mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
	
	
		
			297 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			297 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | //  Copyright John Maddock 2006.
 | ||
|  | //  Use, modification and distribution are subject to the
 | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file
 | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #  pragma warning(disable: 4127) // conditional expression is constant.
 | ||
|  | #  pragma warning(disable: 4245) // int/unsigned int conversion
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Return infinities not exceptions:
 | ||
|  | #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | ||
|  | 
 | ||
|  | #include <boost/cstdfloat.hpp>
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp>
 | ||
|  | #include <boost/test/floating_point_comparison.hpp>
 | ||
|  | #include <boost/math/special_functions/factorials.hpp>
 | ||
|  | #include <boost/math/special_functions/gamma.hpp>
 | ||
|  | #include <boost/math/tools/stats.hpp>
 | ||
|  | #include <boost/math/tools/test.hpp>
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  |   using std::cout; | ||
|  |   using std::endl; | ||
|  | 
 | ||
|  | template <class T> | ||
|  | T naive_falling_factorial(T x, unsigned n) | ||
|  | { | ||
|  |    if(n == 0) | ||
|  |       return 1; | ||
|  |    T result = x; | ||
|  |    while(--n) | ||
|  |    { | ||
|  |       x -= 1; | ||
|  |       result *= x; | ||
|  |    } | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void test_spots(T) | ||
|  | { | ||
|  |    //
 | ||
|  |    // Basic sanity checks.
 | ||
|  |    //
 | ||
|  |    T tolerance = boost::math::tools::epsilon<T>() * 100 * 2;  // 2 eps as a percent.
 | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::factorial<T>(0), | ||
|  |       static_cast<T>(1), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::factorial<T>(1), | ||
|  |       static_cast<T>(1), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::factorial<T>(10), | ||
|  |       static_cast<T>(3628800L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::unchecked_factorial<T>(0), | ||
|  |       static_cast<T>(1), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::unchecked_factorial<T>(1), | ||
|  |       static_cast<T>(1), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::unchecked_factorial<T>(10), | ||
|  |       static_cast<T>(3628800L), tolerance); | ||
|  | 
 | ||
|  |    //
 | ||
|  |    // Try some double factorials:
 | ||
|  |    //
 | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(0), | ||
|  |       static_cast<T>(1), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(1), | ||
|  |       static_cast<T>(1), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(2), | ||
|  |       static_cast<T>(2), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(5), | ||
|  |       static_cast<T>(15), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(10), | ||
|  |       static_cast<T>(3840), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(19), | ||
|  |       static_cast<T>(6.547290750e8Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(24), | ||
|  |       static_cast<T>(1.961990553600000e12Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(33), | ||
|  |       static_cast<T>(6.33265987076285062500000e18Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(42), | ||
|  |       static_cast<T>(1.0714547155728479551488000000e26Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::double_factorial<T>(47), | ||
|  |       static_cast<T>(1.19256819277443412353990764062500000e30Q), tolerance); | ||
|  | 
 | ||
|  |    if((std::numeric_limits<T>::has_infinity) && (std::numeric_limits<T>::max_exponent <= 1024)) | ||
|  |    { | ||
|  |       BOOST_CHECK_EQUAL( | ||
|  |          ::boost::math::double_factorial<T>(320), | ||
|  |          std::numeric_limits<T>::infinity()); | ||
|  |       BOOST_CHECK_EQUAL( | ||
|  |          ::boost::math::double_factorial<T>(301), | ||
|  |          std::numeric_limits<T>::infinity()); | ||
|  |    } | ||
|  |    //
 | ||
|  |    // Rising factorials:
 | ||
|  |    //
 | ||
|  |    tolerance = boost::math::tools::epsilon<T>() * 100 * 20;  // 20 eps as a percent.
 | ||
|  |    if(std::numeric_limits<T>::is_specialized == 0) | ||
|  |       tolerance *= 5;  // higher error rates without Lanczos support
 | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(3), 4), | ||
|  |       static_cast<T>(360), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(7), -4), | ||
|  |       static_cast<T>(0.00277777777777777777777777777777777777777777777777777777777778Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(120.5f), 8), | ||
|  |       static_cast<T>(5.58187566784927180664062500e16Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(120.5f), -4), | ||
|  |       static_cast<T>(5.15881498170104646868208445266116850161120996179812063177241e-9Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(5000.25f), 8), | ||
|  |       static_cast<T>(3.92974581976666067544013393509103775024414062500000e29Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(5000.25f), -7), | ||
|  |       static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(30.25), 21), | ||
|  |       static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33Q), tolerance * 2); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(30.25), -21), | ||
|  |       static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-30.25), 21), | ||
|  |       static_cast<T>(-9.76168312768123676601980433377916854311706629232503473758698e26Q), tolerance * 2); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-30.25), -21), | ||
|  |       static_cast<T>(-1.50079704000923674318934280259377728203516775215430875839823e-34Q), 2 * tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-30.25), 5), | ||
|  |       static_cast<T>(-1.78799177197265625000000e7Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-30.25), -5), | ||
|  |       static_cast<T>(-2.47177487004482195012362027432181137141899692171397467859150e-8Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-30.25), 6), | ||
|  |       static_cast<T>(4.5146792242309570312500000e8Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-30.25), -6), | ||
|  |       static_cast<T>(6.81868929667537089689274558433603136943171564610751635473516e-10Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-3), 6), | ||
|  |       static_cast<T>(0), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-3.25), 6), | ||
|  |       static_cast<T>(2.99926757812500Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-5.25), 6), | ||
|  |       static_cast<T>(50.987548828125000000000000Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-5.25), 13), | ||
|  |       static_cast<T>(127230.91046623885631561279296875000Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-3.25), -6), | ||
|  |       static_cast<T>(0.0000129609865918182348202632178291407500332449622510474437452125Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-5.25), -6), | ||
|  |       static_cast<T>(2.50789821857946332294524052303699065683926911849535903362649e-6Q), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::rising_factorial(static_cast<T>(-5.25), -13), | ||
|  |       static_cast<T>(-1.38984989447269128946284683518361786049649013886981662962096e-14Q), tolerance); | ||
|  | 
 | ||
|  |    //
 | ||
|  |    // Falling factorials:
 | ||
|  |    //
 | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(30.25), 0), | ||
|  |       static_cast<T>(naive_falling_factorial(30.25Q, 0)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(30.25), 1), | ||
|  |       static_cast<T>(naive_falling_factorial(30.25Q, 1)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(30.25), 2), | ||
|  |       static_cast<T>(naive_falling_factorial(30.25Q, 2)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(30.25), 5), | ||
|  |       static_cast<T>(naive_falling_factorial(30.25Q, 5)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(30.25), 22), | ||
|  |       static_cast<T>(naive_falling_factorial(30.25Q, 22)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(100.5), 6), | ||
|  |       static_cast<T>(naive_falling_factorial(100.5Q, 6)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(30.75), 30), | ||
|  |       static_cast<T>(naive_falling_factorial(30.75Q, 30)), | ||
|  |       tolerance * 3); | ||
|  |    if(boost::math::policies::digits<T, boost::math::policies::policy<> >() > 50) | ||
|  |    { | ||
|  |       BOOST_CHECK_CLOSE( | ||
|  |          ::boost::math::falling_factorial(static_cast<T>(-30.75Q), 30), | ||
|  |          static_cast<T>(naive_falling_factorial(-30.75Q, 30)), | ||
|  |          tolerance * 3); | ||
|  |       BOOST_CHECK_CLOSE( | ||
|  |          ::boost::math::falling_factorial(static_cast<T>(-30.75Q), 27), | ||
|  |          static_cast<T>(naive_falling_factorial(-30.75Q, 27)), | ||
|  |          tolerance * 3); | ||
|  |    } | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(-12.0), 6), | ||
|  |       static_cast<T>(naive_falling_factorial(-12.0Q, 6)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(-12), 5), | ||
|  |       static_cast<T>(naive_falling_factorial(-12.0Q, 5)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(-3.0), 6), | ||
|  |       static_cast<T>(naive_falling_factorial(-3.0Q, 6)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(-3), 5), | ||
|  |       static_cast<T>(naive_falling_factorial(-3.0Q, 5)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(3.0), 6), | ||
|  |       static_cast<T>(naive_falling_factorial(3.0Q, 6)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(3), 5), | ||
|  |       static_cast<T>(naive_falling_factorial(3.0Q, 5)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(3.25), 4), | ||
|  |       static_cast<T>(naive_falling_factorial(3.25Q, 4)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(3.25), 5), | ||
|  |       static_cast<T>(naive_falling_factorial(3.25Q, 5)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(3.25), 6), | ||
|  |       static_cast<T>(naive_falling_factorial(3.25Q, 6)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(3.25), 7), | ||
|  |       static_cast<T>(naive_falling_factorial(3.25Q, 7)), | ||
|  |       tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::falling_factorial(static_cast<T>(8.25), 12), | ||
|  |       static_cast<T>(naive_falling_factorial(8.25Q, 12)), | ||
|  |       tolerance); | ||
|  | 
 | ||
|  | 
 | ||
|  |    tolerance = boost::math::tools::epsilon<T>() * 100 * 20;  // 20 eps as a percent.
 | ||
|  |    unsigned i = boost::math::max_factorial<T>::value; | ||
|  |    if((boost::is_floating_point<T>::value) && (sizeof(T) <= sizeof(double))) | ||
|  |    { | ||
|  |       // Without Lanczos support, tgamma isn't accurate enough for this test:
 | ||
|  |       BOOST_CHECK_CLOSE( | ||
|  |          ::boost::math::unchecked_factorial<T>(i), | ||
|  |          boost::math::tgamma(static_cast<T>(i+1)), tolerance); | ||
|  |    } | ||
|  | 
 | ||
|  |    i += 10; | ||
|  |    while(boost::math::lgamma(static_cast<T>(i+1)) < boost::math::tools::log_max_value<T>()) | ||
|  |    { | ||
|  |       BOOST_CHECK_CLOSE( | ||
|  |          ::boost::math::factorial<T>(i), | ||
|  |          boost::math::tgamma(static_cast<T>(i+1)), tolerance); | ||
|  |       i += 10; | ||
|  |    } | ||
|  | } // template <class T> void test_spots(T)
 | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE( test_main ) | ||
|  | { | ||
|  |    BOOST_MATH_CONTROL_FP; | ||
|  |    test_spots(0.0Q); | ||
|  |    cout << "max factorial for __float128"  << boost::math::max_factorial<boost::floatmax_t>::value  << endl; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 |