mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
	
	
		
			214 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			214 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Copyright Christopher Kormanyos 2013.
							 | 
						||
| 
								 | 
							
								// Copyright Paul A. Bristow 2013.
							 | 
						||
| 
								 | 
							
								// Copyright John Maddock 2013.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Distributed under the Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								// (See accompanying file LICENSE_1_0.txt or
							 | 
						||
| 
								 | 
							
								// copy at http://www.boost.org/LICENSE_1_0.txt).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#  pragma warning (disable : 4512) // assignment operator could not be generated.
							 | 
						||
| 
								 | 
							
								#  pragma warning (disable : 4996) // assignment operator could not be generated.
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <iostream>
							 | 
						||
| 
								 | 
							
								#include <limits>
							 | 
						||
| 
								 | 
							
								#include <vector>
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								#include <iomanip>
							 | 
						||
| 
								 | 
							
								#include <iterator>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
							 | 
						||
| 
								 | 
							
								// http://mathworld.wolfram.com/BesselFunctionZeros.html
							 | 
						||
| 
								 | 
							
								// Test values can be calculated using [@wolframalpha.com WolframAplha]
							 | 
						||
| 
								 | 
							
								// See also http://dlmf.nist.gov/10.21
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//[bessel_zeros_example_1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`This example demonstrates calculating zeros of the Bessel and Neumann functions.
							 | 
						||
| 
								 | 
							
								It also shows how Boost.Math and Boost.Multiprecision can be combined to provide
							 | 
						||
| 
								 | 
							
								a many decimal digit precision. For 50 decimal digit precision we need to include
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  #include <boost/multiprecision/cpp_dec_float.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`and a `typedef` for `float_type` may be convenient
							 | 
						||
| 
								 | 
							
								(allowing a quick switch to re-compute at built-in `double` or other precision)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								  typedef boost::multiprecision::cpp_dec_float_50 float_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//`To use the functions for finding zeros of the functions we need
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  #include <boost/math/special_functions/bessel.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//`This file includes the forward declaration signatures for the zero-finding functions:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//  #include <boost/math/special_functions/math_fwd.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`but more details are in the full documentation, for example at
							 | 
						||
| 
								 | 
							
								[@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions].
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`This example shows obtaining both a single zero of the Bessel function,
							 | 
						||
| 
								 | 
							
								and then placing multiple zeros into a container like `std::vector` by providing an iterator.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								//] [/bessel_zeros_example_1]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*The signature of the single value function is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  template <class T>
							 | 
						||
| 
								 | 
							
								  inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type
							 | 
						||
| 
								 | 
							
								    cyl_bessel_j_zero(
							 | 
						||
| 
								 | 
							
								           T v,      // Floating-point value for Jv.
							 | 
						||
| 
								 | 
							
								           int m);   // start index.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The result type is controlled by the floating-point type of parameter `v`
							 | 
						||
| 
								 | 
							
								(but subject to the usual __precision_policy and __promotion_policy).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The signature of multiple zeros function is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  template <class T, class OutputIterator>
							 | 
						||
| 
								 | 
							
								  inline OutputIterator cyl_bessel_j_zero(
							 | 
						||
| 
								 | 
							
								                                T v,                      // Floating-point value for Jv.
							 | 
						||
| 
								 | 
							
								                                int start_index,          // 1-based start index.
							 | 
						||
| 
								 | 
							
								                                unsigned number_of_zeros, // How many zeros to generate
							 | 
						||
| 
								 | 
							
								                                OutputIterator out_it);   // Destination for zeros.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								There is also a version which allows control of the __policy_section for error handling and precision.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  template <class T, class OutputIterator, class Policy>
							 | 
						||
| 
								 | 
							
								  inline OutputIterator cyl_bessel_j_zero(
							 | 
						||
| 
								 | 
							
								                                T v,                      // Floating-point value for Jv.
							 | 
						||
| 
								 | 
							
								                                int start_index,          // 1-based start index.
							 | 
						||
| 
								 | 
							
								                                unsigned number_of_zeros, // How many zeros to generate
							 | 
						||
| 
								 | 
							
								                                OutputIterator out_it,    // Destination for zeros.
							 | 
						||
| 
								 | 
							
								                                const Policy& pol);       // Policy to use.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int main()
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  try
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								//[bessel_zeros_example_2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks;
							 | 
						||
| 
								 | 
							
								this will ensure that helpful error messages are shown when exceptional conditions arise.]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								First, evaluate a single Bessel zero.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The precision is controlled by the float-point type of template parameter `T` of `v`
							 | 
						||
| 
								 | 
							
								so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double).
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								//    double root = boost::math::cyl_bessel_j_zero(0.0, 1);
							 | 
						||
| 
								 | 
							
								//    // Displaying with default precision of 6 decimal digits:
							 | 
						||
| 
								 | 
							
								//    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483
							 | 
						||
| 
								 | 
							
								//    // And with all the guaranteed (15) digits:
							 | 
						||
| 
								 | 
							
								//    std::cout.precision(std::numeric_limits<double>::digits10);
							 | 
						||
| 
								 | 
							
								//    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577
							 | 
						||
| 
								 | 
							
								/*`But note that because the parameter `v` controls the precision of the result,
							 | 
						||
| 
								 | 
							
								`v` [*must be a floating-point type].
							 | 
						||
| 
								 | 
							
								So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus:
							 | 
						||
| 
								 | 
							
								``
							 | 
						||
| 
								 | 
							
								    root = boost::math::cyl_bessel_j_zero(0, 1);
							 | 
						||
| 
								 | 
							
								``
							 | 
						||
| 
								 | 
							
								with this error message
							 | 
						||
| 
								 | 
							
								``
							 | 
						||
| 
								 | 
							
								  error C2338: Order must be a floating-point type.
							 | 
						||
| 
								 | 
							
								``
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Optionally, we can use a policy to ignore errors, C-style, returning some value,
							 | 
						||
| 
								 | 
							
								perhaps infinity or NaN, or the best that can be done. (See __user_error_handling).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								To create a (possibly unwise!) policy `ignore_all_policy` that ignores all errors:
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  typedef boost::math::policies::policy<
							 | 
						||
| 
								 | 
							
								    boost::math::policies::domain_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								    boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								    boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								    boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								    boost::math::policies::pole_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								    boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
							 | 
						||
| 
								 | 
							
								              > ignore_all_policy;
							 | 
						||
| 
								 | 
							
								 //`Examples of use of this `ignore_all_policy` are
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    double inf = std::numeric_limits<double>::infinity();
							 | 
						||
| 
								 | 
							
								    double nan = std::numeric_limits<double>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 1, ignore_all_policy());
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN
							 | 
						||
| 
								 | 
							
								    double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy());
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN
							 | 
						||
| 
								 | 
							
								    double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy());
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`Another version of `cyl_bessel_j_zero`  allows calculation of multiple zeros with one call,
							 | 
						||
| 
								 | 
							
								placing the results in a container, often `std::vector`.
							 | 
						||
| 
								 | 
							
								For example, generate and display the first five `double` roots of J[sub v] for integral order 2,
							 | 
						||
| 
								 | 
							
								as column ['J[sub 2](x)] in table 1 of
							 | 
						||
| 
								 | 
							
								[@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros].
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								    unsigned int n_roots = 5U;
							 | 
						||
| 
								 | 
							
								    std::vector<double> roots;
							 | 
						||
| 
								 | 
							
								    boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots));
							 | 
						||
| 
								 | 
							
								    std::copy(roots.begin(),
							 | 
						||
| 
								 | 
							
								              roots.end(),
							 | 
						||
| 
								 | 
							
								              std::ostream_iterator<double>(std::cout, "\n"));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`Or we can use Boost.Multiprecision to generate 50 decimal digit roots of ['J[sub v]]
							 | 
						||
| 
								 | 
							
								for non-integral order `v= 71/19 == 3.736842`, expressed as an exact-integer fraction
							 | 
						||
| 
								 | 
							
								to generate the most accurate value possible for all floating-point types.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We set the precision of the output stream, and show trailing zeros to display a fixed 50 decimal digits.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								    std::cout.precision(std::numeric_limits<float_type>::digits10); // 50 decimal digits.
							 | 
						||
| 
								 | 
							
								    std::cout << std::showpoint << std::endl; // Show trailing zeros.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    float_type x = float_type(71) / 19;
							 | 
						||
| 
								 | 
							
								    float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root.
							 | 
						||
| 
								 | 
							
								    std::cout << "x = " << x << ", r = " << r << std::endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root.
							 | 
						||
| 
								 | 
							
								    std::cout << "x = " << x << ", r = " << r << std::endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::vector<float_type> zeros;
							 | 
						||
| 
								 | 
							
								    boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::cout << "cyl_bessel_j_zeros" << std::endl;
							 | 
						||
| 
								 | 
							
								    // Print the roots to the output stream.
							 | 
						||
| 
								 | 
							
								    std::copy(zeros.begin(), zeros.end(),
							 | 
						||
| 
								 | 
							
								              std::ostream_iterator<float_type>(std::cout, "\n"));
							 | 
						||
| 
								 | 
							
								//] [/bessel_zeros_example_2]
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Thrown exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 } // int main()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 /*
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 Output:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   Description: Autorun "J:\Cpp\big_number\Debug\bessel_zeros_example_1.exe"
							 | 
						||
| 
								 | 
							
								  boost::math::cyl_bessel_j_zero(-1.0, 1) 3.83171
							 | 
						||
| 
								 | 
							
								  boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN
							 | 
						||
| 
								 | 
							
								  boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN
							 | 
						||
| 
								 | 
							
								  5.13562
							 | 
						||
| 
								 | 
							
								  8.41724
							 | 
						||
| 
								 | 
							
								  11.6198
							 | 
						||
| 
								 | 
							
								  14.796
							 | 
						||
| 
								 | 
							
								  17.9598
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623
							 | 
						||
| 
								 | 
							
								  x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458
							 | 
						||
| 
								 | 
							
								  cyl_bessel_j_zeros
							 | 
						||
| 
								 | 
							
								  7.2731751938316489503185694262290765588963196701623
							 | 
						||
| 
								 | 
							
								  10.724858308883141732536172745851416647110749599085
							 | 
						||
| 
								 | 
							
								  14.018504599452388106120459558042660282427471931581
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 |