::errno and returning NaN's and
|
||
|
infinities: this may be less flexible than an C++ exception based approach.
|
||
|
|
||
|
[note The separate libraries are required *only* if you choose to use
|
||
|
boost/math/tr1.hpp rather than some other Boost.Math header, the rest
|
||
|
of Boost.Math remains header-only.]
|
||
|
|
||
|
The separate libraries required in order to use tr1.hpp can be compiled
|
||
|
using bjam from within the libs/math/build directory, or from the Boost
|
||
|
root directory using the usual Boost-wide install procedure.
|
||
|
Alternatively the source files are located in libs/math/src and each have
|
||
|
the same name as the function they implement. The various libraries are
|
||
|
named as follows:
|
||
|
|
||
|
[table
|
||
|
[[Name][Type][Functions]]
|
||
|
[[boost_math_c99f-<suffix>][float][C99 Functions]]
|
||
|
[[boost_math_c99-<suffix>][double][C99 Functions]]
|
||
|
[[boost_math_c99l-<suffix>][long double][C99 Functions]]
|
||
|
[[boost_math_tr1f-<suffix>][float][TR1 Functions]]
|
||
|
[[boost_math_tr1-<suffix>][double][TR1 Functions]]
|
||
|
[[boost_math_tr1l-<suffix>][long double][TR1 Functions]]
|
||
|
]
|
||
|
|
||
|
Where `<suffix>` encodes the compiler and build options used to
|
||
|
build the libraries: for example "libboost_math_tr1-vc80-mt-gd.lib"
|
||
|
would be the statically linked TR1 library to use with Visual C++ 8.0,
|
||
|
in multithreading debug mode, with the DLL VC++ runtime, where as
|
||
|
"boost_math_tr1-vc80-mt.lib" would be import library for the TR1 DLL
|
||
|
to be used with Visual C++ 8.0 with the release multithreaded DLL
|
||
|
VC++ runtime.
|
||
|
Refer to the getting started guide for a
|
||
|
[@http://www.boost.org/doc/libs/1_35_0/more/getting_started/windows.html#library-naming
|
||
|
full explanation of the `<suffix>` meanings].
|
||
|
|
||
|
[note
|
||
|
Visual C++ users will typically have the correct library variant to link
|
||
|
against selected for them by boost/math/tr1.hpp based on your compiler
|
||
|
settings.
|
||
|
|
||
|
Users will need to define BOOST_MATH_TR1_DYN_LINK when building
|
||
|
their code if they want to link against the DLL versions of these libraries
|
||
|
rather than the static versions.
|
||
|
|
||
|
Users can disable auto-linking by defining BOOST_MATH_TR1_NO_LIB when
|
||
|
building: this is typically only used when linking against a customised
|
||
|
build of the libraries.]
|
||
|
|
||
|
[note Linux and Unix users will generally only have one variant of
|
||
|
these libraries installed, and can generally just link against
|
||
|
-lboost_math_tr1 etc.]
|
||
|
|
||
|
[h4 Usage Recomendations]
|
||
|
|
||
|
This library now presents the user with a choice:
|
||
|
|
||
|
* To include the header only versions of the functions and have
|
||
|
an easier time linking, but a longer compile time.
|
||
|
* To include the TR1 headers and link against an external library.
|
||
|
|
||
|
Which option you choose depends largely on how you prefer to work
|
||
|
and how your system is set up.
|
||
|
|
||
|
For example a casual user who just needs the acosh function, would
|
||
|
probably be better off including `<boost/math/special_functions/acosh.hpp>`
|
||
|
and using `boost::math::acosh(x)` in their code.
|
||
|
|
||
|
However, for large scale
|
||
|
software development where compile times are significant, and where the
|
||
|
Boost libraries are already built and installed on the system, then
|
||
|
including `<boost/math/tr1.hpp>` and using `boost::math::tr1::acosh(x)`
|
||
|
will speed up compile times, reduce object files sizes (since there are
|
||
|
no templates being instantiated any more), and also speed up debugging
|
||
|
runtimes - since the externally compiled libraries can be
|
||
|
compiler optimised, rather than built using full settings - the difference
|
||
|
in performance between
|
||
|
[link math_toolkit.getting_best
|
||
|
release and debug builds can be as much as 20 times],
|
||
|
so for complex applications this can be a big win.
|
||
|
|
||
|
[h4 Supported C99 Functions]
|
||
|
|
||
|
See also the [link math_toolkit.c99
|
||
|
quick reference guide for these functions].
|
||
|
|
||
|
namespace boost{ namespace math{ namespace tr1{ extern "C"{
|
||
|
|
||
|
typedef unspecified float_t;
|
||
|
typedef unspecified double_t;
|
||
|
|
||
|
double acosh(double x);
|
||
|
float acoshf(float x);
|
||
|
long double acoshl(long double x);
|
||
|
|
||
|
double asinh(double x);
|
||
|
float asinhf(float x);
|
||
|
long double asinhl(long double x);
|
||
|
|
||
|
double atanh(double x);
|
||
|
float atanhf(float x);
|
||
|
long double atanhl(long double x);
|
||
|
|
||
|
double cbrt(double x);
|
||
|
float cbrtf(float x);
|
||
|
long double cbrtl(long double x);
|
||
|
|
||
|
double copysign(double x, double y);
|
||
|
float copysignf(float x, float y);
|
||
|
long double copysignl(long double x, long double y);
|
||
|
|
||
|
double erf(double x);
|
||
|
float erff(float x);
|
||
|
long double erfl(long double x);
|
||
|
|
||
|
double erfc(double x);
|
||
|
float erfcf(float x);
|
||
|
long double erfcl(long double x);
|
||
|
|
||
|
double expm1(double x);
|
||
|
float expm1f(float x);
|
||
|
long double expm1l(long double x);
|
||
|
|
||
|
double fmax(double x, double y);
|
||
|
float fmaxf(float x, float y);
|
||
|
long double fmaxl(long double x, long double y);
|
||
|
|
||
|
double fmin(double x, double y);
|
||
|
float fminf(float x, float y);
|
||
|
long double fminl(long double x, long double y);
|
||
|
|
||
|
double hypot(double x, double y);
|
||
|
float hypotf(float x, float y);
|
||
|
long double hypotl(long double x, long double y);
|
||
|
|
||
|
double lgamma(double x);
|
||
|
float lgammaf(float x);
|
||
|
long double lgammal(long double x);
|
||
|
|
||
|
long long llround(double x);
|
||
|
long long llroundf(float x);
|
||
|
long long llroundl(long double x);
|
||
|
|
||
|
double log1p(double x);
|
||
|
float log1pf(float x);
|
||
|
long double log1pl(long double x);
|
||
|
|
||
|
long lround(double x);
|
||
|
long lroundf(float x);
|
||
|
long lroundl(long double x);
|
||
|
|
||
|
double nextafter(double x, double y);
|
||
|
float nextafterf(float x, float y);
|
||
|
long double nextafterl(long double x, long double y);
|
||
|
|
||
|
double nexttoward(double x, long double y);
|
||
|
float nexttowardf(float x, long double y);
|
||
|
long double nexttowardl(long double x, long double y);
|
||
|
|
||
|
double round(double x);
|
||
|
float roundf(float x);
|
||
|
long double roundl(long double x);
|
||
|
|
||
|
double tgamma(double x);
|
||
|
float tgammaf(float x);
|
||
|
long double tgammal(long double x);
|
||
|
|
||
|
double trunc(double x);
|
||
|
float truncf(float x);
|
||
|
long double truncl(long double x);
|
||
|
|
||
|
}}}} // namespaces
|
||
|
|
||
|
[h4 Supported TR1 Functions]
|
||
|
|
||
|
See also the [link math_toolkit.main_tr1
|
||
|
quick reference guide for these functions].
|
||
|
|
||
|
namespace boost{ namespace math{ namespace tr1{ extern "C"{
|
||
|
|
||
|
// [5.2.1.1] associated Laguerre polynomials:
|
||
|
double assoc_laguerre(unsigned n, unsigned m, double x);
|
||
|
float assoc_laguerref(unsigned n, unsigned m, float x);
|
||
|
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
|
||
|
|
||
|
// [5.2.1.2] associated Legendre functions:
|
||
|
double assoc_legendre(unsigned l, unsigned m, double x);
|
||
|
float assoc_legendref(unsigned l, unsigned m, float x);
|
||
|
long double assoc_legendrel(unsigned l, unsigned m, long double x);
|
||
|
|
||
|
// [5.2.1.3] beta function:
|
||
|
double beta(double x, double y);
|
||
|
float betaf(float x, float y);
|
||
|
long double betal(long double x, long double y);
|
||
|
|
||
|
// [5.2.1.4] (complete) elliptic integral of the first kind:
|
||
|
double comp_ellint_1(double k);
|
||
|
float comp_ellint_1f(float k);
|
||
|
long double comp_ellint_1l(long double k);
|
||
|
|
||
|
// [5.2.1.5] (complete) elliptic integral of the second kind:
|
||
|
double comp_ellint_2(double k);
|
||
|
float comp_ellint_2f(float k);
|
||
|
long double comp_ellint_2l(long double k);
|
||
|
|
||
|
// [5.2.1.6] (complete) elliptic integral of the third kind:
|
||
|
double comp_ellint_3(double k, double nu);
|
||
|
float comp_ellint_3f(float k, float nu);
|
||
|
long double comp_ellint_3l(long double k, long double nu);
|
||
|
|
||
|
// [5.2.1.8] regular modified cylindrical Bessel functions:
|
||
|
double cyl_bessel_i(double nu, double x);
|
||
|
float cyl_bessel_if(float nu, float x);
|
||
|
long double cyl_bessel_il(long double nu, long double x);
|
||
|
|
||
|
// [5.2.1.9] cylindrical Bessel functions (of the first kind):
|
||
|
double cyl_bessel_j(double nu, double x);
|
||
|
float cyl_bessel_jf(float nu, float x);
|
||
|
long double cyl_bessel_jl(long double nu, long double x);
|
||
|
|
||
|
// [5.2.1.10] irregular modified cylindrical Bessel functions:
|
||
|
double cyl_bessel_k(double nu, double x);
|
||
|
float cyl_bessel_kf(float nu, float x);
|
||
|
long double cyl_bessel_kl(long double nu, long double x);
|
||
|
|
||
|
// [5.2.1.11] cylindrical Neumann functions;
|
||
|
// cylindrical Bessel functions (of the second kind):
|
||
|
double cyl_neumann(double nu, double x);
|
||
|
float cyl_neumannf(float nu, float x);
|
||
|
long double cyl_neumannl(long double nu, long double x);
|
||
|
|
||
|
// [5.2.1.12] (incomplete) elliptic integral of the first kind:
|
||
|
double ellint_1(double k, double phi);
|
||
|
float ellint_1f(float k, float phi);
|
||
|
long double ellint_1l(long double k, long double phi);
|
||
|
|
||
|
// [5.2.1.13] (incomplete) elliptic integral of the second kind:
|
||
|
double ellint_2(double k, double phi);
|
||
|
float ellint_2f(float k, float phi);
|
||
|
long double ellint_2l(long double k, long double phi);
|
||
|
|
||
|
// [5.2.1.14] (incomplete) elliptic integral of the third kind:
|
||
|
double ellint_3(double k, double nu, double phi);
|
||
|
float ellint_3f(float k, float nu, float phi);
|
||
|
long double ellint_3l(long double k, long double nu, long double phi);
|
||
|
|
||
|
// [5.2.1.15] exponential integral:
|
||
|
double expint(double x);
|
||
|
float expintf(float x);
|
||
|
long double expintl(long double x);
|
||
|
|
||
|
// [5.2.1.16] Hermite polynomials:
|
||
|
double hermite(unsigned n, double x);
|
||
|
float hermitef(unsigned n, float x);
|
||
|
long double hermitel(unsigned n, long double x);
|
||
|
|
||
|
// [5.2.1.18] Laguerre polynomials:
|
||
|
double laguerre(unsigned n, double x);
|
||
|
float laguerref(unsigned n, float x);
|
||
|
long double laguerrel(unsigned n, long double x);
|
||
|
|
||
|
// [5.2.1.19] Legendre polynomials:
|
||
|
double legendre(unsigned l, double x);
|
||
|
float legendref(unsigned l, float x);
|
||
|
long double legendrel(unsigned l, long double x);
|
||
|
|
||
|
// [5.2.1.20] Riemann zeta function:
|
||
|
double riemann_zeta(double);
|
||
|
float riemann_zetaf(float);
|
||
|
long double riemann_zetal(long double);
|
||
|
|
||
|
// [5.2.1.21] spherical Bessel functions (of the first kind):
|
||
|
double sph_bessel(unsigned n, double x);
|
||
|
float sph_besself(unsigned n, float x);
|
||
|
long double sph_bessell(unsigned n, long double x);
|
||
|
|
||
|
// [5.2.1.22] spherical associated Legendre functions:
|
||
|
double sph_legendre(unsigned l, unsigned m, double theta);
|
||
|
float sph_legendref(unsigned l, unsigned m, float theta);
|
||
|
long double sph_legendrel(unsigned l, unsigned m, long double theta);
|
||
|
|
||
|
// [5.2.1.23] spherical Neumann functions;
|
||
|
// spherical Bessel functions (of the second kind):
|
||
|
double sph_neumann(unsigned n, double x);
|
||
|
float sph_neumannf(unsigned n, float x);
|
||
|
long double sph_neumannl(unsigned n, long double x);
|
||
|
|
||
|
}}}} // namespaces
|
||
|
|
||
|
In addition sufficient additional overloads of the `double` versions of the
|
||
|
above functions are provided, so that calling the function with any mixture
|
||
|
of `float`, `double`, `long double`, or /integer/ arguments is supported, with the
|
||
|
return type determined by the __arg_promotion_rules.
|
||
|
|
||
|
[h4 Currently Unsupported C99 Functions]
|
||
|
|
||
|
double exp2(double x);
|
||
|
float exp2f(float x);
|
||
|
long double exp2l(long double x);
|
||
|
|
||
|
double fdim(double x, double y);
|
||
|
float fdimf(float x, float y);
|
||
|
long double fdiml(long double x, long double y);
|
||
|
|
||
|
double fma(double x, double y, double z);
|
||
|
float fmaf(float x, float y, float z);
|
||
|
long double fmal(long double x, long double y, long double z);
|
||
|
|
||
|
int ilogb(double x);
|
||
|
int ilogbf(float x);
|
||
|
int ilogbl(long double x);
|
||
|
|
||
|
long long llrint(double x);
|
||
|
long long llrintf(float x);
|
||
|
long long llrintl(long double x);
|
||
|
|
||
|
double log2(double x);
|
||
|
float log2f(float x);
|
||
|
long double log2l(long double x);
|
||
|
|
||
|
double logb(double x);
|
||
|
float logbf(float x);
|
||
|
long double logbl(long double x);
|
||
|
|
||
|
long lrint(double x);
|
||
|
long lrintf(float x);
|
||
|
long lrintl(long double x);
|
||
|
|
||
|
double nan(const char *str);
|
||
|
float nanf(const char *str);
|
||
|
long double nanl(const char *str);
|
||
|
|
||
|
double nearbyint(double x);
|
||
|
float nearbyintf(float x);
|
||
|
long double nearbyintl(long double x);
|
||
|
|
||
|
double remainder(double x, double y);
|
||
|
float remainderf(float x, float y);
|
||
|
long double remainderl(long double x, long double y);
|
||
|
|
||
|
double remquo(double x, double y, int *pquo);
|
||
|
float remquof(float x, float y, int *pquo);
|
||
|
long double remquol(long double x, long double y, int *pquo);
|
||
|
|
||
|
double rint(double x);
|
||
|
float rintf(float x);
|
||
|
long double rintl(long double x);
|
||
|
|
||
|
double scalbln(double x, long ex);
|
||
|
float scalblnf(float x, long ex);
|
||
|
long double scalblnl(long double x, long ex);
|
||
|
|
||
|
double scalbn(double x, int ex);
|
||
|
float scalbnf(float x, int ex);
|
||
|
long double scalbnl(long double x, int ex);
|
||
|
|
||
|
[h4 Currently Unsupported TR1 Functions]
|
||
|
|
||
|
// [5.2.1.7] confluent hypergeometric functions:
|
||
|
double conf_hyperg(double a, double c, double x);
|
||
|
float conf_hypergf(float a, float c, float x);
|
||
|
long double conf_hypergl(long double a, long double c, long double x);
|
||
|
|
||
|
// [5.2.1.17] hypergeometric functions:
|
||
|
double hyperg(double a, double b, double c, double x);
|
||
|
float hypergf(float a, float b, float c, float x);
|
||
|
long double hypergl(long double a, long double b, long double c,
|
||
|
long double x);
|
||
|
|
||
|
|
||
|
]
|
||
|
|
||
|
[/
|
||
|
Copyright 2008 John Maddock and Paul A. Bristow.
|
||
|
Distributed under the Boost Software License, Version 1.0.
|
||
|
(See accompanying file LICENSE_1_0.txt or copy at
|
||
|
http://www.boost.org/LICENSE_1_0.txt).
|
||
|
]
|
||
|
|
||
|
|