mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
	
	
		
			133 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			133 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
								 | 
							
								[section:weibull_dist Weibull Distribution]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								``#include <boost/math/distributions/weibull.hpp>``
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   namespace boost{ namespace math{ 
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								   template <class RealType = double, 
							 | 
						||
| 
								 | 
							
								             class ``__Policy``   = ``__policy_class`` >
							 | 
						||
| 
								 | 
							
								   class weibull_distribution;
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								   typedef weibull_distribution<> weibull;
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								   template <class RealType, class ``__Policy``>
							 | 
						||
| 
								 | 
							
								   class weibull_distribution
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								   public:
							 | 
						||
| 
								 | 
							
								      typedef RealType value_type;
							 | 
						||
| 
								 | 
							
								      typedef Policy   policy_type;
							 | 
						||
| 
								 | 
							
								      // Construct:
							 | 
						||
| 
								 | 
							
								      weibull_distribution(RealType shape, RealType scale = 1)
							 | 
						||
| 
								 | 
							
								      // Accessors:
							 | 
						||
| 
								 | 
							
								      RealType shape()const;
							 | 
						||
| 
								 | 
							
								      RealType scale()const;
							 | 
						||
| 
								 | 
							
								   };
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								   }} // namespaces
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								The [@http://en.wikipedia.org/wiki/Weibull_distribution Weibull distribution]
							 | 
						||
| 
								 | 
							
								is a continuous distribution
							 | 
						||
| 
								 | 
							
								with the 
							 | 
						||
| 
								 | 
							
								[@http://en.wikipedia.org/wiki/Probability_density_function probability density function]:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								f(x; [alpha], [beta]) = ([alpha]\/[beta]) * (x \/ [beta])[super [alpha] - 1] * e[super -(x\/[beta])[super [alpha]]]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								For shape parameter [alpha][space] > 0, and scale parameter [beta][space] > 0, and x > 0.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The Weibull distribution is often used in the field of failure analysis;
							 | 
						||
| 
								 | 
							
								in particular it can mimic distributions where the failure rate varies over time.
							 | 
						||
| 
								 | 
							
								If the failure rate is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								* constant over time, then [alpha][space] = 1, suggests that items are failing from random events.
							 | 
						||
| 
								 | 
							
								* decreases over time, then [alpha][space] < 1, suggesting "infant mortality".
							 | 
						||
| 
								 | 
							
								* increases over time, then [alpha][space] > 1, suggesting "wear out" - more likely to fail as time goes by.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The following graph illustrates how the PDF varies with the shape parameter [alpha]:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[graph weibull_pdf1]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								While this graph illustrates how the PDF varies with the scale parameter [beta]:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[graph weibull_pdf2]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[h4 Related distributions]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								When [alpha][space] = 3, the
							 | 
						||
| 
								 | 
							
								[@http://en.wikipedia.org/wiki/Weibull_distribution Weibull distribution] appears similar to the
							 | 
						||
| 
								 | 
							
								[@http://en.wikipedia.org/wiki/Normal_distribution normal distribution].
							 | 
						||
| 
								 | 
							
								When [alpha][space] = 1, the Weibull distribution reduces to the
							 | 
						||
| 
								 | 
							
								[@http://en.wikipedia.org/wiki/Exponential_distribution exponential distribution].
							 | 
						||
| 
								 | 
							
								The relationship of the types of extreme value distributions, of which the Weibull is but one, is
							 | 
						||
| 
								 | 
							
								discussed by
							 | 
						||
| 
								 | 
							
								[@http://www.worldscibooks.com/mathematics/p191.html Extreme Value Distributions, Theory and Applications
							 | 
						||
| 
								 | 
							
								Samuel Kotz & Saralees Nadarajah].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								[h4 Member Functions]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   weibull_distribution(RealType shape, RealType scale = 1);
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								Constructs a [@http://en.wikipedia.org/wiki/Weibull_distribution 
							 | 
						||
| 
								 | 
							
								Weibull distribution] with shape /shape/ and scale /scale/.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Requires that the /shape/ and /scale/ parameters are both greater than zero, 
							 | 
						||
| 
								 | 
							
								otherwise calls __domain_error.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType shape()const;
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								Returns the /shape/ parameter of this distribution.
							 | 
						||
| 
								 | 
							
								   
							 | 
						||
| 
								 | 
							
								   RealType scale()const;
							 | 
						||
| 
								 | 
							
								      
							 | 
						||
| 
								 | 
							
								Returns the /scale/ parameter of this distribution.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[h4 Non-member Accessors]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions] that are generic to all
							 | 
						||
| 
								 | 
							
								distributions are supported: __usual_accessors.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The domain of the random variable is \[0, [infin]\].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[h4 Accuracy]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The Weibull distribution is implemented in terms of the 
							 | 
						||
| 
								 | 
							
								standard library `log` and `exp` functions plus __expm1 and __log1p
							 | 
						||
| 
								 | 
							
								and as such should have very low error rates.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[h4 Implementation]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								In the following table [alpha][space] is the shape parameter of the distribution, 
							 | 
						||
| 
								 | 
							
								[beta][space] is its scale parameter, /x/ is the random variate, /p/ is the probability
							 | 
						||
| 
								 | 
							
								and /q = 1-p/.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[table
							 | 
						||
| 
								 | 
							
								[[Function][Implementation Notes]]
							 | 
						||
| 
								 | 
							
								[[pdf][Using the relation: pdf = [alpha][beta][super -[alpha] ]x[super [alpha] - 1] e[super -(x/beta)[super alpha]] ]]
							 | 
						||
| 
								 | 
							
								[[cdf][Using the relation: p = -__expm1(-(x\/[beta])[super [alpha]]) ]]
							 | 
						||
| 
								 | 
							
								[[cdf complement][Using the relation: q = e[super -(x\/[beta])[super [alpha]]] ]]
							 | 
						||
| 
								 | 
							
								[[quantile][Using the relation: x = [beta] * (-__log1p(-p))[super 1\/[alpha]] ]]
							 | 
						||
| 
								 | 
							
								[[quantile from the complement][Using the relation: x = [beta] * (-log(q))[super 1\/[alpha]] ]]
							 | 
						||
| 
								 | 
							
								[[mean][[beta] * [Gamma](1 + 1\/[alpha]) ]]
							 | 
						||
| 
								 | 
							
								[[variance][[beta][super 2]([Gamma](1 + 2\/[alpha]) - [Gamma][super 2](1 + 1\/[alpha])) ]]
							 | 
						||
| 
								 | 
							
								[[mode][[beta](([alpha] - 1) \/ [alpha])[super 1\/[alpha]] ]]
							 | 
						||
| 
								 | 
							
								[[skewness][Refer to [@http://mathworld.wolfram.com/WeibullDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]]
							 | 
						||
| 
								 | 
							
								[[kurtosis][Refer to [@http://mathworld.wolfram.com/WeibullDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]]
							 | 
						||
| 
								 | 
							
								[[kurtosis excess][Refer to [@http://mathworld.wolfram.com/WeibullDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.] ]]
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[h4 References]
							 | 
						||
| 
								 | 
							
								* [@http://en.wikipedia.org/wiki/Weibull_distribution ]
							 | 
						||
| 
								 | 
							
								* [@http://mathworld.wolfram.com/WeibullDistribution.html Weisstein, Eric W. "Weibull Distribution." From MathWorld--A Wolfram Web Resource.]
							 | 
						||
| 
								 | 
							
								* [@http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm Weibull in NIST Exploratory Data Analysis]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[endsect][/section:weibull Weibull]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								[/ 
							 | 
						||
| 
								 | 
							
								  Copyright 2006 John Maddock and Paul A. Bristow.
							 | 
						||
| 
								 | 
							
								  Distributed under the Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								  (See accompanying file LICENSE_1_0.txt or copy at
							 | 
						||
| 
								 | 
							
								  http://www.boost.org/LICENSE_1_0.txt).
							 | 
						||
| 
								 | 
							
								]
							 |