WSJT-X/Transceiver/HamlibTransceiver.cpp

1178 lines
42 KiB
C++
Raw Normal View History

Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include "HamlibTransceiver.hpp"
#include <cstring>
#include <cmath>
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include <QByteArray>
#include <QString>
#include <QStandardPaths>
#include <QFile>
#include <QJsonDocument>
#include <QJsonObject>
#include <QJsonValue>
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#include <QDebug>
#include "moc_HamlibTransceiver.cpp"
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
namespace
{
// Unfortunately bandwidth is conflated with mode, this is probably
// because Icom do the same. So we have to care about bandwidth if
// we want to set mode otherwise we will end up setting unwanted
// bandwidths every time we change mode. The best we can do via the
// Hamlib API is to request the normal option for the mode and hope
// that an appropriate filter is selected. Also ensure that mode is
// only set is absolutely necessary. On Icoms (and probably others)
// the filter is selected by number without checking the actual BW
// so unless the "normal" defaults are set on the rig we won't get
// desirable results.
//
// As an ultimate workaround make sure the user always has the
// option to skip mode setting altogether.
// reroute Hamlib diagnostic messages to Qt
int debug_callback (enum rig_debug_level_e level, rig_ptr_t /* arg */, char const * format, va_list ap)
{
QString message;
static char constexpr fmt[] = "Hamlib: %s";
2020-05-06 21:56:57 -04:00
message = message.vasprintf (format, ap).trimmed ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
switch (level)
{
case RIG_DEBUG_BUG:
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
qFatal (fmt, message.toLocal8Bit ().data ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
break;
case RIG_DEBUG_ERR:
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
qCritical (fmt, message.toLocal8Bit ().data ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
break;
case RIG_DEBUG_WARN:
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
qWarning (fmt, message.toLocal8Bit ().data ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
break;
default:
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
qDebug (fmt, message.toLocal8Bit ().data ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
break;
}
return 0;
}
// callback function that receives transceiver capabilities from the
// hamlib libraries
int register_callback (rig_caps const * caps, void * callback_data)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
TransceiverFactory::Transceivers * rigs = reinterpret_cast<TransceiverFactory::Transceivers *> (callback_data);
// We can't use this one because it is only for testing Hamlib and
// would confuse users, possibly causing operating on the wrong
// frequency!
#ifdef RIG_MODEL_DUMMY_NOVFO
if (RIG_MODEL_DUMMY_NOVFO == caps->rig_model)
{
return 1;
}
#endif
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
QString key;
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (RIG_MODEL_DUMMY == caps->rig_model)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
key = TransceiverFactory::basic_transceiver_name_;
}
else
{
key = QString::fromLatin1 (caps->mfg_name).trimmed ()
+ ' '+ QString::fromLatin1 (caps->model_name).trimmed ()
// + ' '+ QString::fromLatin1 (caps->version).trimmed ()
// + " (" + QString::fromLatin1 (rig_strstatus (caps->status)).trimmed () + ')'
;
}
auto port_type = TransceiverFactory::Capabilities::none;
switch (caps->port_type)
{
case RIG_PORT_SERIAL:
port_type = TransceiverFactory::Capabilities::serial;
break;
case RIG_PORT_NETWORK:
port_type = TransceiverFactory::Capabilities::network;
break;
case RIG_PORT_USB:
port_type = TransceiverFactory::Capabilities::usb;
break;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
default: break;
}
(*rigs)[key] = TransceiverFactory::Capabilities (caps->rig_model
, port_type
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
, RIG_MODEL_DUMMY != caps->rig_model
&& (RIG_PTT_RIG == caps->ptt_type
|| RIG_PTT_RIG_MICDATA == caps->ptt_type)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
, RIG_PTT_RIG_MICDATA == caps->ptt_type);
return 1; // keep them coming
}
int unregister_callback (rig_caps const * caps, void *)
{
rig_unregister (caps->rig_model);
return 1; // keep them coming
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// int frequency_change_callback (RIG * /* rig */, vfo_t vfo, freq_t f, rig_ptr_t arg)
// {
// (void)vfo; // unused in release build
// Q_ASSERT (vfo == RIG_VFO_CURR); // G4WJS: at the time of writing only current VFO is signalled by hamlib
// HamlibTransceiver * transceiver (reinterpret_cast<HamlibTransceiver *> (arg));
// Q_EMIT transceiver->frequency_change (f, Transceiver::A);
// return RIG_OK;
// }
class hamlib_tx_vfo_fixup final
{
public:
hamlib_tx_vfo_fixup (RIG * rig, vfo_t tx_vfo)
: rig_ {rig}
{
original_vfo_ = rig_->state.tx_vfo;
rig_->state.tx_vfo = tx_vfo;
}
~hamlib_tx_vfo_fixup ()
{
rig_->state.tx_vfo = original_vfo_;
}
private:
RIG * rig_;
vfo_t original_vfo_;
};
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
freq_t HamlibTransceiver::dummy_frequency_;
rmode_t HamlibTransceiver::dummy_mode_ {RIG_MODE_NONE};
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
void HamlibTransceiver::register_transceivers (TransceiverFactory::Transceivers * registry)
{
rig_set_debug_callback (debug_callback, nullptr);
#if WSJT_HAMLIB_TRACE
#if WSJT_HAMLIB_VERBOSE_TRACE
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
rig_set_debug (RIG_DEBUG_TRACE);
#else
rig_set_debug (RIG_DEBUG_VERBOSE);
#endif
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#elif defined (NDEBUG)
rig_set_debug (RIG_DEBUG_ERR);
#else
rig_set_debug (RIG_DEBUG_WARN);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#endif
rig_load_all_backends ();
rig_list_foreach (register_callback, registry);
}
void HamlibTransceiver::unregister_transceivers ()
{
rig_list_foreach (unregister_callback, nullptr);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void HamlibTransceiver::RIGDeleter::cleanup (RIG * rig)
{
if (rig)
{
// rig->state.obj = 0;
rig_cleanup (rig);
}
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
HamlibTransceiver::HamlibTransceiver (TransceiverFactory::PTTMethod ptt_type, QString const& ptt_port,
QObject * parent)
: PollingTransceiver {0, parent}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
, rig_ {rig_init (RIG_MODEL_DUMMY)}
, ptt_only_ {true}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
, back_ptt_port_ {false}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
, one_VFO_ {false}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
, is_dummy_ {true}
, reversed_ {false}
, freq_query_works_ {true}
, mode_query_works_ {true}
, split_query_works_ {true}
, tickle_hamlib_ {false}
, get_vfo_works_ {true}
, set_vfo_works_ {true}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
if (!rig_)
{
throw error {tr ("Hamlib initialisation error")};
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
switch (ptt_type)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
case TransceiverFactory::PTT_method_VOX:
set_conf ("ptt_type", "None");
break;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
case TransceiverFactory::PTT_method_CAT:
// Use the default PTT_TYPE for the rig (defined in the Hamlib
// rig back-end capabilities).
break;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
case TransceiverFactory::PTT_method_DTR:
case TransceiverFactory::PTT_method_RTS:
if (!ptt_port.isEmpty ())
{
#if defined (WIN32)
set_conf ("ptt_pathname", ("\\\\.\\" + ptt_port).toLatin1 ().data ());
#else
set_conf ("ptt_pathname", ptt_port.toLatin1 ().data ());
#endif
}
if (TransceiverFactory::PTT_method_DTR == ptt_type)
{
set_conf ("ptt_type", "DTR");
}
else
{
set_conf ("ptt_type", "RTS");
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
HamlibTransceiver::HamlibTransceiver (int model_number, TransceiverFactory::ParameterPack const& params,
QObject * parent)
: PollingTransceiver {params.poll_interval, parent}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
, rig_ {rig_init (model_number)}
, ptt_only_ {false}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
, back_ptt_port_ {TransceiverFactory::TX_audio_source_rear == params.audio_source}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
, one_VFO_ {false}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
, is_dummy_ {RIG_MODEL_DUMMY == model_number}
, reversed_ {false}
, freq_query_works_ {rig_ && rig_->caps->get_freq}
, mode_query_works_ {rig_ && rig_->caps->get_mode}
, split_query_works_ {rig_ && rig_->caps->get_split_vfo}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
, tickle_hamlib_ {false}
, get_vfo_works_ {true}
, set_vfo_works_ {true}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
{
if (!rig_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
throw error {tr ("Hamlib initialisation error")};
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// rig_->state.obj = this;
if (!is_dummy_)
{
//
// user defined Hamlib settings
//
auto settings_file_name = QStandardPaths::locate (QStandardPaths::AppConfigLocation
, "hamlib_settings.json");
if (!settings_file_name.isEmpty ())
{
QFile settings_file {settings_file_name};
qDebug () << "Using Hamlib settings file:" << settings_file_name;
if (settings_file.open (QFile::ReadOnly))
{
QJsonParseError status;
auto settings_doc = QJsonDocument::fromJson (settings_file.readAll (), &status);
if (status.error)
{
throw error {tr ("Hamlib settings file error: %1 at character offset %2")
.arg (status.errorString ()).arg (status.offset)};
}
qDebug () << "Hamlib settings JSON:" << settings_doc.toJson ();
if (!settings_doc.isObject ())
{
throw error {tr ("Hamlib settings file error: top level must be a JSON object")};
}
auto const& settings = settings_doc.object ();
//
// configuration settings
//
auto const& config = settings["config"];
if (!config.isUndefined ())
{
if (!config.isObject ())
{
throw error {tr ("Hamlib settings file error: config must be a JSON object")};
}
auto const& config_list = config.toObject ();
for (auto item = config_list.constBegin (); item != config_list.constEnd (); ++item)
{
set_conf (item.key ().toLocal8Bit ().constData ()
, (*item).toVariant ().toString ().toLocal8Bit ().constData ());
}
}
}
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
switch (rig_->caps->port_type)
{
case RIG_PORT_SERIAL:
if (!params.serial_port.isEmpty ())
{
set_conf ("rig_pathname", params.serial_port.toLatin1 ().data ());
}
set_conf ("serial_speed", QByteArray::number (params.baud).data ());
if (params.data_bits != TransceiverFactory::default_data_bits)
{
set_conf ("data_bits", TransceiverFactory::seven_data_bits == params.data_bits ? "7" : "8");
}
if (params.stop_bits != TransceiverFactory::default_stop_bits)
{
set_conf ("stop_bits", TransceiverFactory::one_stop_bit == params.stop_bits ? "1" : "2");
}
switch (params.handshake)
{
case TransceiverFactory::handshake_none: set_conf ("serial_handshake", "None"); break;
case TransceiverFactory::handshake_XonXoff: set_conf ("serial_handshake", "XONXOFF"); break;
case TransceiverFactory::handshake_hardware: set_conf ("serial_handshake", "Hardware"); break;
default: break;
}
if (params.force_dtr)
{
set_conf ("dtr_state", params.dtr_high ? "ON" : "OFF");
}
if (params.force_rts)
{
if (TransceiverFactory::handshake_hardware != params.handshake)
{
set_conf ("rts_state", params.rts_high ? "ON" : "OFF");
}
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
break;
case RIG_PORT_NETWORK:
if (!params.network_port.isEmpty ())
{
set_conf ("rig_pathname", params.network_port.toLatin1 ().data ());
}
break;
case RIG_PORT_USB:
if (!params.usb_port.isEmpty ())
{
set_conf ("rig_pathname", params.usb_port.toLatin1 ().data ());
}
break;
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
default:
throw error {tr ("Unsupported CAT type")};
break;
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
switch (params.ptt_type)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
case TransceiverFactory::PTT_method_VOX:
set_conf ("ptt_type", "None");
break;
case TransceiverFactory::PTT_method_CAT:
// Use the default PTT_TYPE for the rig (defined in the Hamlib
// rig back-end capabilities).
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
break;
case TransceiverFactory::PTT_method_DTR:
case TransceiverFactory::PTT_method_RTS:
if (params.ptt_port.size ()
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
&& params.ptt_port != "None"
&& (is_dummy_
|| RIG_PORT_SERIAL != rig_->caps->port_type
|| params.ptt_port != params.serial_port))
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
#if defined (WIN32)
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
set_conf ("ptt_pathname", ("\\\\.\\" + params.ptt_port).toLatin1 ().data ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#else
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
set_conf ("ptt_pathname", params.ptt_port.toLatin1 ().data ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#endif
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (TransceiverFactory::PTT_method_DTR == params.ptt_type)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
set_conf ("ptt_type", "DTR");
}
else
{
set_conf ("ptt_type", "RTS");
}
}
// Make Icom CAT split commands less glitchy
set_conf ("no_xchg", "1");
// would be nice to get events but not supported on Windows and also not on a lot of rigs
// rig_set_freq_callback (rig_.data (), &frequency_change_callback, this);
}
void HamlibTransceiver::error_check (int ret_code, QString const& doing) const
{
if (RIG_OK != ret_code)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT_POLL ("HamlibTransceiver", "error:" << rigerror (ret_code));
throw error {tr ("Hamlib error: %1 while %2").arg (rigerror (ret_code)).arg (doing)};
}
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
int HamlibTransceiver::do_start ()
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver",
QString::fromLatin1 (rig_->caps->mfg_name).trimmed ()
<< QString::fromLatin1 (rig_->caps->model_name).trimmed ());
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
error_check (rig_open (rig_.data ()), tr ("opening connection to rig"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// reset dynamic state
one_VFO_ = false;
reversed_ = false;
freq_query_works_ = rig_->caps->get_freq;
mode_query_works_ = rig_->caps->get_mode;
split_query_works_ = rig_->caps->get_split_vfo;
tickle_hamlib_ = false;
get_vfo_works_ = true;
set_vfo_works_ = true;
// the Net rigctl back end promises all functions work but we must
// test get_vfo as it determines our strategy for Icom rigs
vfo_t vfo;
int rc = rig_get_vfo (rig_.data (), &vfo);
if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
{
get_vfo_works_ = false;
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// determine if the rig uses single VFO addressing i.e. A/B and
// no get_vfo function
if (rig_->state.vfo_list & RIG_VFO_B)
{
one_VFO_ = true;
}
}
else
{
error_check (rc, "testing getting current VFO");
}
if ((WSJT_RIG_NONE_CAN_SPLIT || !is_dummy_)
&& rig_->caps->set_split_vfo) // if split is possible do some extra setup
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
freq_t f1;
freq_t f2;
rmode_t m {RIG_MODE_USB};
rmode_t mb;
pbwidth_t w {RIG_PASSBAND_NORMAL};
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
pbwidth_t wb;
if (freq_query_works_
&& (!get_vfo_works_ || !rig_->caps->get_vfo))
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
// Icom have deficient CAT protocol with no way of reading which
// VFO is selected or if SPLIT is selected so we have to simply
// assume it is as when we started by setting at open time right
// here. We also gather/set other initial state.
error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &f1), tr ("getting current frequency"));
f1 = std::round (f1);
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "current frequency =" << f1);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &m, &w), tr ("getting current mode"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "current mode =" << rig_strrmode (m) << "bw =" << w);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (!rig_->caps->set_vfo)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_vfo_op TOGGLE");
rc = rig_vfo_op (rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
else
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_set_vfo to other VFO");
rc = rig_set_vfo (rig_.data (), rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB);
if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
{
// if we are talking to netrigctl then toggle VFO op
// may still work
TRACE_CAT ("HamlibTransceiver", "rig_vfo_op TOGGLE");
rc = rig_vfo_op (rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE);
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
// we are probably dealing with rigctld so we do not
// have completely accurate rig capabilities
set_vfo_works_ = false;
one_VFO_ = false; // we do not need single VFO addressing
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
else
{
error_check (rc, tr ("exchanging VFOs"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
if (set_vfo_works_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
// without the above we cannot proceed but we know we
// are on VFO A and that will not change so there's no
// need to execute this block
error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &f2), tr ("getting other VFO frequency"));
f2 = std::round (f2);
TRACE_CAT ("HamlibTransceiver", "rig_get_freq other frequency =" << f2);
error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &mb, &wb), tr ("getting other VFO mode"));
TRACE_CAT ("HamlibTransceiver", "rig_get_mode other mode =" << rig_strrmode (mb) << "bw =" << wb);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
update_other_frequency (f2);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (!rig_->caps->set_vfo)
{
TRACE_CAT ("HamlibTransceiver", "rig_vfo_op TOGGLE");
error_check (rig_vfo_op (rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE), tr ("exchanging VFOs"));
}
else
{
TRACE_CAT ("HamlibTransceiver", "rig_set_vfo A/MAIN");
error_check (rig_set_vfo (rig_.data (), rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN), tr ("setting current VFO"));
}
if (f1 != f2 || m != mb || w != wb) // we must have started with MAIN/A
{
update_rx_frequency (f1);
}
else
{
error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &f1), tr ("getting frequency"));
f1 = std::round (f1);
TRACE_CAT ("HamlibTransceiver", "rig_get_freq frequency =" << f1);
error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &m, &w), tr ("getting mode"));
TRACE_CAT ("HamlibTransceiver", "rig_get_mode mode =" << rig_strrmode (m) << "bw =" << w);
update_rx_frequency (f1);
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// TRACE_CAT ("HamlibTransceiver", "rig_set_split_vfo split off");
// error_check (rig_set_split_vfo (rig_.data (), RIG_VFO_CURR, RIG_SPLIT_OFF, RIG_VFO_CURR), tr ("setting split off"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
// update_split (false);
}
else
{
vfo_t v {RIG_VFO_A}; // assume RX always on VFO A/MAIN
if (get_vfo_works_ && rig_->caps->get_vfo)
{
error_check (rig_get_vfo (rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_get_vfo current VFO = " << rig_strvfo (v));
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
reversed_ = RIG_VFO_B == v;
if (mode_query_works_ && !(rig_->caps->targetable_vfo & (RIG_TARGETABLE_MODE | RIG_TARGETABLE_PURE)))
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
if (RIG_OK == rig_get_mode (rig_.data (), RIG_VFO_CURR, &m, &w))
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_get_mode current mode =" << rig_strrmode (m) << "bw =" << w);
}
else
{
mode_query_works_ = false;
// Some rigs (HDSDR) don't have a working way of
// reporting MODE so we give up on mode queries -
// sets will still cause an error
TRACE_CAT ("HamlibTransceiver", "rig_get_mode can't do on this rig");
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
update_mode (map_mode (m));
}
tickle_hamlib_ = true;
if (is_dummy_ && !ptt_only_ && dummy_frequency_)
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
{
// return to where last dummy instance was
// TODO: this is going to break down if multiple dummy rigs are used
rig_set_freq (rig_.data (), RIG_VFO_CURR, dummy_frequency_);
update_rx_frequency (dummy_frequency_);
if (RIG_MODE_NONE != dummy_mode_)
{
rig_set_mode (rig_.data (), RIG_VFO_CURR, dummy_mode_, RIG_PASSBAND_NOCHANGE);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
update_mode (map_mode (dummy_mode_));
}
}
#if HAVE_HAMLIB_CACHING
// we must disable Hamlib caching because it lies about frequency
// for less than 1 Hz resolution rigs
auto orig_cache_timeout = rig_get_cache_timeout_ms (rig_.data (), HAMLIB_CACHE_ALL);
rig_set_cache_timeout_ms (rig_.data (), HAMLIB_CACHE_ALL, 0);
#endif
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
int resolution {0};
if (freq_query_works_)
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
{
freq_t current_frequency;
error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &current_frequency), tr ("getting current VFO frequency"));
current_frequency = std::round (current_frequency);
Frequency f = current_frequency;
if (f && !(f % 10))
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
{
auto test_frequency = f - f % 100 + 55;
error_check (rig_set_freq (rig_.data (), RIG_VFO_CURR, test_frequency), tr ("setting frequency"));
freq_t new_frequency;
error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &new_frequency), tr ("getting current VFO frequency"));
new_frequency = std::round (new_frequency);
switch (static_cast<Radio::FrequencyDelta> (new_frequency - test_frequency))
{
case -5: resolution = -1; break; // 10Hz truncated
case 5: resolution = 1; break; // 10Hz rounded
case -15: resolution = -2; break; // 20Hz truncated
case -55: resolution = -3; break; // 100Hz truncated
case 45: resolution = 3; break; // 100Hz rounded
}
if (1 == resolution) // may be 20Hz rounded
{
test_frequency = f - f % 100 + 51;
error_check (rig_set_freq (rig_.data (), RIG_VFO_CURR, test_frequency), tr ("setting frequency"));
error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &new_frequency), tr ("getting current VFO frequency"));
if (9 == static_cast<Radio::FrequencyDelta> (new_frequency - test_frequency))
{
resolution = 2; // 20Hz rounded
}
}
error_check (rig_set_freq (rig_.data (), RIG_VFO_CURR, current_frequency), tr ("setting frequency"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
}
}
else
{
resolution = -1; // best guess
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
}
#if HAVE_HAMLIB_CACHING
// revert Hamlib cache timeout
rig_set_cache_timeout_ms (rig_.data (), HAMLIB_CACHE_ALL, orig_cache_timeout);
#endif
do_poll ();
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "exit" << state () << "reversed =" << reversed_ << "resolution = " << resolution);
return resolution;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void HamlibTransceiver::do_stop ()
{
if (is_dummy_ && !ptt_only_)
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
{
rig_get_freq (rig_.data (), RIG_VFO_CURR, &dummy_frequency_);
dummy_frequency_ = std::round (dummy_frequency_);
if (mode_query_works_)
{
pbwidth_t width;
rig_get_mode (rig_.data (), RIG_VFO_CURR, &dummy_mode_, &width);
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
}
if (rig_)
{
rig_close (rig_.data ());
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "state:" << state () << "reversed =" << reversed_);
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
auto HamlibTransceiver::get_vfos (bool for_split) const -> std::tuple<vfo_t, vfo_t>
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
if (get_vfo_works_ && rig_->caps->get_vfo)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
vfo_t v;
error_check (rig_get_vfo (rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_get_vfo VFO = " << rig_strvfo (v));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
reversed_ = RIG_VFO_B == v;
}
else if (!for_split && set_vfo_works_ && rig_->caps->set_vfo && rig_->caps->set_split_vfo)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
// use VFO A/MAIN for main frequency and B/SUB for Tx
// frequency if split since these type of radios can only
// support this way around
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_set_vfo VFO = A/MAIN");
error_check (rig_set_vfo (rig_.data (), rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN), tr ("setting current VFO"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
// else only toggle available but VFOs should be substitutable
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
auto rx_vfo = rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN;
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
auto tx_vfo = (WSJT_RIG_NONE_CAN_SPLIT || !is_dummy_) && for_split
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
? (rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB)
: rx_vfo;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (reversed_)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "reversing VFOs");
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
std::swap (rx_vfo, tx_vfo);
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "RX VFO = " << rig_strvfo (rx_vfo) << " TX VFO = " << rig_strvfo (tx_vfo));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
return std::make_tuple (rx_vfo, tx_vfo);
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
void HamlibTransceiver::do_frequency (Frequency f, MODE m, bool no_ignore)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", f << "mode:" << m << "reversed:" << reversed_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// only change when receiving or simplex or direct VFO addressing
// unavailable or forced
if (!state ().ptt () || !state ().split () || !one_VFO_ || no_ignore)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// for the 1st time as a band change may cause a recalled mode to be
// set
error_check (rig_set_freq (rig_.data (), RIG_VFO_CURR, f), tr ("setting frequency"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
update_rx_frequency (f);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
if (mode_query_works_ && UNK != m)
{
rmode_t current_mode;
pbwidth_t current_width;
auto new_mode = map_mode (m);
error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
TRACE_CAT ("HamlibTransceiver", "rig_get_mode mode = " << rig_strrmode (current_mode) << "bw =" << current_width);
if (new_mode != current_mode)
{
TRACE_CAT ("HamlibTransceiver", "rig_set_mode mode = " << rig_strrmode (new_mode));
error_check (rig_set_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// for the 2nd time because a mode change may have caused a
// frequency change
error_check (rig_set_freq (rig_.data (), RIG_VFO_CURR, f), tr ("setting frequency"));
// for the second time because some rigs change mode according
// to frequency such as the TS-2000 auto mode setting
TRACE_CAT ("HamlibTransceiver", "rig_set_mode mode = " << rig_strrmode (new_mode));
error_check (rig_set_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
}
update_mode (m);
}
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
void HamlibTransceiver::do_tx_frequency (Frequency tx, MODE mode, bool no_ignore)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", tx << "reversed:" << reversed_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (WSJT_RIG_NONE_CAN_SPLIT || !is_dummy_) // split is meaningless if you can't see it
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
auto split = tx ? RIG_SPLIT_ON : RIG_SPLIT_OFF;
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
auto vfos = get_vfos (tx);
// auto rx_vfo = std::get<0> (vfos); // or use RIG_VFO_CURR
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
auto tx_vfo = std::get<1> (vfos);
if (tx)
{
// Doing set split for the 1st of two times, this one
// ensures that the internal Hamlib state is correct
// otherwise rig_set_split_freq() will target the wrong VFO
// on some rigs
if (tickle_hamlib_)
{
// This potentially causes issues with the Elecraft K3
// which will block setting split mode when it deems
// cross mode split operation not possible. There's not
// much we can do since the Hamlib Library needs this
// call at least once to establish the Tx VFO. Best we
// can do is only do this once per session.
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_set_split_vfo split =" << split);
auto rc = rig_set_split_vfo (rig_.data (), RIG_VFO_CURR, split, tx_vfo);
if (tx || (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc))
{
// On rigs that can't have split controlled only throw an
// exception when an error other than command not accepted
// is returned when trying to leave split mode. This allows
// fake split mode and non-split mode to work without error
// on such rigs without having to know anything about the
// specific rig.
error_check (rc, tr ("setting/unsetting split mode"));
}
tickle_hamlib_ = false;
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
update_split (tx);
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// just change current when transmitting with single VFO
// addressing
if (state ().ptt () && one_VFO_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_set_split_vfo split =" << split);
error_check (rig_set_split_vfo (rig_.data (), RIG_VFO_CURR, split, tx_vfo), tr ("setting split mode"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
error_check (rig_set_freq (rig_.data (), RIG_VFO_CURR, tx), tr ("setting frequency"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (UNK != mode && mode_query_works_)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
rmode_t current_mode;
pbwidth_t current_width;
auto new_mode = map_mode (mode);
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
TRACE_CAT ("HamlibTransceiver", "rig_get_mode mode = " << rig_strrmode (current_mode) << "bw =" << current_width);
if (new_mode != current_mode)
{
TRACE_CAT ("HamlibTransceiver", "rig_set_mode mode = " << rig_strrmode (new_mode));
error_check (rig_set_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
}
}
update_other_frequency (tx);
}
else if (!one_VFO_ || no_ignore) // if not single VFO addressing and not forced
{
hamlib_tx_vfo_fixup fixup (rig_.data (), tx_vfo);
if (UNK != mode)
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
{
auto new_mode = map_mode (mode);
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_set_split_freq_mode freq = " << tx
<< " mode = " << rig_strrmode (new_mode));
error_check (rig_set_split_freq_mode (rig_.data (), RIG_VFO_CURR, tx, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting split TX frequency and mode"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
}
else
{
TRACE_CAT ("HamlibTransceiver", "rig_set_split_freq freq = " << tx);
error_check (rig_set_split_freq (rig_.data (), RIG_VFO_CURR, tx), tr ("setting split TX frequency"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// Enable split last since some rigs (Kenwood for one) come out
// of split when you switch RX VFO (to set split mode above for
// example). Also the Elecraft K3 will refuse to go to split
// with certain VFO A/B mode combinations.
TRACE_CAT ("HamlibTransceiver", "rig_set_split_vfo split =" << split);
error_check (rig_set_split_vfo (rig_.data (), RIG_VFO_CURR, split, tx_vfo), tr ("setting split mode"));
update_other_frequency (tx);
update_split (tx);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
else
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// Disable split
TRACE_CAT ("HamlibTransceiver", "rig_set_split_vfo split =" << split);
auto rc = rig_set_split_vfo (rig_.data (), RIG_VFO_CURR, split, tx_vfo);
if (tx || (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc))
{
// On rigs that can't have split controlled only throw an
// exception when an error other than command not accepted
// is returned when trying to leave split mode. This allows
// fake split mode and non-split mode to work without error
// on such rigs without having to know anything about the
// specific rig.
error_check (rc, tr ("setting/unsetting split mode"));
}
update_other_frequency (tx);
update_split (tx);
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
void HamlibTransceiver::do_mode (MODE mode)
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", mode);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
auto vfos = get_vfos (state ().split ());
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
// auto rx_vfo = std::get<0> (vfos);
auto tx_vfo = std::get<1> (vfos);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
rmode_t current_mode;
pbwidth_t current_width;
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
auto new_mode = map_mode (mode);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// only change when receiving or simplex if direct VFO addressing unavailable
if (!(state ().ptt () && state ().split () && one_VFO_))
{
error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
TRACE_CAT ("HamlibTransceiver", "rig_get_mode mode = " << rig_strrmode (current_mode) << "bw =" << current_width);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
if (new_mode != current_mode)
{
TRACE_CAT ("HamlibTransceiver", "rig_set_mode mode = " << rig_strrmode (new_mode));
error_check (rig_set_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
}
}
// just change current when transmitting split with one VFO mode
if (state ().ptt () && state ().split () && one_VFO_)
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting current VFO mode"));
TRACE_CAT ("HamlibTransceiver", "rig_get_mode mode = " << rig_strrmode (current_mode) << "bw =" << current_width);
if (new_mode != current_mode)
{
TRACE_CAT ("HamlibTransceiver", "rig_set_mode mode = " << rig_strrmode (new_mode));
error_check (rig_set_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting current VFO mode"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
}
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
else if (state ().split () && !one_VFO_)
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
{
error_check (rig_get_split_mode (rig_.data (), RIG_VFO_CURR, &current_mode, &current_width), tr ("getting split TX VFO mode"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_get_split_mode mode = " << rig_strrmode (current_mode) << "bw =" << current_width);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (new_mode != current_mode)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_set_split_mode mode = " << rig_strrmode (new_mode));
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
hamlib_tx_vfo_fixup fixup (rig_.data (), tx_vfo);
error_check (rig_set_split_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NOCHANGE), tr ("setting split TX VFO mode"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
update_mode (mode);
}
void HamlibTransceiver::do_poll ()
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
{
#if !WSJT_TRACE_CAT_POLLS
#if defined (NDEBUG)
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
rig_set_debug (RIG_DEBUG_ERR);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#else
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
rig_set_debug (RIG_DEBUG_WARN);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#endif
#endif
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
freq_t f;
rmode_t m;
pbwidth_t w;
split_t s;
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (get_vfo_works_ && rig_->caps->get_vfo)
{
vfo_t v;
error_check (rig_get_vfo (rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT_POLL ("HamlibTransceiver", "VFO =" << rig_strvfo (v));
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
reversed_ = RIG_VFO_B == v;
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if ((WSJT_RIG_NONE_CAN_SPLIT || !is_dummy_)
&& rig_->caps->get_split_vfo && split_query_works_)
{
vfo_t v {RIG_VFO_NONE}; // so we can tell if it doesn't get updated :(
auto rc = rig_get_split_vfo (rig_.data (), RIG_VFO_CURR, &s, &v);
if (-RIG_OK == rc && RIG_SPLIT_ON == s)
{
TRACE_CAT_POLL ("HamlibTransceiver", "rig_get_split_vfo split = " << s << " VFO = " << rig_strvfo (v));
update_split (true);
// if (RIG_VFO_A == v)
// {
// reversed_ = true; // not sure if this helps us here
// }
}
else if (-RIG_OK == rc) // not split
{
TRACE_CAT_POLL ("HamlibTransceiver", "rig_get_split_vfo split = " << s << " VFO = " << rig_strvfo (v));
update_split (false);
}
else
{
// Some rigs (Icom) don't have a way of reporting SPLIT
// mode
TRACE_CAT_POLL ("HamlibTransceiver", "rig_get_split_vfo can't do on this rig");
// just report how we see it based on prior commands
split_query_works_ = false;
}
}
if (freq_query_works_)
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
{
// only read if possible and when receiving or simplex
if (!state ().ptt () || !state ().split ())
{
error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &f), tr ("getting current VFO frequency"));
f = std::round (f);
TRACE_CAT_POLL ("HamlibTransceiver", "rig_get_freq frequency =" << f);
update_rx_frequency (f);
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if ((WSJT_RIG_NONE_CAN_SPLIT || !is_dummy_)
&& state ().split ()
&& (rig_->caps->targetable_vfo & (RIG_TARGETABLE_FREQ | RIG_TARGETABLE_PURE))
&& !one_VFO_)
{
// only read "other" VFO if in split, this allows rigs like
// FlexRadio to work in Kenwood TS-2000 mode despite them
// not having a FB; command
// we can only probe current VFO unless rig supports reading
// the other one directly because we can't glitch the Rx
error_check (rig_get_freq (rig_.data ()
, reversed_
? (rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN)
: (rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB)
, &f), tr ("getting other VFO frequency"));
f = std::round (f);
TRACE_CAT_POLL ("HamlibTransceiver", "rig_get_freq other VFO =" << f);
update_other_frequency (f);
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
// only read when receiving or simplex if direct VFO addressing unavailable
if ((!state ().ptt () || !state ().split ())
&& mode_query_works_)
{
// We have to ignore errors here because Yaesu FTdx... rigs can
// report the wrong mode when transmitting split with different
// modes per VFO. This is unfortunate because that is exactly
// what you need to do to get 4kHz Rx b.w and modulation into
// the rig through the data socket or USB. I.e. USB for Rx and
// DATA-USB for Tx.
auto rc = rig_get_mode (rig_.data (), RIG_VFO_CURR, &m, &w);
if (RIG_OK == rc)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT_POLL ("HamlibTransceiver", "rig_get_mode mode =" << rig_strrmode (m) << "bw =" << w);
update_mode (map_mode (m));
}
else
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT_POLL ("HamlibTransceiver", "rig_get_mode mode failed with rc:" << rc << "ignoring");
}
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
if (RIG_PTT_NONE != rig_->state.pttport.type.ptt && rig_->caps->get_ptt)
{
ptt_t p;
auto rc = rig_get_ptt (rig_.data (), RIG_VFO_CURR, &p);
if (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc) // may fail if
// Net rig ctl and target doesn't
// support command
{
error_check (rc, tr ("getting PTT state"));
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT_POLL ("HamlibTransceiver", "rig_get_ptt PTT =" << p);
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
update_PTT (!(RIG_PTT_OFF == p));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
}
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#if !WSJT_TRACE_CAT_POLLS
#if WSJT_HAMLIB_TRACE
#if WSJT_HAMLIB_VERBOSE_TRACE
rig_set_debug (RIG_DEBUG_TRACE);
#else
rig_set_debug (RIG_DEBUG_VERBOSE);
#endif
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#elif defined (NDEBUG)
rig_set_debug (RIG_DEBUG_ERR);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#else
rig_set_debug (RIG_DEBUG_WARN);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
#endif
#endif
}
void HamlibTransceiver::do_ptt (bool on)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", on << state () << "reversed =" << reversed_);
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
if (on)
{
if (RIG_PTT_NONE != rig_->state.pttport.type.ptt)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_set_ptt PTT = true");
------------------------------------------------------------------------ r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines Various defect repairs and ambigous behaviour clarifications A regression introduced in v1.5.0-rc1 where PTT on an alternate serial port when using no CAT control is resolved. A regression introduced in v1.5.0-rc1 where the network server field was not being restored in the settings dialog has been resolved. In settings the "Test PTT" button is now styled by checked state. The "Test PTT" button is enabled without needing click "Test CAT" first when no CAT rig control is selected. Various parts of the settings dialog are now disabled when no CAT rig control is selected. These are the "Mode" group, the "Split Operation" group and the "Monitor returns to last used frequency" check box. None of these have any visible impact nor make sense without CAT rig control. Initialization and teardown of rig control internals has been revised to avoid several problems related to timing and when switching between different CAT settings. This includes improvements in having the operating frequency restored between sessions when not using CAT rig control. The initialization of OmniRig connections has been improved, unfortunately it is still possible to get an exception when clicking the "Test CAT" button where just clicking "OK" and leaving the settings dialog will probably work. Some unnecessary CAT commands output during direct rig control have been elided to reduce the level of traffic a little. The handling of some automatically generated free text messages used when the station is a type 2 compound callsign or is working a type 2 compound callsign has been improved. This is related to how a double click on a message of the form "DE TI4/N0URE 73" is double clicked. The new behaviour depends on whether the current "DX Call" matches the call in the message. This resolves the ambiguity as to whether this message is a sign off at the end of a QSO with current operator (a 73 message is generated) or a tail end opportunity where the message should be treated the same as a CQ or QRZ message (WSJT-X QSYs to the frequency, generates messages and selects message one ready to call). This still leaves some potential ambiguous behaviors in this complex area but selecting "Clear DX call and grid after logging" should resolve most of them. Rig control trace messages have been cleaned up and are now more helpful, less verbose and, tidier in the source code. ------------------------------------------------------------------------ Merged from the wsjtx-1.5 branch. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 12:41:12 -04:00
error_check (rig_set_ptt (rig_.data (), RIG_VFO_CURR
, RIG_PTT_RIG_MICDATA == rig_->caps->ptt_type && back_ptt_port_
? RIG_PTT_ON_DATA : RIG_PTT_ON), tr ("setting PTT on"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
else
{
if (RIG_PTT_NONE != rig_->state.pttport.type.ptt)
{
Rig control overhaul to implement generic Doppler shift tracking The concept of a nominal receive and transmit frequency has been introduced. This is used as a base frequency for Doppler correction, frequency setting and reporting. The start up frequency is now zero which is updated by the first rig control status report. This needs more work to accommodate calling frequency plus working frequency operation as is used for random MS operation etc.. The main window frequency display now shows the transmit dial frequency while transmitting. The mode changing logic sequence has been changed such that the rig is correctly put into and taken out of split mode as required by the target mode. This also avoids the "other" VFO having its frequency changed when entering a mode that does not use split operating like WSPR. The main window band combo box edit may now be used to input an kHz offset from the current MHz dial frequency. This is intended for setting a sked or working frequency on the VHF and up bands. For example the working frequency for 23cms might be set to 1296MHz and a working frequency of 1296.3MHz would be selected by selecting the 23cms band with the combo box drop down list and then entering 300k into the band combo box edit widget. When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal frequency such that the frequency clicked on becomes the Tx and Rx frequency using the fixed 1000Hz DF that JT4 modes use. This will probably be extended to all QSO modes when used in VHF & up mode. This assumes that 1000Hz is an optimal DF for both Tx and Rx and therefore one can "net" to an off frequency, but visible on the waterfall, caller with one click. Improvements to OmniRig rig control including use of the serial port control lines RTS or DTR, on the CAT serial port used by OmniRig, for PTT control. Incrementing transaction sequence numbers added to messages to and from the rig control thread. This enables round trip status to be tracked and associated with a request. For example a command that might cause several asynchronous status updates can now be tracked in the originating thread such that it is clear which updates are caused by executing the request. This in turn allows updates to be held until the request is complete i.e. the state is consistent with the results of the request. Messages to the rig control thread are now posted as a new state (Transceiver::TransceiverState) object. The rig control thread tracks requests and actions any differences between the prior requests and the new state. The rig control thread is now stored on the heap so that it can be closed down and released as needed. Along with this the rig control close down semantics are better defined avoiding some potential deadlock situations. If the rig is placed into split mode it will be reverted to simplex mode when the rig connection is closed. When using direct rig control via Hamlib, rigs that have A/B VFO arrangements and no method to query the current VFO like many Icoms and the Yaesu FT-817/857/897(D) series now have smarted frequency updating requiring no VFO changes when changing the frequency. This is particularly important when doing Tx Doppler correction to avoid glitches. The implementation of emulated split operating mode ("Fake It") is simplified and improved. A dummy Hamlib transceiver for PTT control on a separate port is no long instantiated if CAT or VOX PTT control is selected. The resolution and any rounding of the rig CAT frequency set and get commands is determined automatically upon opening the rig connection. This is needed to determine the rate of frequency updates for Doppler tracking. It also allows the rig to be more accurately controlled. Frequency calibration is calculated separately for the receive and transmit frequencies. Whether the rig modulation mode should be controlled is now a constructor argument rather than being passed with individual rig control requests. Doppler shift correction is considerably enhanced with simpler controls and much better rig control. A new mode of tracking called "receive only" is introduced for those with rigs that cannot be QSY:ed via CAT when transmitting. Such rigs have a Doppler correction calculated for the middle of the next transmit period just before transmission starts. While using Doppler tracking it is now possible to adjust the sked frequency either using the new kHz offset feature of the main window band combo box or by directly tuning the rig VFO knob while holding down the CTRL key. The astronomical data window that includes Doppler tracking control is now opened and closed using a checkable menu item to avoid it being accidentally closed. Debug configuration rig control diagnostic messages now have a facility argument for clearer and more standardized trace messages. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 13:11:58 -04:00
TRACE_CAT ("HamlibTransceiver", "rig_set_ptt PTT = false");
error_check (rig_set_ptt (rig_.data (), RIG_VFO_CURR, RIG_PTT_OFF), tr ("setting PTT off"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
update_PTT (on);
}
void HamlibTransceiver::set_conf (char const * item, char const * value)
{
token_t token = rig_token_lookup (rig_.data (), item);
if (RIG_CONF_END != token) // only set if valid for rig model
{
error_check (rig_set_conf (rig_.data (), token, value), tr ("setting a configuration item"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
}
QByteArray HamlibTransceiver::get_conf (char const * item)
{
token_t token = rig_token_lookup (rig_.data (), item);
QByteArray value {128, '\0'};
if (RIG_CONF_END != token) // only get if valid for rig model
{
error_check (rig_get_conf (rig_.data (), token, value.data ()), tr ("getting a configuration item"));
Added support for use of "Standard" locations for writable files. This allows writable files to be located in the "correct" location for each platform rather than in the directory of the executable which, in general, is not recommended or allowed in some cases. A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to switch be tween old and new functionality, currently it is on by default. It can be turned off by defining it to a false value (0) or more simply with cmake-gui setting the option with the same name. JTAlert can only work with the old non-standard file locations until Laurie VK3AMA chooses to support the new file locations. Even if the above is not enabled; the QSettings file is written to a user specific location so it will be shared by all instances of the program (i.e. across upgrades). See below for multiple concurrent instance support changes. Added a command line parser module for Fortran. Added 'lib/options.f90' to facilitate more complex argument passing to jt9 to cover explicit file locations. Changed the way multiple concurrent instances are handled. This is to allow the program to be run multiple times from the same installation directory. A new wsjtx command line optional argument is available "-r" or "--rig" which enables multiple concurrent instance support. The parameter of the new option is a unique name signifying a rig or equivalent. The name is used as the shared memory segment key and in window titles. The name is also used to access unique settings files and writable data files like ALL.TXT and log files. No attempt has been made to share these files between concurrent instances. If "-r" or "--rig" is used without a parameter it still enables multiple concurrent instance support for that instance. All instances must use a unique parameter, one of which may be empty. The rig name is appended the QCoreApplication::applicationName() for convenient usage like window titles. Set non Qt locale to "C". This ensures that C library functions give consistent results whatever the system locale is set to. QApplication follows the system locale as before. Thus using QApplication and its descendants like widgets and QString for all user visible formating will give correct l10n and using C/C++ library will give consistent formatting across locales. Added top level C++ exception handling to main.cpp. Because the new transceiver framework uses exceptions internally, the main function now handles any exceptions that aren't caught. Retired devsetup, replaced with Configuration. Configuration is a class that encapsulates most of the configuration behavior. Because rig configuration is so closely coupled with rig operation, Configuration serves as a proxy for access to the rig control functions. See Configuration.hpp for more details of the Configuration interface. Menu changes. Various checkable menu actions moved from main menu to the Configuration dialog. The whole settings menu has been retired with the single "Settings..." action moved to the file menu for consistency on Mac where it appears as "Preferences" in line with Mac guidelines. New data models for data used by the application. ADIF amateur band parameters, free text message macros, spot working frequencies and, station information (station descriptions and transverter offsets per band) each implement the QAbstractItemModel interface allowing them to be used directly with Qt view widgets (Bands.hpp, FrequencyList.hpp and, StationList.hpp). Configuration manages maintenance of an instance of all but the former of the above models. The ADIF band model is owned by Configuration but requires no user maintenance as it is immutable. Band combo box gets more functionality. This widget is now an editable QComboBox with some extra input capabilities. The popup list is still the list of spot working frequencies, now showing the actual frequency decorated with the band name. This allows multiple spot frequencies on a band if required. The line edit allows direct frequency entry in mega-Hertz with a completer built in to suggest the available spot working frequencies. It also allows band name entry where the first available spot working frequency is selected. Recognized band names are those that are defined by the ADIF specification and can be found in in the implementation of the ADIF bands model (Bands.cpp). If an out of band frequency is chosen, the line edit shows a warning red background and the text "OOB". Out of band is only defined by the ADIF band limits which in general are wider than any entities regulations. Qt 5.2 now supports default audio i/p and o/p devices. These devices are placeholders for whatever the user defines as the default device. Because of this they need special treatment as the actual device used is chosen at open time behind the scenes. Close-down behavior is simplified. The close-down semantics were broken such that some objects were not being shut down cleanly, this required amendments to facilitate correct close down of threads. User font selection added to Configuration UI. Buttons to set the application font and the font for the band and Rx frequency activity widgets have been added to the Configuration UI to replace the file based font size control. Free text macros now selected directly. The free text line edit widgets are now editable combo boxes that have the current free text macro definitions as their popup list. The old context menu to do this has been retired. Astronomical data window dynamically formatted and has font a chooser. This window is now autonomous, has its own font chooser and, dynamically resizes to cover the contents. Double click to Tx enabled now has its own widget in the status bar. QDir used for portable path and file name handling throughout. The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now checkable. Being checkable allows these buttons control their own state and rendering. Calls to PSK Reporter interface simplified. In mainwindow.cpp the calls to this interface are rationalized to just 3 locations. Manipulation of ALL.TXT simplified. Moved, where possible, to common functions. Elevated frequency types to be Qt types. Frequency and FrequencyDelta defined as Qt types in their meta-type system (Radio.hpp). They are integral types for maximum accuracy. Re-factored rig control calls in mainwindow.cpp. The new Configuration proxy access to rig control required many changes (mostly simplifications) to the MainWindow rig control code. Some common code has been gathered in member functions like qsy(), monitor(), band_changed() and auto_tx_mode(). Rig control enhancements. The rig control for clients interface is declared as an abstract interface (See Transceiver.hpp). Concrete implementations of this interface are provided for the Hamlib rig control library, DX Lab Suite Commander via a TCP/IP command channel, Ham Radio Deluxe also via a TCP/IP command channel and, OmniRig via its Windows COM server interface. Concrete Transceiver implementations are expected to be moved to a separate thread after construction since many operations are blocking and not suitable for running in a GUI thread. To facilitate this all instantiation of concrete Transceiver instances are handled by Configuration using a factory class (TransceiverFactory) for configuration parameter based instantiation. Various common functionality shared by different rig interface implementations are factored out into helper base classes that implement or delegate parts of the Transceiver interface. They are TransceiverBase which caches state to minimize expensive rig commands, it also maps the Transceiver interface into a more convenient form for implementation (template methods). PollingTransceiver that provides a state polling mechanism that only reports actual changes. EmulateSplitTransceiver that provides split operation by QSYing on PTT state changes. EmulateSplitTransceiver can be used with any implementation as it follows the GoF Decorator pattern and can wrap any Transceiver implementation. OmniRigTransceiver is derived directly from TransceiverBase since it doesn't require polling due to its asynchronous nature. OmniRigTransceiver is only built on Windows as it is a COM server client. To build it you must first install the OmniRig client on the development machine (http://www.dxatlas.com/omnirig/). DXLabSuiteCommanderTransceiver derives from PollingTransceiver since it is a synchronous communications channel. No third party library is required for this interface. HRDTransceiver also derives from PollingTransceiver. The HRD interface library has been reverse engineered to provide functionality with all available versions of HRD. No third party libraries are required. HamlibTransceiver likewise derives from PollingTransceiver since the Hamlib asynchronous interface is non-functional. Although this class will interface with the release version of Hamlib (1.2.15.3); for correct operation on most rigs it needs to run with the latest master branch code of Hamlib. During development many changes to Hamlib have been submitted and accepted, hence this requirement. Hamlib source can be obtained from git://git.code.sf.net/p/hamlib/code and at the time of writing he master branch was at SHA 6e4432. The Hamlib interface directly calls the "C" interface and the modified rigclass.{h,cpp} files have been retired. There is a rig type selection of "None" which may be used for non-CAT rigs, this is actually a connection to the dummy Hamlib device. PollingTransvceiver derives from TransceiverBase and TransceiverBase derives from the Transceiver interface. Each interface implementation offers some possibility of PTT control via a different serial port than the CAT port. We also support PTT control directly via a second serial port. This is done by delegating to a dummy Hamlib instance which is only used for PTT control. This means that DXLabSuiteCommanderTransceiver, HRDTransceiver and OmniRigTransceiver always wrap a dummy HamlibTransceiver instance. The factory class TransceiverFactory manages all these constructional complexities. Serial port selection combo boxes are now editable with a manually entered value being saved to the settings file. This allows a non-standard port device to be used without having to edit the settings file manually. For TCP/IP network CAT interfaces; the network address and port may be specified allowing the target device to be located on a different machine from the one running wsjtx if required. The default used when the address field is left blank is the correct one for normal usage on the local host. Selecting a polling interval of zero is no longer possible, this is because the rig control capability can no longer support one way connection. This is in line with most other CAT control software. In the Configuration dialog there are options to select split mode control by the software and mode control by the software. For the former "None", "Rig" and "Fake it" are available, for the latter "None", "USB" and, "Data" are available. Because tone generation is implicitly linked to split mode operation; it is no longer possible to have the software in split mode and the rig not or vice versa. This may mean some rigs cannot be used in split mode and therefore not in dual JT65+JT9 until issues with CAT control with that rig are resolved. Single mode with VOX keying and no CAT control are still possible so even the most basic transceiver setup is supported as before. Configuration now supports a frequency offset suitable for transverter operation. The station details model (StationList.hpp) includes a column to store an offset for each band if required. CMake build script improvements. The CMakeLists.txt from the 'lib' directory has been retired with its contents merged into the top level CMakeLists.txt. Install target support has been greatly improved with the Release build configuration now building a fully standalone installation on Mac and Windows. The Debug configuration still builds an installation that has environment dependencies for external libraries, which is desirable for testing and debugging. Package target support is largely complete for Mac, Windows and, Linux, it should be possible to build release installers directly from CMake/CPack. Cmake FindXXXX.cmake modules have been added to improve the location of fftw-3 and Hamlib packages. Version numbers are now stored in Versions.cmake and work in concert with automatic svn revision lookup during build. The version string becomes 'rlocal'± if there are any uncommitted changes in the build source tree. Moved resource like files to Qt resources. Because location of resource files (when they cannot go into the installation directory because of packaging rules) is hard to standardize. I have used the Qt resource system for all ancillary data files. Some like kvasd.dat are dumped out to the temp (working directory) because they are accessed by an external program, others like the audio samples are copied out so they appear in the data directory under the default save directory. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 09:21:00 -04:00
}
return value;
}
auto HamlibTransceiver::map_mode (rmode_t m) const -> MODE
{
switch (m)
{
case RIG_MODE_AM:
case RIG_MODE_SAM:
case RIG_MODE_AMS:
case RIG_MODE_DSB:
return AM;
case RIG_MODE_CW:
return CW;
case RIG_MODE_CWR:
return CW_R;
case RIG_MODE_USB:
case RIG_MODE_ECSSUSB:
case RIG_MODE_SAH:
case RIG_MODE_FAX:
return USB;
case RIG_MODE_LSB:
case RIG_MODE_ECSSLSB:
case RIG_MODE_SAL:
return LSB;
case RIG_MODE_RTTY:
return FSK;
case RIG_MODE_RTTYR:
return FSK_R;
case RIG_MODE_PKTLSB:
return DIG_L;
case RIG_MODE_PKTUSB:
return DIG_U;
case RIG_MODE_FM:
case RIG_MODE_WFM:
return FM;
case RIG_MODE_PKTFM:
return DIG_FM;
default:
return UNK;
}
}
rmode_t HamlibTransceiver::map_mode (MODE mode) const
{
switch (mode)
{
case AM: return RIG_MODE_AM;
case CW: return RIG_MODE_CW;
case CW_R: return RIG_MODE_CWR;
case USB: return RIG_MODE_USB;
case LSB: return RIG_MODE_LSB;
case FSK: return RIG_MODE_RTTY;
case FSK_R: return RIG_MODE_RTTYR;
case DIG_L: return RIG_MODE_PKTLSB;
case DIG_U: return RIG_MODE_PKTUSB;
case FM: return RIG_MODE_FM;
case DIG_FM: return RIG_MODE_PKTFM;
default: break;
}
return RIG_MODE_USB; // quieten compiler grumble
}