mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-06 01:11:18 -05:00
210 lines
7.7 KiB
C++
210 lines
7.7 KiB
C++
|
// Copyright Christopher Kormanyos 2013.
|
||
|
// Distributed under the Boost Software License, Version 1.0.
|
||
|
// (See accompanying file LICENSE_1_0.txt or
|
||
|
// copy at http://www.boost.org/LICENSE_1_0.txt).
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
# pragma warning (disable : 4996) // assignment operator could not be generated.
|
||
|
#endif
|
||
|
|
||
|
# include <iostream>
|
||
|
# include <iomanip>
|
||
|
# include <limits>
|
||
|
# include <cmath>
|
||
|
|
||
|
#include <boost/static_assert.hpp>
|
||
|
#include <boost/type_traits/is_floating_point.hpp>
|
||
|
#include <boost/math/special_functions/next.hpp> // for float_distance
|
||
|
|
||
|
//[numeric_derivative_example
|
||
|
/*`The following example shows how multiprecision calculations can be used to
|
||
|
obtain full precision in a numerical derivative calculation that suffers from precision loss.
|
||
|
|
||
|
Consider some well-known central difference rules for numerically
|
||
|
computing the 1st derivative of a function [f'(x)] with [/x] real.
|
||
|
|
||
|
Need a reference here? Introduction to Partial Differential Equations, Peter J. Olver
|
||
|
December 16, 2012
|
||
|
|
||
|
Here, the implementation uses a C++ template that can be instantiated with various
|
||
|
floating-point types such as `float`, `double`, `long double`, or even
|
||
|
a user-defined floating-point type like __multiprecision.
|
||
|
|
||
|
We will now use the derivative template with the built-in type `double` in
|
||
|
order to numerically compute the derivative of a function, and then repeat
|
||
|
with a 5 decimal digit higher precision user-defined floating-point type.
|
||
|
|
||
|
Consider the function shown below.
|
||
|
!!
|
||
|
(3)
|
||
|
We will now take the derivative of this function with respect to x evaluated
|
||
|
at x = 3= 2. In other words,
|
||
|
|
||
|
(4)
|
||
|
|
||
|
The expected result is
|
||
|
|
||
|
0:74535 59924 99929 89880 . (5)
|
||
|
The program below uses the derivative template in order to perform
|
||
|
the numerical calculation of this derivative. The program also compares the
|
||
|
numerically-obtained result with the expected result and reports the absolute
|
||
|
relative error scaled to a deviation that can easily be related to the number of
|
||
|
bits of lost precision.
|
||
|
|
||
|
*/
|
||
|
|
||
|
/*` [note Rquires the C++11 feature of
|
||
|
[@http://en.wikipedia.org/wiki/Anonymous_function#C.2B.2B anonymous functions]
|
||
|
for the derivative function calls like `[]( const double & x_) -> double`.
|
||
|
*/
|
||
|
|
||
|
|
||
|
|
||
|
template <typename value_type, typename function_type>
|
||
|
value_type derivative (const value_type x, const value_type dx, function_type function)
|
||
|
{
|
||
|
/*! \brief Compute the derivative of function using a 3-point central difference rule of O(dx^6).
|
||
|
\tparam value_type, floating-point type, for example: `double` or `cpp_dec_float_50`
|
||
|
\tparam function_type
|
||
|
|
||
|
\param x Value at which to evaluate derivative.
|
||
|
\param dx Incremental step-size.
|
||
|
\param function Function whose derivative is to computed.
|
||
|
|
||
|
\return derivative at x.
|
||
|
*/
|
||
|
|
||
|
BOOST_STATIC_ASSERT_MSG(false == std::numeric_limits<value_type>::is_integer, "value_type must be a floating-point type!");
|
||
|
|
||
|
const value_type dx2(dx * 2U);
|
||
|
const value_type dx3(dx * 3U);
|
||
|
// Difference terms.
|
||
|
const value_type m1 ((function (x + dx) - function(x - dx)) / 2U);
|
||
|
const value_type m2 ((function (x + dx2) - function(x - dx2)) / 4U);
|
||
|
const value_type m3 ((function (x + dx3) - function(x - dx3)) / 6U);
|
||
|
const value_type fifteen_m1 (m1 * 15U);
|
||
|
const value_type six_m2 (m2 * 6U);
|
||
|
const value_type ten_dx (dx * 10U);
|
||
|
return ((fifteen_m1 - six_m2) + m3) / ten_dx; // Derivative.
|
||
|
} //
|
||
|
|
||
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
||
|
using boost::multiprecision::number;
|
||
|
using boost::multiprecision::cpp_dec_float;
|
||
|
|
||
|
// Re-compute using 5 extra decimal digits precision (22) than double (17).
|
||
|
#define MP_DIGITS10 unsigned (std::numeric_limits<double>::max_digits10 + 5)
|
||
|
|
||
|
typedef cpp_dec_float<MP_DIGITS10> mp_backend;
|
||
|
typedef number<mp_backend> mp_type;
|
||
|
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
{
|
||
|
const double d =
|
||
|
derivative
|
||
|
( 1.5, // x = 3.2
|
||
|
std::ldexp (1., -9), // step size 2^-9 = see below for choice.
|
||
|
[](const double & x)->double // Function f(x).
|
||
|
{
|
||
|
return std::sqrt((x * x) - 1.) - std::acos(1. / x);
|
||
|
}
|
||
|
);
|
||
|
|
||
|
// The 'exactly right' result is [sqrt]5 / 3 = 0.74535599249992989880.
|
||
|
const double rel_error = (d - 0.74535599249992989880) / 0.74535599249992989880;
|
||
|
const double bit_error = std::abs(rel_error) / std::numeric_limits<double>::epsilon();
|
||
|
std::cout.precision (std::numeric_limits<double>::digits10); // Show all guaranteed decimal digits.
|
||
|
std::cout << std::showpoint ; // Ensure that any trailing zeros are shown too.
|
||
|
|
||
|
std::cout << " derivative : " << d << std::endl;
|
||
|
std::cout << " expected : " << 0.74535599249992989880 << std::endl;
|
||
|
// Can compute an 'exact' value using multiprecision type.
|
||
|
std::cout << " expected : " << sqrt(static_cast<mp_type>(5))/3U << std::endl;
|
||
|
std::cout << " bit_error : " << static_cast<unsigned long>(bit_error) << std::endl;
|
||
|
|
||
|
std::cout.precision(6);
|
||
|
std::cout << "float_distance = " << boost::math::float_distance(0.74535599249992989880, d) << std::endl;
|
||
|
|
||
|
}
|
||
|
|
||
|
{ // Compute using multiprecision type with an extra 5 decimal digits of precision.
|
||
|
const mp_type mp =
|
||
|
derivative(mp_type(mp_type(3) / 2U), // x = 3/2
|
||
|
mp_type(mp_type(1) / 10000000U), // Step size 10^7.
|
||
|
[](const mp_type & x)->mp_type
|
||
|
{
|
||
|
return sqrt((x * x) - 1.) - acos (1. / x); // Function
|
||
|
}
|
||
|
);
|
||
|
|
||
|
const double d = mp.convert_to<double>(); // Convert to closest double.
|
||
|
const double rel_error = (d - 0.74535599249992989880) / 0.74535599249992989880;
|
||
|
const double bit_error = std::abs (rel_error) / std::numeric_limits<double>::epsilon();
|
||
|
std::cout.precision (std::numeric_limits <double>::digits10); // All guaranteed decimal digits.
|
||
|
std::cout << std::showpoint ; // Ensure that any trailing zeros are shown too.
|
||
|
std::cout << " derivative : " << d << std::endl;
|
||
|
// Can compute an 'exact' value using multiprecision type.
|
||
|
std::cout << " expected : " << sqrt(static_cast<mp_type>(5))/3U << std::endl;
|
||
|
std::cout << " expected : " << 0.74535599249992989880
|
||
|
<< std::endl;
|
||
|
std::cout << " bit_error : " << static_cast<unsigned long>(bit_error) << std::endl;
|
||
|
|
||
|
std::cout.precision(6);
|
||
|
std::cout << "float_distance = " << boost::math::float_distance(0.74535599249992989880, d) << std::endl;
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
} // int main()
|
||
|
|
||
|
/*`
|
||
|
The result of this program on a system with an eight-byte, 64-bit IEEE-754
|
||
|
conforming floating-point representation for `double` is:
|
||
|
|
||
|
derivative : 0.745355992499951
|
||
|
|
||
|
derivative : 0.745355992499943
|
||
|
expected : 0.74535599249993
|
||
|
bit_error : 78
|
||
|
|
||
|
derivative : 0.745355992499930
|
||
|
expected : 0.745355992499930
|
||
|
bit_error : 0
|
||
|
|
||
|
The resulting bit error is 0. This means that the result of the derivative
|
||
|
calculation is bit-identical with the double representation of the expected result,
|
||
|
and this is the best result possible for the built-in type.
|
||
|
|
||
|
The derivative in this example has a known closed form. There are, however,
|
||
|
countless situations in numerical analysis (and not only for numerical deriva-
|
||
|
tives) for which the calculation at hand does not have a known closed-form
|
||
|
solution or for which the closed-form solution is highly inconvenient to use. In
|
||
|
such cases, this technique may be useful.
|
||
|
|
||
|
This example has shown how multiprecision can be used to add extra digits
|
||
|
to an ill-conditioned calculation that suffers from precision loss. When the result
|
||
|
of the multiprecision calculation is converted to a built-in type such as double,
|
||
|
the entire precision of the result in double is preserved.
|
||
|
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
|
||
|
Description: Autorun "J:\Cpp\big_number\Debug\numerical_derivative_example.exe"
|
||
|
derivative : 0.745355992499943
|
||
|
expected : 0.745355992499930
|
||
|
expected : 0.745355992499930
|
||
|
bit_error : 78
|
||
|
float_distance = 117.000
|
||
|
derivative : 0.745355992499930
|
||
|
expected : 0.745355992499930
|
||
|
expected : 0.745355992499930
|
||
|
bit_error : 0
|
||
|
float_distance = 0.000000
|
||
|
|
||
|
*/
|
||
|
|