mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-18 01:52:05 -05:00
567 lines
18 KiB
C++
567 lines
18 KiB
C++
|
|
||
|
// normal_misc_examples.cpp
|
||
|
|
||
|
// Copyright Paul A. Bristow 2007, 2010, 2014, 2016.
|
||
|
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0.
|
||
|
// (See accompanying file LICENSE_1_0.txt
|
||
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
// Example of using normal distribution.
|
||
|
|
||
|
// Note that this file contains Quickbook mark-up as well as code
|
||
|
// and comments, don't change any of the special comment mark-ups!
|
||
|
|
||
|
/*`
|
||
|
First we need some includes to access the normal distribution
|
||
|
(and some std output of course).
|
||
|
*/
|
||
|
|
||
|
#include <boost/cstdfloat.hpp> // MUST be first include!!!
|
||
|
// See Implementation of Float128 type, Overloading template functions with float128_t.
|
||
|
|
||
|
#include <boost/math/distributions/normal.hpp> // for normal_distribution.
|
||
|
using boost::math::normal; // typedef provides default type of double.
|
||
|
|
||
|
#include <iostream>
|
||
|
//using std::cout; using std::endl;
|
||
|
//using std::left; using std::showpoint; using std::noshowpoint;
|
||
|
#include <iomanip>
|
||
|
//using std::setw; using std::setprecision;
|
||
|
#include <limits>
|
||
|
//using std::numeric_limits;
|
||
|
|
||
|
/*!
|
||
|
Function max_digits10
|
||
|
Returns maximum number of possibly significant decimal digits for a floating-point type FPT,
|
||
|
even for older compilers/standard libraries that
|
||
|
lack support for std::std::numeric_limits<FPT>::max_digits10,
|
||
|
when the Kahan formula 2 + binary_digits * 0.3010 is used instead.
|
||
|
Also provides the correct result for Visual Studio 2010 where the max_digits10 provided for float is wrong.
|
||
|
*/
|
||
|
namespace boost
|
||
|
{
|
||
|
namespace math
|
||
|
{
|
||
|
template <typename FPT>
|
||
|
int max_digits10()
|
||
|
{
|
||
|
// Since max_digits10 is not defined (or wrong) on older systems, define a local max_digits10.
|
||
|
|
||
|
// Usage: int m = max_digits10<boost::float64_t>();
|
||
|
const int m =
|
||
|
#if (defined BOOST_NO_CXX11_NUMERIC_LIMITS) || (_MSC_VER == 1600) // is wrongly 8 not 9 for VS2010.
|
||
|
2 + std::numeric_limits<FPT>::digits * 3010/10000;
|
||
|
#else
|
||
|
std::numeric_limits<FPT>::max_digits10;
|
||
|
#endif
|
||
|
return m;
|
||
|
}
|
||
|
} // namespace math
|
||
|
} // namespace boost
|
||
|
|
||
|
template <typename FPT>
|
||
|
void normal_table()
|
||
|
{
|
||
|
using namespace boost::math;
|
||
|
|
||
|
FPT step = static_cast<FPT>(1.); // step in z.
|
||
|
FPT range = static_cast<FPT>(10.); // min and max z = -range to +range.
|
||
|
|
||
|
// Traditional tables are only computed to much lower precision.
|
||
|
// but @c std::std::numeric_limits<double>::max_digits10;
|
||
|
// on new Standard Libraries gives 17,
|
||
|
// the maximum number of digits from 64-bit double that can possibly be significant.
|
||
|
// @c std::std::numeric_limits<double>::digits10; == 15
|
||
|
// is number of @b guaranteed digits, the other two digits being 'noisy'.
|
||
|
// Here we use a custom version of max_digits10 which deals with those platforms
|
||
|
// where @c std::numeric_limits is not specialized,
|
||
|
// or @c std::numeric_limits<>::max_digits10 not implemented, or wrong.
|
||
|
int precision = boost::math::max_digits10<FPT>();
|
||
|
|
||
|
// std::cout << typeid(FPT).name() << std::endl;
|
||
|
// demo_normal.cpp:85: undefined reference to `typeinfo for __float128'
|
||
|
// [@http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43622 GCC 43622]
|
||
|
// typeinfo for __float128 was missing GCC 4.9 Mar 2014, but OK for GCC 6.1.1.
|
||
|
|
||
|
// Construct a standard normal distribution s, with
|
||
|
// (default mean = zero, and standard deviation = unity)
|
||
|
normal s;
|
||
|
std::cout << "\nStandard normal distribution, mean = "<< s.mean()
|
||
|
<< ", standard deviation = " << s.standard_deviation() << std::endl;
|
||
|
|
||
|
std::cout << "maxdigits_10 is " << precision
|
||
|
<< ", digits10 is " << std::numeric_limits<FPT>::digits10 << std::endl;
|
||
|
|
||
|
std::cout << "Probability distribution function values" << std::endl;
|
||
|
|
||
|
std::cout << " z " " PDF " << std::endl;
|
||
|
for (FPT z = -range; z < range + step; z += step)
|
||
|
{
|
||
|
std::cout << std::left << std::setprecision(3) << std::setw(6) << z << " "
|
||
|
<< std::setprecision(precision) << std::setw(12) << pdf(s, z) << std::endl;
|
||
|
}
|
||
|
std::cout.precision(6); // Restore to default precision.
|
||
|
|
||
|
/*`And the area under the normal curve from -[infin] up to z,
|
||
|
the cumulative distribution function (CDF).
|
||
|
*/
|
||
|
// For a standard normal distribution:
|
||
|
std::cout << "Standard normal mean = "<< s.mean()
|
||
|
<< ", standard deviation = " << s.standard_deviation() << std::endl;
|
||
|
std::cout << "Integral (area under the curve) from - infinity up to z." << std::endl;
|
||
|
std::cout << " z " " CDF " << std::endl;
|
||
|
for (FPT z = -range; z < range + step; z += step)
|
||
|
{
|
||
|
std::cout << std::left << std::setprecision(3) << std::setw(6) << z << " "
|
||
|
<< std::setprecision(precision) << std::setw(12) << cdf(s, z) << std::endl;
|
||
|
}
|
||
|
std::cout.precision(6); // Reset to default precision.
|
||
|
} // template <typename FPT> void normal_table()
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
std::cout << "\nExample: Normal distribution tables." << std::endl;
|
||
|
|
||
|
using namespace boost::math;
|
||
|
|
||
|
try
|
||
|
{// Tip - always use try'n'catch blocks to ensure that messages from thrown exceptions are shown.
|
||
|
|
||
|
//[normal_table_1
|
||
|
#ifdef BOOST_FLOAT32_C
|
||
|
normal_table<boost::float32_t>(); // Usually type float
|
||
|
#endif
|
||
|
normal_table<boost::float64_t>(); // Uusually type double. Assume that float64_t is always available.
|
||
|
#ifdef BOOST_FLOAT80_C
|
||
|
normal_table<boost::float80_t>(); // Type long double on some X86 platforms.
|
||
|
#endif
|
||
|
#ifdef BOOST_FLOAT128_C
|
||
|
normal_table<boost::float128_t>(); // Type _Quad on some Intel and __float128 on some GCC platforms.
|
||
|
#endif
|
||
|
normal_table<boost::floatmax_t>();
|
||
|
//] [/normal_table_1 ]
|
||
|
}
|
||
|
catch(std::exception ex)
|
||
|
{
|
||
|
std::cout << "exception thrown " << ex.what() << std::endl;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
} // int main()
|
||
|
|
||
|
|
||
|
/*
|
||
|
|
||
|
GCC 4.8.1 with quadmath
|
||
|
|
||
|
Example: Normal distribution tables.
|
||
|
|
||
|
Standard normal distribution, mean = 0, standard deviation = 1
|
||
|
maxdigits_10 is 9, digits10 is 6
|
||
|
Probability distribution function values
|
||
|
z PDF
|
||
|
-10 7.69459863e-023
|
||
|
-9 1.02797736e-018
|
||
|
-8 5.05227108e-015
|
||
|
-7 9.13472041e-012
|
||
|
-6 6.07588285e-009
|
||
|
-5 1.48671951e-006
|
||
|
-4 0.000133830226
|
||
|
-3 0.00443184841
|
||
|
-2 0.0539909665
|
||
|
-1 0.241970725
|
||
|
0 0.39894228
|
||
|
1 0.241970725
|
||
|
2 0.0539909665
|
||
|
3 0.00443184841
|
||
|
4 0.000133830226
|
||
|
5 1.48671951e-006
|
||
|
6 6.07588285e-009
|
||
|
7 9.13472041e-012
|
||
|
8 5.05227108e-015
|
||
|
9 1.02797736e-018
|
||
|
10 7.69459863e-023
|
||
|
Standard normal mean = 0, standard deviation = 1
|
||
|
Integral (area under the curve) from - infinity up to z.
|
||
|
z CDF
|
||
|
-10 7.61985302e-024
|
||
|
-9 1.12858841e-019
|
||
|
-8 6.22096057e-016
|
||
|
-7 1.27981254e-012
|
||
|
-6 9.86587645e-010
|
||
|
-5 2.86651572e-007
|
||
|
-4 3.16712418e-005
|
||
|
-3 0.00134989803
|
||
|
-2 0.0227501319
|
||
|
-1 0.158655254
|
||
|
0 0.5
|
||
|
1 0.841344746
|
||
|
2 0.977249868
|
||
|
3 0.998650102
|
||
|
4 0.999968329
|
||
|
5 0.999999713
|
||
|
6 0.999999999
|
||
|
7 1
|
||
|
8 1
|
||
|
9 1
|
||
|
10 1
|
||
|
|
||
|
Standard normal distribution, mean = 0, standard deviation = 1
|
||
|
maxdigits_10 is 17, digits10 is 15
|
||
|
Probability distribution function values
|
||
|
z PDF
|
||
|
-10 7.6945986267064199e-023
|
||
|
-9 1.0279773571668917e-018
|
||
|
-8 5.0522710835368927e-015
|
||
|
-7 9.1347204083645953e-012
|
||
|
-6 6.0758828498232861e-009
|
||
|
-5 1.4867195147342979e-006
|
||
|
-4 0.00013383022576488537
|
||
|
-3 0.0044318484119380075
|
||
|
-2 0.053990966513188063
|
||
|
-1 0.24197072451914337
|
||
|
0 0.3989422804014327
|
||
|
1 0.24197072451914337
|
||
|
2 0.053990966513188063
|
||
|
3 0.0044318484119380075
|
||
|
4 0.00013383022576488537
|
||
|
5 1.4867195147342979e-006
|
||
|
6 6.0758828498232861e-009
|
||
|
7 9.1347204083645953e-012
|
||
|
8 5.0522710835368927e-015
|
||
|
9 1.0279773571668917e-018
|
||
|
10 7.6945986267064199e-023
|
||
|
Standard normal mean = 0, standard deviation = 1
|
||
|
Integral (area under the curve) from - infinity up to z.
|
||
|
z CDF
|
||
|
-10 7.6198530241605945e-024
|
||
|
-9 1.1285884059538422e-019
|
||
|
-8 6.2209605742718204e-016
|
||
|
-7 1.279812543885835e-012
|
||
|
-6 9.865876450377014e-010
|
||
|
-5 2.8665157187919455e-007
|
||
|
-4 3.1671241833119972e-005
|
||
|
-3 0.0013498980316300957
|
||
|
-2 0.022750131948179216
|
||
|
-1 0.15865525393145705
|
||
|
0 0.5
|
||
|
1 0.84134474606854293
|
||
|
2 0.97724986805182079
|
||
|
3 0.9986501019683699
|
||
|
4 0.99996832875816688
|
||
|
5 0.99999971334842808
|
||
|
6 0.9999999990134123
|
||
|
7 0.99999999999872013
|
||
|
8 0.99999999999999933
|
||
|
9 1
|
||
|
10 1
|
||
|
|
||
|
Standard normal distribution, mean = 0, standard deviation = 1
|
||
|
maxdigits_10 is 21, digits10 is 18
|
||
|
Probability distribution function values
|
||
|
z PDF
|
||
|
-10 7.69459862670641993759e-023
|
||
|
-9 1.0279773571668916523e-018
|
||
|
-8 5.05227108353689273243e-015
|
||
|
-7 9.13472040836459525705e-012
|
||
|
-6 6.07588284982328608733e-009
|
||
|
-5 1.48671951473429788965e-006
|
||
|
-4 0.00013383022576488536764
|
||
|
-3 0.00443184841193800752729
|
||
|
-2 0.0539909665131880628364
|
||
|
-1 0.241970724519143365328
|
||
|
0 0.398942280401432702863
|
||
|
1 0.241970724519143365328
|
||
|
2 0.0539909665131880628364
|
||
|
3 0.00443184841193800752729
|
||
|
4 0.00013383022576488536764
|
||
|
5 1.48671951473429788965e-006
|
||
|
6 6.07588284982328608733e-009
|
||
|
7 9.13472040836459525705e-012
|
||
|
8 5.05227108353689273243e-015
|
||
|
9 1.0279773571668916523e-018
|
||
|
10 7.69459862670641993759e-023
|
||
|
Standard normal mean = 0, standard deviation = 1
|
||
|
Integral (area under the curve) from - infinity up to z.
|
||
|
z CDF
|
||
|
-10 7.61985302416059451083e-024
|
||
|
-9 1.12858840595384222719e-019
|
||
|
-8 6.22096057427182035917e-016
|
||
|
-7 1.279812543885834962e-012
|
||
|
-6 9.86587645037701399241e-010
|
||
|
-5 2.86651571879194547129e-007
|
||
|
-4 3.16712418331199717608e-005
|
||
|
-3 0.00134989803163009566139
|
||
|
-2 0.0227501319481792155242
|
||
|
-1 0.158655253931457046468
|
||
|
0 0.5
|
||
|
1 0.841344746068542925777
|
||
|
2 0.977249868051820791415
|
||
|
3 0.998650101968369896532
|
||
|
4 0.999968328758166880021
|
||
|
5 0.999999713348428076465
|
||
|
6 0.999999999013412299576
|
||
|
7 0.999999999998720134897
|
||
|
8 0.999999999999999333866
|
||
|
9 1
|
||
|
10 1
|
||
|
|
||
|
Standard normal distribution, mean = 0, standard deviation = 1
|
||
|
maxdigits_10 is 36, digits10 is 34
|
||
|
Probability distribution function values
|
||
|
z PDF
|
||
|
-10 7.69459862670641993759264402330435296e-023
|
||
|
-9 1.02797735716689165230378750485667109e-018
|
||
|
-8 5.0522710835368927324337437844893081e-015
|
||
|
-7 9.13472040836459525705208369548147081e-012
|
||
|
-6 6.07588284982328608733411870229841611e-009
|
||
|
-5 1.48671951473429788965346931561839483e-006
|
||
|
-4 0.00013383022576488536764006964663309418
|
||
|
-3 0.00443184841193800752728870762098267733
|
||
|
-2 0.0539909665131880628363703067407186609
|
||
|
-1 0.241970724519143365327522587904240936
|
||
|
0 0.398942280401432702863218082711682655
|
||
|
1 0.241970724519143365327522587904240936
|
||
|
2 0.0539909665131880628363703067407186609
|
||
|
3 0.00443184841193800752728870762098267733
|
||
|
4 0.00013383022576488536764006964663309418
|
||
|
5 1.48671951473429788965346931561839483e-006
|
||
|
6 6.07588284982328608733411870229841611e-009
|
||
|
7 9.13472040836459525705208369548147081e-012
|
||
|
8 5.0522710835368927324337437844893081e-015
|
||
|
9 1.02797735716689165230378750485667109e-018
|
||
|
10 7.69459862670641993759264402330435296e-023
|
||
|
Standard normal mean = 0, standard deviation = 1
|
||
|
Integral (area under the curve) from - infinity up to z.
|
||
|
z CDF
|
||
|
-10 7.61985302416059451083278826816793623e-024
|
||
|
-9 1.1285884059538422271881384555435713e-019
|
||
|
-8 6.22096057427182035917417257601387863e-016
|
||
|
-7 1.27981254388583496200054074948511201e-012
|
||
|
-6 9.86587645037701399241244820583623953e-010
|
||
|
-5 2.86651571879194547128505464808623238e-007
|
||
|
-4 3.16712418331199717608064048146587766e-005
|
||
|
-3 0.001349898031630095661392854111682027
|
||
|
-2 0.0227501319481792155241528519127314212
|
||
|
-1 0.158655253931457046467912164189328905
|
||
|
0 0.5
|
||
|
1 0.841344746068542925776512220181757584
|
||
|
2 0.977249868051820791414741051994496956
|
||
|
3 0.998650101968369896532351503992686048
|
||
|
4 0.999968328758166880021462930017150939
|
||
|
5 0.999999713348428076464813329948810861
|
||
|
6 0.999999999013412299575520592043176293
|
||
|
7 0.999999999998720134897212119540199637
|
||
|
8 0.999999999999999333866185224906075746
|
||
|
9 1
|
||
|
10 1
|
||
|
|
||
|
Standard normal distribution, mean = 0, standard deviation = 1
|
||
|
maxdigits_10 is 36, digits10 is 34
|
||
|
Probability distribution function values
|
||
|
z PDF
|
||
|
-10 7.69459862670641993759264402330435296e-023
|
||
|
-9 1.02797735716689165230378750485667109e-018
|
||
|
-8 5.0522710835368927324337437844893081e-015
|
||
|
-7 9.13472040836459525705208369548147081e-012
|
||
|
-6 6.07588284982328608733411870229841611e-009
|
||
|
-5 1.48671951473429788965346931561839483e-006
|
||
|
-4 0.00013383022576488536764006964663309418
|
||
|
-3 0.00443184841193800752728870762098267733
|
||
|
-2 0.0539909665131880628363703067407186609
|
||
|
-1 0.241970724519143365327522587904240936
|
||
|
0 0.398942280401432702863218082711682655
|
||
|
1 0.241970724519143365327522587904240936
|
||
|
2 0.0539909665131880628363703067407186609
|
||
|
3 0.00443184841193800752728870762098267733
|
||
|
4 0.00013383022576488536764006964663309418
|
||
|
5 1.48671951473429788965346931561839483e-006
|
||
|
6 6.07588284982328608733411870229841611e-009
|
||
|
7 9.13472040836459525705208369548147081e-012
|
||
|
8 5.0522710835368927324337437844893081e-015
|
||
|
9 1.02797735716689165230378750485667109e-018
|
||
|
10 7.69459862670641993759264402330435296e-023
|
||
|
Standard normal mean = 0, standard deviation = 1
|
||
|
Integral (area under the curve) from - infinity up to z.
|
||
|
z CDF
|
||
|
-10 7.61985302416059451083278826816793623e-024
|
||
|
-9 1.1285884059538422271881384555435713e-019
|
||
|
-8 6.22096057427182035917417257601387863e-016
|
||
|
-7 1.27981254388583496200054074948511201e-012
|
||
|
-6 9.86587645037701399241244820583623953e-010
|
||
|
-5 2.86651571879194547128505464808623238e-007
|
||
|
-4 3.16712418331199717608064048146587766e-005
|
||
|
-3 0.001349898031630095661392854111682027
|
||
|
-2 0.0227501319481792155241528519127314212
|
||
|
-1 0.158655253931457046467912164189328905
|
||
|
0 0.5
|
||
|
1 0.841344746068542925776512220181757584
|
||
|
2 0.977249868051820791414741051994496956
|
||
|
3 0.998650101968369896532351503992686048
|
||
|
4 0.999968328758166880021462930017150939
|
||
|
5 0.999999713348428076464813329948810861
|
||
|
6 0.999999999013412299575520592043176293
|
||
|
7 0.999999999998720134897212119540199637
|
||
|
8 0.999999999999999333866185224906075746
|
||
|
9 1
|
||
|
10 1
|
||
|
|
||
|
MSVC 2013 64-bit
|
||
|
1>
|
||
|
1> Example: Normal distribution tables.
|
||
|
1>
|
||
|
1> Standard normal distribution, mean = 0, standard deviation = 1
|
||
|
1> maxdigits_10 is 9, digits10 is 6
|
||
|
1> Probability distribution function values
|
||
|
1> z PDF
|
||
|
1> -10 7.69459863e-023
|
||
|
1> -9 1.02797736e-018
|
||
|
1> -8 5.05227108e-015
|
||
|
1> -7 9.13472041e-012
|
||
|
1> -6 6.07588285e-009
|
||
|
1> -5 1.48671951e-006
|
||
|
1> -4 0.000133830226
|
||
|
1> -3 0.00443184841
|
||
|
1> -2 0.0539909665
|
||
|
1> -1 0.241970725
|
||
|
1> 0 0.39894228
|
||
|
1> 1 0.241970725
|
||
|
1> 2 0.0539909665
|
||
|
1> 3 0.00443184841
|
||
|
1> 4 0.000133830226
|
||
|
1> 5 1.48671951e-006
|
||
|
1> 6 6.07588285e-009
|
||
|
1> 7 9.13472041e-012
|
||
|
1> 8 5.05227108e-015
|
||
|
1> 9 1.02797736e-018
|
||
|
1> 10 7.69459863e-023
|
||
|
1> Standard normal mean = 0, standard deviation = 1
|
||
|
1> Integral (area under the curve) from - infinity up to z.
|
||
|
1> z CDF
|
||
|
1> -10 7.61985302e-024
|
||
|
1> -9 1.12858841e-019
|
||
|
1> -8 6.22096057e-016
|
||
|
1> -7 1.27981254e-012
|
||
|
1> -6 9.86587645e-010
|
||
|
1> -5 2.86651572e-007
|
||
|
1> -4 3.16712418e-005
|
||
|
1> -3 0.00134989803
|
||
|
1> -2 0.0227501319
|
||
|
1> -1 0.158655254
|
||
|
1> 0 0.5
|
||
|
1> 1 0.841344746
|
||
|
1> 2 0.977249868
|
||
|
1> 3 0.998650102
|
||
|
1> 4 0.999968329
|
||
|
1> 5 0.999999713
|
||
|
1> 6 0.999999999
|
||
|
1> 7 1
|
||
|
1> 8 1
|
||
|
1> 9 1
|
||
|
1> 10 1
|
||
|
1>
|
||
|
1> Standard normal distribution, mean = 0, standard deviation = 1
|
||
|
1> maxdigits_10 is 17, digits10 is 15
|
||
|
1> Probability distribution function values
|
||
|
1> z PDF
|
||
|
1> -10 7.6945986267064199e-023
|
||
|
1> -9 1.0279773571668917e-018
|
||
|
1> -8 5.0522710835368927e-015
|
||
|
1> -7 9.1347204083645953e-012
|
||
|
1> -6 6.0758828498232861e-009
|
||
|
1> -5 1.4867195147342979e-006
|
||
|
1> -4 0.00013383022576488537
|
||
|
1> -3 0.0044318484119380075
|
||
|
1> -2 0.053990966513188063
|
||
|
1> -1 0.24197072451914337
|
||
|
1> 0 0.3989422804014327
|
||
|
1> 1 0.24197072451914337
|
||
|
1> 2 0.053990966513188063
|
||
|
1> 3 0.0044318484119380075
|
||
|
1> 4 0.00013383022576488537
|
||
|
1> 5 1.4867195147342979e-006
|
||
|
1> 6 6.0758828498232861e-009
|
||
|
1> 7 9.1347204083645953e-012
|
||
|
1> 8 5.0522710835368927e-015
|
||
|
1> 9 1.0279773571668917e-018
|
||
|
1> 10 7.6945986267064199e-023
|
||
|
1> Standard normal mean = 0, standard deviation = 1
|
||
|
1> Integral (area under the curve) from - infinity up to z.
|
||
|
1> z CDF
|
||
|
1> -10 7.6198530241605813e-024
|
||
|
1> -9 1.1285884059538408e-019
|
||
|
1> -8 6.2209605742718292e-016
|
||
|
1> -7 1.2798125438858352e-012
|
||
|
1> -6 9.8658764503770161e-010
|
||
|
1> -5 2.8665157187919439e-007
|
||
|
1> -4 3.1671241833119979e-005
|
||
|
1> -3 0.0013498980316300957
|
||
|
1> -2 0.022750131948179219
|
||
|
1> -1 0.15865525393145707
|
||
|
1> 0 0.5
|
||
|
1> 1 0.84134474606854293
|
||
|
1> 2 0.97724986805182079
|
||
|
1> 3 0.9986501019683699
|
||
|
1> 4 0.99996832875816688
|
||
|
1> 5 0.99999971334842808
|
||
|
1> 6 0.9999999990134123
|
||
|
1> 7 0.99999999999872013
|
||
|
1> 8 0.99999999999999933
|
||
|
1> 9 1
|
||
|
1> 10 1
|
||
|
1>
|
||
|
1> Standard normal distribution, mean = 0, standard deviation = 1
|
||
|
1> maxdigits_10 is 17, digits10 is 15
|
||
|
1> Probability distribution function values
|
||
|
1> z PDF
|
||
|
1> -10 7.6945986267064199e-023
|
||
|
1> -9 1.0279773571668917e-018
|
||
|
1> -8 5.0522710835368927e-015
|
||
|
1> -7 9.1347204083645953e-012
|
||
|
1> -6 6.0758828498232861e-009
|
||
|
1> -5 1.4867195147342979e-006
|
||
|
1> -4 0.00013383022576488537
|
||
|
1> -3 0.0044318484119380075
|
||
|
1> -2 0.053990966513188063
|
||
|
1> -1 0.24197072451914337
|
||
|
1> 0 0.3989422804014327
|
||
|
1> 1 0.24197072451914337
|
||
|
1> 2 0.053990966513188063
|
||
|
1> 3 0.0044318484119380075
|
||
|
1> 4 0.00013383022576488537
|
||
|
1> 5 1.4867195147342979e-006
|
||
|
1> 6 6.0758828498232861e-009
|
||
|
1> 7 9.1347204083645953e-012
|
||
|
1> 8 5.0522710835368927e-015
|
||
|
1> 9 1.0279773571668917e-018
|
||
|
1> 10 7.6945986267064199e-023
|
||
|
1> Standard normal mean = 0, standard deviation = 1
|
||
|
1> Integral (area under the curve) from - infinity up to z.
|
||
|
1> z CDF
|
||
|
1> -10 7.6198530241605813e-024
|
||
|
1> -9 1.1285884059538408e-019
|
||
|
1> -8 6.2209605742718292e-016
|
||
|
1> -7 1.2798125438858352e-012
|
||
|
1> -6 9.8658764503770161e-010
|
||
|
1> -5 2.8665157187919439e-007
|
||
|
1> -4 3.1671241833119979e-005
|
||
|
1> -3 0.0013498980316300957
|
||
|
1> -2 0.022750131948179219
|
||
|
1> -1 0.15865525393145707
|
||
|
1> 0 0.5
|
||
|
1> 1 0.84134474606854293
|
||
|
1> 2 0.97724986805182079
|
||
|
1> 3 0.9986501019683699
|
||
|
1> 4 0.99996832875816688
|
||
|
1> 5 0.99999971334842808
|
||
|
1> 6 0.9999999990134123
|
||
|
1> 7 0.99999999999872013
|
||
|
1> 8 0.99999999999999933
|
||
|
1> 9 1
|
||
|
1> 10 1
|
||
|
|
||
|
|
||
|
*/
|