mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
	
	
		
			219 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			219 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | //  (C) Copyright John Maddock 2006.
 | ||
|  | //  Use, modification and distribution are subject to the
 | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file
 | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/gamma.hpp>
 | ||
|  | #include <boost/math/special_functions/erf.hpp> // for inverses
 | ||
|  | #include <boost/math/constants/constants.hpp>
 | ||
|  | #include <fstream>
 | ||
|  | #include <boost/math/tools/test_data.hpp>
 | ||
|  | #include "mp_t.hpp"
 | ||
|  | 
 | ||
|  | using namespace boost::math::tools; | ||
|  | using namespace std; | ||
|  | 
 | ||
|  | float external_f; | ||
|  | float force_truncate(const float* f) | ||
|  | { | ||
|  |    external_f = *f; | ||
|  |    return external_f; | ||
|  | } | ||
|  | 
 | ||
|  | float truncate_to_float(mp_t r) | ||
|  | { | ||
|  |    float f = boost::math::tools::real_cast<float>(r); | ||
|  |    return force_truncate(&f); | ||
|  | } | ||
|  | 
 | ||
|  | struct erf_data_generator | ||
|  | { | ||
|  |    boost::math::tuple<mp_t, mp_t> operator()(mp_t z) | ||
|  |    { | ||
|  |       // very naively calculate spots using the gamma function at high precision:
 | ||
|  |       int sign = 1; | ||
|  |       if(z < 0) | ||
|  |       { | ||
|  |          sign = -1; | ||
|  |          z = -z; | ||
|  |       } | ||
|  |       mp_t g1, g2; | ||
|  |       g1 = boost::math::tgamma_lower(mp_t(0.5), z * z); | ||
|  |       g1 /= sqrt(boost::math::constants::pi<mp_t>()); | ||
|  |       g1 *= sign; | ||
|  | 
 | ||
|  |       if(z < 0.5) | ||
|  |       { | ||
|  |          g2 = 1 - (sign * g1); | ||
|  |       } | ||
|  |       else | ||
|  |       { | ||
|  |          g2 = boost::math::tgamma(mp_t(0.5), z * z); | ||
|  |          g2 /= sqrt(boost::math::constants::pi<mp_t>()); | ||
|  |       } | ||
|  |       if(sign < 1) | ||
|  |          g2 = 2 - g2; | ||
|  |       return boost::math::make_tuple(g1, g2); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | double double_factorial(int N) | ||
|  | { | ||
|  |    double result = 1; | ||
|  |    while(N > 2) | ||
|  |    { | ||
|  |       N -= 2; | ||
|  |       result *= N; | ||
|  |    } | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | void asymptotic_limit(int Bits) | ||
|  | { | ||
|  |    //
 | ||
|  |    // The following block of code estimates how large z has
 | ||
|  |    // to be before we can use the asymptotic expansion for
 | ||
|  |    // erf/erfc and still get convergence: the series becomes
 | ||
|  |    // divergent eventually so we have to be careful!
 | ||
|  |    //
 | ||
|  |    double result = (std::numeric_limits<double>::max)(); | ||
|  |    int terms = 0; | ||
|  |    for(int n = 1; n < 15; ++n) | ||
|  |    { | ||
|  |       double lim = (Bits-n) * log(2.0) - log(sqrt(3.14)) + log(double_factorial(2*n+1)); | ||
|  |       double x = 1; | ||
|  |       while(x*x + (2*n+1)*log(x) <= lim) | ||
|  |          x += 0.1; | ||
|  |       if(x < result) | ||
|  |       { | ||
|  |          result = x; | ||
|  |          terms = n; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    std::cout << "Erf asymptotic limit for "  | ||
|  |       << Bits << " bit numbers is "  | ||
|  |       << result << " after approximately "  | ||
|  |       << terms << " terms." << std::endl; | ||
|  | 
 | ||
|  |    result = (std::numeric_limits<double>::max)(); | ||
|  |    terms = 0; | ||
|  |    for(int n = 1; n < 30; ++n) | ||
|  |    { | ||
|  |       double x = pow(double_factorial(2*n+1)/pow(2.0, n-Bits), 1 / (2.0*n)); | ||
|  |       if(x < result) | ||
|  |       { | ||
|  |          result = x; | ||
|  |          terms = n; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    std::cout << "Erfc asymptotic limit for "  | ||
|  |       << Bits << " bit numbers is "  | ||
|  |       << result << " after approximately "  | ||
|  |       << terms << " terms." << std::endl; | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t> erfc_inv(mp_t r) | ||
|  | { | ||
|  |    mp_t x = exp(-r * r); | ||
|  |    x = x.convert_to<double>(); | ||
|  |    std::cout << x << "   "; | ||
|  |    mp_t result = boost::math::erfc_inv(x); | ||
|  |    std::cout << result << std::endl; | ||
|  |    return boost::math::make_tuple(x, result); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | int main(int argc, char*argv []) | ||
|  | { | ||
|  |    parameter_info<mp_t> arg1; | ||
|  |    test_data<mp_t> data; | ||
|  | 
 | ||
|  |    bool cont; | ||
|  |    std::string line; | ||
|  | 
 | ||
|  |    if(argc >= 2) | ||
|  |    { | ||
|  |       if(strcmp(argv[1], "--limits") == 0) | ||
|  |       { | ||
|  |          asymptotic_limit(24); | ||
|  |          asymptotic_limit(53); | ||
|  |          asymptotic_limit(64); | ||
|  |          asymptotic_limit(106); | ||
|  |          asymptotic_limit(113); | ||
|  |          return 0; | ||
|  |       } | ||
|  |       else if(strcmp(argv[1], "--erf_inv") == 0) | ||
|  |       { | ||
|  |          mp_t (*f)(mp_t); | ||
|  |          f = boost::math::erf_inv; | ||
|  |          std::cout << "Welcome.\n" | ||
|  |             "This program will generate spot tests for the inverse erf function:\n"; | ||
|  |          std::cout << "Enter the number of data points: "; | ||
|  |          int points; | ||
|  |          std::cin >> points; | ||
|  |          data.insert(f, make_random_param(mp_t(-1), mp_t(1), points)); | ||
|  |       } | ||
|  |       else if(strcmp(argv[1], "--erfc_inv") == 0) | ||
|  |       { | ||
|  |          boost::math::tuple<mp_t, mp_t> (*f)(mp_t); | ||
|  |          f = erfc_inv; | ||
|  |          std::cout << "Welcome.\n" | ||
|  |             "This program will generate spot tests for the inverse erfc function:\n"; | ||
|  |          std::cout << "Enter the maximum *result* expected from erfc_inv: "; | ||
|  |          double max_val; | ||
|  |          std::cin >> max_val; | ||
|  |          std::cout << "Enter the number of data points: "; | ||
|  |          int points; | ||
|  |          std::cin >> points; | ||
|  |          parameter_info<mp_t> arg = make_random_param(mp_t(0), mp_t(max_val), points); | ||
|  |          arg.type |= dummy_param; | ||
|  |          data.insert(f, arg); | ||
|  |       } | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       std::cout << "Welcome.\n" | ||
|  |          "This program will generate spot tests for the erf and erfc functions:\n" | ||
|  |          "  erf(z) and erfc(z)\n\n"; | ||
|  | 
 | ||
|  |       do{ | ||
|  |          if(0 == get_user_parameter_info(arg1, "a")) | ||
|  |             return 1; | ||
|  |          data.insert(erf_data_generator(), arg1); | ||
|  | 
 | ||
|  |          std::cout << "Any more data [y/n]?"; | ||
|  |          std::getline(std::cin, line); | ||
|  |          boost::algorithm::trim(line); | ||
|  |          cont = (line == "y"); | ||
|  |       }while(cont); | ||
|  |    } | ||
|  | 
 | ||
|  |    std::cout << "Enter name of test data file [default=erf_data.ipp]"; | ||
|  |    std::getline(std::cin, line); | ||
|  |    boost::algorithm::trim(line); | ||
|  |    if(line == "") | ||
|  |       line = "erf_data.ipp"; | ||
|  |    std::ofstream ofs(line.c_str()); | ||
|  |    ofs << std::scientific << std::setprecision(40); | ||
|  |    write_code(ofs, data, "erf_data"); | ||
|  |     | ||
|  |    return 0; | ||
|  | } | ||
|  | 
 | ||
|  | /* Output for asymptotic limits:
 | ||
|  | 
 | ||
|  | Erf asymptotic limit for 24 bit numbers is 2.8 after approximately 6 terms. | ||
|  | Erfc asymptotic limit for 24 bit numbers is 4.12064 after approximately 17 terms. | ||
|  | Erf asymptotic limit for 53 bit numbers is 4.3 after approximately 11 terms. | ||
|  | Erfc asymptotic limit for 53 bit numbers is 6.19035 after approximately 29 terms. | ||
|  | Erf asymptotic limit for 64 bit numbers is 4.8 after approximately 12 terms. | ||
|  | Erfc asymptotic limit for 64 bit numbers is 7.06004 after approximately 29 terms. | ||
|  | Erf asymptotic limit for 106 bit numbers is 6.5 after approximately 14 terms. | ||
|  | Erfc asymptotic limit for 106 bit numbers is 11.6626 after approximately 29 terms. | ||
|  | Erf asymptotic limit for 113 bit numbers is 6.8 after approximately 14 terms. | ||
|  | Erfc asymptotic limit for 113 bit numbers is 12.6802 after approximately 29 terms. | ||
|  | */ | ||
|  | 
 |