mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
	
	
		
			862 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			862 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								// test_negative_binomial.cpp
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Copyright Paul A. Bristow 2007.
							 | 
						||
| 
								 | 
							
								// Copyright John Maddock 2006.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								// Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								// (See accompanying file LICENSE_1_0.txt
							 | 
						||
| 
								 | 
							
								// or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Tests for Negative Binomial Distribution.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Note that these defines must be placed BEFORE #includes.
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
							 | 
						||
| 
								 | 
							
								// because several tests overflow & underflow by design.
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#  pragma warning(disable: 4127) // conditional expression is constant.
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
							 | 
						||
| 
								 | 
							
								#  define TEST_FLOAT
							 | 
						||
| 
								 | 
							
								#  define TEST_DOUBLE
							 | 
						||
| 
								 | 
							
								#  define TEST_LDOUBLE
							 | 
						||
| 
								 | 
							
								#  define TEST_REAL_CONCEPT
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/test.hpp> // for real_concept
							 | 
						||
| 
								 | 
							
								#include <boost/math/concepts/real_concept.hpp> // for real_concept
							 | 
						||
| 
								 | 
							
								using ::boost::math::concepts::real_concept;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
							 | 
						||
| 
								 | 
							
								using boost::math::negative_binomial_distribution;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/gamma.hpp>
							 | 
						||
| 
								 | 
							
								  using boost::math::lgamma;  // log gamma
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define BOOST_TEST_MAIN
							 | 
						||
| 
								 | 
							
								#include <boost/test/unit_test.hpp> // for test_main
							 | 
						||
| 
								 | 
							
								#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
							 | 
						||
| 
								 | 
							
								#include "table_type.hpp"
							 | 
						||
| 
								 | 
							
								#include "test_out_of_range.hpp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <iostream>
							 | 
						||
| 
								 | 
							
								using std::cout;
							 | 
						||
| 
								 | 
							
								using std::endl;
							 | 
						||
| 
								 | 
							
								using std::setprecision;
							 | 
						||
| 
								 | 
							
								using std::showpoint;
							 | 
						||
| 
								 | 
							
								#include <limits>
							 | 
						||
| 
								 | 
							
								using std::numeric_limits;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType>
							 | 
						||
| 
								 | 
							
								void test_spot( // Test a single spot value against 'known good' values.
							 | 
						||
| 
								 | 
							
								               RealType N,    // Number of successes.
							 | 
						||
| 
								 | 
							
								               RealType k,    // Number of failures.
							 | 
						||
| 
								 | 
							
								               RealType p,    // Probability of success_fraction.
							 | 
						||
| 
								 | 
							
								               RealType P,    // CDF probability.
							 | 
						||
| 
								 | 
							
								               RealType Q,    // Complement of CDF.
							 | 
						||
| 
								 | 
							
								               RealType tol)  // Test tolerance.
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   boost::math::negative_binomial_distribution<RealType> bn(N, p);
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_EQUAL(N, bn.successes());
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_EQUAL(p, bn.success_fraction());
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								     cdf(bn, k), P, tol);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if((P < 0.99) && (Q < 0.99))
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    // We can only check this if P is not too close to 1,
							 | 
						||
| 
								 | 
							
								    // so that we can guarantee that Q is free of error:
							 | 
						||
| 
								 | 
							
								    //
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      cdf(complement(bn, k)), Q, tol);
							 | 
						||
| 
								 | 
							
								    if(k != 0)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								        quantile(bn, P), k, tol);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      // Just check quantile is very small:
							 | 
						||
| 
								 | 
							
								      if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
							 | 
						||
| 
								 | 
							
								        && (boost::is_floating_point<RealType>::value))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        // Limit where this is checked: if exponent range is very large we may
							 | 
						||
| 
								 | 
							
								        // run out of iterations in our root finding algorithm.
							 | 
						||
| 
								 | 
							
								        BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon<RealType>() * 10);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if(k != 0)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								        quantile(complement(bn, Q)), k, tol);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      // Just check quantile is very small:
							 | 
						||
| 
								 | 
							
								      if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
							 | 
						||
| 
								 | 
							
								        && (boost::is_floating_point<RealType>::value))
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								        // Limit where this is checked: if exponent range is very large we may
							 | 
						||
| 
								 | 
							
								        // run out of iterations in our root finding algorithm.
							 | 
						||
| 
								 | 
							
								        BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon<RealType>() * 10);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    // estimate success ratio:
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      negative_binomial_distribution<RealType>::find_lower_bound_on_p(
							 | 
						||
| 
								 | 
							
								      N+k, N, P),
							 | 
						||
| 
								 | 
							
								      p, tol);
							 | 
						||
| 
								 | 
							
								    // Note we bump up the sample size here, purely for the sake of the test,
							 | 
						||
| 
								 | 
							
								    // internally the function has to adjust the sample size so that we get
							 | 
						||
| 
								 | 
							
								    // the right upper bound, our test undoes this, so we can verify the result.
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      negative_binomial_distribution<RealType>::find_upper_bound_on_p(
							 | 
						||
| 
								 | 
							
								      N+k+1, N, Q),
							 | 
						||
| 
								 | 
							
								      p, tol);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if(Q < P)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								       //
							 | 
						||
| 
								 | 
							
								       // We check two things here, that the upper and lower bounds
							 | 
						||
| 
								 | 
							
								       // are the right way around, and that they do actually bracket
							 | 
						||
| 
								 | 
							
								       // the naive estimate of p = successes / (sample size)
							 | 
						||
| 
								 | 
							
								       //
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK(
							 | 
						||
| 
								 | 
							
								        negative_binomial_distribution<RealType>::find_lower_bound_on_p(
							 | 
						||
| 
								 | 
							
								        N+k, N, Q)
							 | 
						||
| 
								 | 
							
								        <=
							 | 
						||
| 
								 | 
							
								        negative_binomial_distribution<RealType>::find_upper_bound_on_p(
							 | 
						||
| 
								 | 
							
								        N+k, N, Q)
							 | 
						||
| 
								 | 
							
								        );
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK(
							 | 
						||
| 
								 | 
							
								        negative_binomial_distribution<RealType>::find_lower_bound_on_p(
							 | 
						||
| 
								 | 
							
								        N+k, N, Q)
							 | 
						||
| 
								 | 
							
								        <=
							 | 
						||
| 
								 | 
							
								        N / (N+k)
							 | 
						||
| 
								 | 
							
								        );
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK(
							 | 
						||
| 
								 | 
							
								        N / (N+k)
							 | 
						||
| 
								 | 
							
								        <=
							 | 
						||
| 
								 | 
							
								        negative_binomial_distribution<RealType>::find_upper_bound_on_p(
							 | 
						||
| 
								 | 
							
								        N+k, N, Q)
							 | 
						||
| 
								 | 
							
								        );
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								       // As above but when P is small.
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK(
							 | 
						||
| 
								 | 
							
								        negative_binomial_distribution<RealType>::find_lower_bound_on_p(
							 | 
						||
| 
								 | 
							
								        N+k, N, P)
							 | 
						||
| 
								 | 
							
								        <=
							 | 
						||
| 
								 | 
							
								        negative_binomial_distribution<RealType>::find_upper_bound_on_p(
							 | 
						||
| 
								 | 
							
								        N+k, N, P)
							 | 
						||
| 
								 | 
							
								        );
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK(
							 | 
						||
| 
								 | 
							
								        negative_binomial_distribution<RealType>::find_lower_bound_on_p(
							 | 
						||
| 
								 | 
							
								        N+k, N, P)
							 | 
						||
| 
								 | 
							
								        <=
							 | 
						||
| 
								 | 
							
								        N / (N+k)
							 | 
						||
| 
								 | 
							
								        );
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK(
							 | 
						||
| 
								 | 
							
								        N / (N+k)
							 | 
						||
| 
								 | 
							
								        <=
							 | 
						||
| 
								 | 
							
								        negative_binomial_distribution<RealType>::find_upper_bound_on_p(
							 | 
						||
| 
								 | 
							
								        N+k, N, P)
							 | 
						||
| 
								 | 
							
								        );
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // Estimate sample size:
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      negative_binomial_distribution<RealType>::find_minimum_number_of_trials(
							 | 
						||
| 
								 | 
							
								      k, p, P),
							 | 
						||
| 
								 | 
							
								      N+k, tol);
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      negative_binomial_distribution<RealType>::find_maximum_number_of_trials(
							 | 
						||
| 
								 | 
							
								         k, p, Q),
							 | 
						||
| 
								 | 
							
								      N+k, tol);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // Double check consistency of CDF and PDF by computing the finite sum:
							 | 
						||
| 
								 | 
							
								    RealType sum = 0;
							 | 
						||
| 
								 | 
							
								    for(unsigned i = 0; i <= k; ++i)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								      sum += pdf(bn, RealType(i));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_CLOSE(sum, P, tol);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // Complement is not possible since sum is to infinity.
							 | 
						||
| 
								 | 
							
								  } //
							 | 
						||
| 
								 | 
							
								} // test_spot
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType> // Any floating-point type RealType.
							 | 
						||
| 
								 | 
							
								void test_spots(RealType)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  // Basic sanity checks, test data is to double precision only
							 | 
						||
| 
								 | 
							
								  // so set tolerance to 1000 eps expressed as a percent, or
							 | 
						||
| 
								 | 
							
								  // 1000 eps of type double expressed as a percent, whichever
							 | 
						||
| 
								 | 
							
								  // is the larger.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  RealType tolerance = (std::max)
							 | 
						||
| 
								 | 
							
								    (boost::math::tools::epsilon<RealType>(),
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(std::numeric_limits<double>::epsilon()));
							 | 
						||
| 
								 | 
							
								  tolerance *= 100 * 100000.0f;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  cout << "Tolerance = " << tolerance << "%." << endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  RealType tol1eps = boost::math::tools::epsilon<RealType>() * 2; // Very tight, suit exact values.
							 | 
						||
| 
								 | 
							
								  //RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight, suit exact values.
							 | 
						||
| 
								 | 
							
								  RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
							 | 
						||
| 
								 | 
							
								  cout << "Tolerance 5 eps = " << tol5eps << "%." << endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Sources of spot test values:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // MathCAD defines pbinom(k, r, p) (at about 64-bit double precision, about 16 decimal digits)
							 | 
						||
| 
								 | 
							
								  // returns pr(X , k) when random variable X has the binomial distribution with parameters r and p.
							 | 
						||
| 
								 | 
							
								  // 0 <= k
							 | 
						||
| 
								 | 
							
								  // r > 0
							 | 
						||
| 
								 | 
							
								  // 0 <= p <= 1
							 | 
						||
| 
								 | 
							
								  // P = pbinom(30, 500, 0.05) = 0.869147702104609
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // And functions.wolfram.com
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  using boost::math::negative_binomial_distribution;
							 | 
						||
| 
								 | 
							
								  using  ::boost::math::negative_binomial;
							 | 
						||
| 
								 | 
							
								  using  ::boost::math::cdf;
							 | 
						||
| 
								 | 
							
								  using  ::boost::math::pdf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Test negative binomial using cdf spot values from MathCAD cdf = pnbinom(k, r, p).
							 | 
						||
| 
								 | 
							
								  // These test quantiles and complements as well.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  test_spot(  // pnbinom(1,2,0.5) = 0.5
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(2),   // successes r
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1),   // Number of failures, k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.5), // Probability of success as fraction, p
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.5), // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.5),  // complement CCDF Q = 1 - P
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  test_spot( // pbinom(0, 2, 0.25)
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(2),    // successes r
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0),    // Number of failures, k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.25),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.0625),                    // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.9375),                    // Q = 1 - P
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  test_spot(  // pbinom(48,8,0.25)
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(8),     // successes r
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(48),    // Number of failures, k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.25),                    // Probability of success, p
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.826582228110670E-1),     // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1 - 9.826582228110670E-1),   // Q = 1 - P
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  test_spot(  // pbinom(2,5,0.4)
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(5),     // successes r
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(2),     // Number of failures, k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.4),                    // Probability of success, p
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.625600000000020E-2),     // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1 - 9.625600000000020E-2),   // Q = 1 - P
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  test_spot(  // pbinom(10,100,0.9)
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(100),     // successes r
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(10),     // Number of failures, k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.9),                    // Probability of success, p
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(4.535522887695670E-1),     // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1 - 4.535522887695670E-1),   // Q = 1 - P
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  test_spot(  // pbinom(1,100,0.991)
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(100),     // successes r
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1),     // Number of failures, k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.991),                    // Probability of success, p
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(7.693413044217000E-1),     // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1 - 7.693413044217000E-1),   // Q = 1 - P
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  test_spot(  // pbinom(10,100,0.991)
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(100),     // successes r
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(10),     // Number of failures, k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.991),                    // Probability of success, p
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.999999940939000E-1),     // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1 - 9.999999940939000E-1),   // Q = 1 - P
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								if(std::numeric_limits<RealType>::is_specialized)
							 | 
						||
| 
								 | 
							
								{ // An extreme value test that takes 3 minutes using the real concept type
							 | 
						||
| 
								 | 
							
								  // for which numeric_limits<RealType>::is_specialized == false, deliberately
							 | 
						||
| 
								 | 
							
								  // and for which there is no Lanczos approximation defined (also deliberately)
							 | 
						||
| 
								 | 
							
								  // giving a very slow computation, but with acceptable accuracy.
							 | 
						||
| 
								 | 
							
								  // A possible enhancement might be to use a normal approximation for
							 | 
						||
| 
								 | 
							
								  // extreme values, but this is not implemented.
							 | 
						||
| 
								 | 
							
								  test_spot(  // pbinom(100000,100,0.001)
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(100),     // successes r
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(100000),     // Number of failures, k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.001),                    // Probability of success, p
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(5.173047534260320E-1),     // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1 - 5.173047534260320E-1),   // Q = 1 - P
							 | 
						||
| 
								 | 
							
								  tolerance*1000); // *1000 is OK 0.51730475350664229  versus
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // functions.wolfram.com
							 | 
						||
| 
								 | 
							
								  //   for I[0.001](100, 100000+1) gives:
							 | 
						||
| 
								 | 
							
								  // Wolfram       0.517304753506834882009032744488738352004003696396461766326713
							 | 
						||
| 
								 | 
							
								  // JM nonLanczos 0.51730475350664229 differs at the 13th decimal digit.
							 | 
						||
| 
								 | 
							
								  // MathCAD       0.51730475342603199 differs at 10th decimal digit.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Error tests:
							 | 
						||
| 
								 | 
							
								  check_out_of_range<negative_binomial_distribution<RealType> >(20, 0.5);
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(0, 0.5), std::domain_error);
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(-2, 0.5), std::domain_error);
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, -0.5), std::domain_error);
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(negative_binomial_distribution<RealType>(20, 1.5), std::domain_error);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								 // End of single spot tests using RealType
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Tests on PDF:
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0) ),  // k = 0.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.25), // 0
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(4), static_cast<RealType>(0.5)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),  // k = 0.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.0625), // exact 1/16
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),  // k = 0
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.094947017729270E-13), // pbinom(0,20,0.25) = 9.094947017729270E-13
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.2)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),  // k = 0
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.0485760000000003e-014), // MathCAD 1.048576000000000E-14
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(10), static_cast<RealType>(0.1)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),  // k = 0.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1e-10), // MathCAD says zero, but suffers cancellation error?
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.1)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),  // k = 0.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1e-20), // MathCAD says zero, but suffers cancellation error?
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // .
							 | 
						||
| 
								 | 
							
								  pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.9)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.215766545905690E-1), // k=20  p = 0.9
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Tests on cdf:
							 | 
						||
| 
								 | 
							
								  // MathCAD pbinom k, r, p) == failures, successes, probability.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(cdf(
							 | 
						||
| 
								 | 
							
								    negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(0) ), // k = 0
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(0.25), // probability 1/4
							 | 
						||
| 
								 | 
							
								    tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(cdf(complement(
							 | 
						||
| 
								 | 
							
								    negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(0) )), // k = 0
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(0.75), // probability 3/4
							 | 
						||
| 
								 | 
							
								    tolerance);
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 1.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1)),  // k =1.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.455191522836700E-11),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_SMALL( // Check within an epsilon with CHECK_SMALL
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1)) -
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.455191522836700E-11),
							 | 
						||
| 
								 | 
							
								  tolerance );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Some exact (probably - judging by trailing zeros) values.
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.525878906250000E-5),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.525878906250000E-5),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_SMALL(
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)) -
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.525878906250000E-5),
							 | 
						||
| 
								 | 
							
								  tolerance );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 1.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.068115234375010E-4),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 2.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(2)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(4.158020019531300E-4),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 3.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(3)),  // k.bristow
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.188278198242200E-3),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 4.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(4)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(2.781510353088410E-3),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 5.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(5)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(5.649328231811500E-3),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 6.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(6)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.030953228473680E-2),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 7.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(7)),  // k.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1.729983836412430E-2),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( // k = 8.
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(8)),  // k = n.
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(2.712995628826370E-2),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( //
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(48)),  // k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.826582228110670E-1),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( //
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(64)),  // k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.990295004935590E-1),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( //
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(26)),  // k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.989686246611190E-1),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( //
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(2)),  // k failures
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.625600000000020E-2),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( //
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.9)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(20)),  // k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(9.999970854144170E-1),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( //
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(500), static_cast<RealType>(0.7)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(200)),  // k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(2.172846379930550E-1),
							 | 
						||
| 
								 | 
							
								  tolerance* 2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE( //
							 | 
						||
| 
								 | 
							
								  cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.7)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(20)),  // k
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(4.550203671301790E-1),
							 | 
						||
| 
								 | 
							
								  tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Tests of other functions, mean and other moments ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(0.25));
							 | 
						||
| 
								 | 
							
								  using namespace std; // ADL of std names.
							 | 
						||
| 
								 | 
							
								  // mean:
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								    mean(dist), static_cast<RealType>(8 * (1 - 0.25) /0.25), tol5eps);
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								    mode(dist), static_cast<RealType>(21), tol1eps);
							 | 
						||
| 
								 | 
							
								  // variance:
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								    variance(dist), static_cast<RealType>(8 * (1 - 0.25) / (0.25 * 0.25)), tol5eps);
							 | 
						||
| 
								 | 
							
								  // std deviation:
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								    standard_deviation(dist), // 9.79795897113271239270
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(9.797958971132712392789136298823565567864L), // using functions.wolfram.com
							 | 
						||
| 
								 | 
							
								    //                              9.79795897113271152534  == sqrt(8 * (1 - 0.25) / (0.25 * 0.25)))
							 | 
						||
| 
								 | 
							
								    tol5eps * 100);
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								    skewness(dist), //
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(0.71443450831176036),
							 | 
						||
| 
								 | 
							
								    // using http://mathworld.wolfram.com/skewness.html
							 | 
						||
| 
								 | 
							
								    tolerance);
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								    kurtosis_excess(dist), //
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(0.7604166666666666666666666666666666666666L), // using Wikipedia Kurtosis(excess) formula
							 | 
						||
| 
								 | 
							
								    tol5eps * 100);
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								    kurtosis(dist), // true 
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(3.76041666666666666666666666666666666666666L), // 
							 | 
						||
| 
								 | 
							
								    tol5eps * 100);
							 | 
						||
| 
								 | 
							
								  // hazard:
							 | 
						||
| 
								 | 
							
								  RealType x = static_cast<RealType>(0.125);
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  hazard(dist, x)
							 | 
						||
| 
								 | 
							
								  , pdf(dist, x) / cdf(complement(dist, x)), tol5eps);
							 | 
						||
| 
								 | 
							
								  // cumulative hazard:
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  chf(dist, x), -log(cdf(complement(dist, x))), tol5eps);
							 | 
						||
| 
								 | 
							
								  // coefficient_of_variation:
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  coefficient_of_variation(dist)
							 | 
						||
| 
								 | 
							
								  , standard_deviation(dist) / mean(dist), tol5eps);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Special cases for PDF:
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  pdf(
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)), //
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  pdf(
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.0001)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  pdf(
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.001)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  pdf(
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(8)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_SMALL(
							 | 
						||
| 
								 | 
							
								  pdf(
							 | 
						||
| 
								 | 
							
								   negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0))-
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.0625),
							 | 
						||
| 
								 | 
							
								  2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
							 | 
						||
| 
								 | 
							
								  // numeric_limits<RealType>::epsilon()); // Not suitable for real concept!
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Quantile boundary cases checks:
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  quantile(  // zero P < cdf(0) so should be exactly zero.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  quantile(  // min P < cdf(0) so should be exactly zero.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(boost::math::tools::min_value<RealType>())),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE_FRACTION(
							 | 
						||
| 
								 | 
							
								  quantile(  // Small P < cdf(0) so should be near zero.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(boost::math::tools::epsilon<RealType>())), // 
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0),
							 | 
						||
| 
								 | 
							
								    tol5eps);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								  quantile(  // Small P < cdf(0) so should be exactly zero.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.0001)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0.95854156929288470),
							 | 
						||
| 
								 | 
							
								    tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  //BOOST_CHECK(  // Fails with overflow for real_concept
							 | 
						||
| 
								 | 
							
								  //quantile(  // Small P near 1 so k failures should be big.
							 | 
						||
| 
								 | 
							
								  //negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  //static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
							 | 
						||
| 
								 | 
							
								  //static_cast<RealType>(189.56999032670058)  // 106.462769 for float
							 | 
						||
| 
								 | 
							
								  //);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if(std::numeric_limits<RealType>::has_infinity)
							 | 
						||
| 
								 | 
							
								  { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
							 | 
						||
| 
								 | 
							
								    // Note that infinity is not implemented for real_concept, so these tests
							 | 
						||
| 
								 | 
							
								    // are only done for types, like built-in float, double.. that have infinity.
							 | 
						||
| 
								 | 
							
								    // Note that these assume that  BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
							 | 
						||
| 
								 | 
							
								    // #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY ==  throw_on_error would throw here.
							 | 
						||
| 
								 | 
							
								    // #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
							 | 
						||
| 
								 | 
							
								    //  so the throw path of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK(
							 | 
						||
| 
								 | 
							
								    quantile(  // At P == 1 so k failures should be infinite.
							 | 
						||
| 
								 | 
							
								    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(1)) ==
							 | 
						||
| 
								 | 
							
								    //static_cast<RealType>(boost::math::tools::infinity<RealType>())
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(std::numeric_limits<RealType>::infinity()) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								    quantile(  // At 1 == P  so should be infinite.
							 | 
						||
| 
								 | 
							
								    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(1)), //
							 | 
						||
| 
								 | 
							
								    std::numeric_limits<RealType>::infinity() );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								    quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
							 | 
						||
| 
								 | 
							
								    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(0))),
							 | 
						||
| 
								 | 
							
								    std::numeric_limits<RealType>::infinity() );
							 | 
						||
| 
								 | 
							
								   } // test for infinity using std::numeric_limits<>::infinity()
							 | 
						||
| 
								 | 
							
								  else
							 | 
						||
| 
								 | 
							
								  { // real_concept case, so check it throws rather than returning infinity.
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								    quantile(  // At P == 1 so k failures should be infinite.
							 | 
						||
| 
								 | 
							
								    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(1)),
							 | 
						||
| 
								 | 
							
								    boost::math::tools::max_value<RealType>() );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								    quantile(complement(  // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
							 | 
						||
| 
								 | 
							
								    negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								    static_cast<RealType>(0))),
							 | 
						||
| 
								 | 
							
								    boost::math::tools::max_value<RealType>());
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK( // Should work for built-in and real_concept.
							 | 
						||
| 
								 | 
							
								  quantile(complement(  // Q very near to 1 so P nearly 1  < so should be large > 384.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(boost::math::tools::min_value<RealType>())))
							 | 
						||
| 
								 | 
							
								   >= static_cast<RealType>(384) );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  quantile(  //  P ==  0 < cdf(0) so should be zero.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Quantile Complement boundary cases:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  quantile(complement(  // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1))),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(
							 | 
						||
| 
								 | 
							
								  quantile(complement(  // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Check that duff arguments throw domain_error:
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  pdf( // Negative successes!
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)), std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  pdf( // Negative success_fraction!
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)), std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  pdf( // Success_fraction > 1!
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)),
							 | 
						||
| 
								 | 
							
								  std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  pdf( // Negative k argument !
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(-1)),
							 | 
						||
| 
								 | 
							
								  std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  //BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  //pdf( // Unlike binomial there is NO limit on k (failures)
							 | 
						||
| 
								 | 
							
								  //negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  //static_cast<RealType>(9)), std::domain_error
							 | 
						||
| 
								 | 
							
								  //);
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  cdf(  // Negative k argument !
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(-1)),
							 | 
						||
| 
								 | 
							
								  std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  cdf( // Negative success_fraction!
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)), std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  cdf( // Success_fraction > 1!
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)), std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  quantile(  // Negative success_fraction!
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)), std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  BOOST_MATH_CHECK_THROW(
							 | 
						||
| 
								 | 
							
								  quantile( // Success_fraction > 1!
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
							 | 
						||
| 
								 | 
							
								  static_cast<RealType>(0)), std::domain_error
							 | 
						||
| 
								 | 
							
								  );
							 | 
						||
| 
								 | 
							
								  // End of check throwing 'duff' out-of-domain values.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define T RealType
							 | 
						||
| 
								 | 
							
								#include "negative_binomial_quantile.ipp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  for(unsigned i = 0; i < negative_binomial_quantile_data.size(); ++i)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								     using namespace boost::math::policies;
							 | 
						||
| 
								 | 
							
								     typedef policy<discrete_quantile<boost::math::policies::real> > P1;
							 | 
						||
| 
								 | 
							
								     typedef policy<discrete_quantile<integer_round_down> > P2;
							 | 
						||
| 
								 | 
							
								     typedef policy<discrete_quantile<integer_round_up> > P3;
							 | 
						||
| 
								 | 
							
								     typedef policy<discrete_quantile<integer_round_outwards> > P4;
							 | 
						||
| 
								 | 
							
								     typedef policy<discrete_quantile<integer_round_inwards> > P5;
							 | 
						||
| 
								 | 
							
								     typedef policy<discrete_quantile<integer_round_nearest> > P6;
							 | 
						||
| 
								 | 
							
								     RealType tol = boost::math::tools::epsilon<RealType>() * 700;
							 | 
						||
| 
								 | 
							
								     if(!boost::is_floating_point<RealType>::value)
							 | 
						||
| 
								 | 
							
								        tol *= 10;  // no lanczos approximation implies less accuracy
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     // Check full real value first:
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     negative_binomial_distribution<RealType, P1> p1(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
							 | 
						||
| 
								 | 
							
								     RealType x = quantile(p1, negative_binomial_quantile_data[i][2]);
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][3], tol);
							 | 
						||
| 
								 | 
							
								     x = quantile(complement(p1, negative_binomial_quantile_data[i][2]));
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][4], tol);
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     // Now with round down to integer:
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     negative_binomial_distribution<RealType, P2> p2(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
							 | 
						||
| 
								 | 
							
								     x = quantile(p2, negative_binomial_quantile_data[i][2]);
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3]));
							 | 
						||
| 
								 | 
							
								     x = quantile(complement(p2, negative_binomial_quantile_data[i][2]));
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4]));
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     // Now with round up to integer:
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     negative_binomial_distribution<RealType, P3> p3(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
							 | 
						||
| 
								 | 
							
								     x = quantile(p3, negative_binomial_quantile_data[i][2]);
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][3]));
							 | 
						||
| 
								 | 
							
								     x = quantile(complement(p3, negative_binomial_quantile_data[i][2]));
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][4]));
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     // Now with round to integer "outside":
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     negative_binomial_distribution<RealType, P4> p4(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
							 | 
						||
| 
								 | 
							
								     x = quantile(p4, negative_binomial_quantile_data[i][2]);
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][3]) : ceil(negative_binomial_quantile_data[i][3]));
							 | 
						||
| 
								 | 
							
								     x = quantile(complement(p4, negative_binomial_quantile_data[i][2]));
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][4]) : floor(negative_binomial_quantile_data[i][4]));
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     // Now with round to integer "inside":
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     negative_binomial_distribution<RealType, P5> p5(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
							 | 
						||
| 
								 | 
							
								     x = quantile(p5, negative_binomial_quantile_data[i][2]);
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][3]) : floor(negative_binomial_quantile_data[i][3]));
							 | 
						||
| 
								 | 
							
								     x = quantile(complement(p5, negative_binomial_quantile_data[i][2]));
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][4]) : ceil(negative_binomial_quantile_data[i][4]));
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     // Now with round to nearest integer:
							 | 
						||
| 
								 | 
							
								     //
							 | 
						||
| 
								 | 
							
								     negative_binomial_distribution<RealType, P6> p6(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
							 | 
						||
| 
								 | 
							
								     x = quantile(p6, negative_binomial_quantile_data[i][2]);
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3] + 0.5f));
							 | 
						||
| 
								 | 
							
								     x = quantile(complement(p6, negative_binomial_quantile_data[i][2]));
							 | 
						||
| 
								 | 
							
								     BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4] + 0.5f));
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return;
							 | 
						||
| 
								 | 
							
								} // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								BOOST_AUTO_TEST_CASE( test_main )
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  // Check that can generate negative_binomial distribution using the two convenience methods:
							 | 
						||
| 
								 | 
							
								  using namespace boost::math;
							 | 
						||
| 
								 | 
							
								   negative_binomial mynb1(2., 0.5); // Using typedef - default type is double.
							 | 
						||
| 
								 | 
							
								   negative_binomial_distribution<> myf2(2., 0.5); // Using default RealType double.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Basic sanity-check spot values.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Test some simple double only examples.
							 | 
						||
| 
								 | 
							
								  negative_binomial_distribution<double> my8dist(8., 0.25);
							 | 
						||
| 
								 | 
							
								  // 8 successes (r), 0.25 success fraction = 35% or 1 in 4 successes.
							 | 
						||
| 
								 | 
							
								  // Note: double values (matching the distribution definition) avoid the need for any casting.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Check accessor functions return exact values for double at least.
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(my8dist.successes(), static_cast<double>(8));
							 | 
						||
| 
								 | 
							
								  BOOST_CHECK_EQUAL(my8dist.success_fraction(), static_cast<double>(1./4.));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // (Parameter value, arbitrarily zero, only communicates the floating point type).
							 | 
						||
| 
								 | 
							
								#ifdef TEST_FLOAT
							 | 
						||
| 
								 | 
							
								  test_spots(0.0F); // Test float.
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								#ifdef TEST_DOUBLE
							 | 
						||
| 
								 | 
							
								  test_spots(0.0); // Test double.
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
							 | 
						||
| 
								 | 
							
								#ifdef TEST_LDOUBLE
							 | 
						||
| 
								 | 
							
								  test_spots(0.0L); // Test long double.
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
							 | 
						||
| 
								 | 
							
								#ifdef TEST_REAL_CONCEPT
							 | 
						||
| 
								 | 
							
								    test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								  #endif
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								   std::cout << "<note>The long double tests have been disabled on this platform "
							 | 
						||
| 
								 | 
							
								      "either because the long double overloads of the usual math functions are "
							 | 
						||
| 
								 | 
							
								      "not available at all, or because they are too inaccurate for these tests "
							 | 
						||
| 
								 | 
							
								      "to pass.</note>" << std::endl;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								} // BOOST_AUTO_TEST_CASE( test_main )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_negative_binomial.exe"
							 | 
						||
| 
								 | 
							
								Running 1 test case...
							 | 
						||
| 
								 | 
							
								Tolerance = 0.0119209%.
							 | 
						||
| 
								 | 
							
								Tolerance 5 eps = 5.96046e-007%.
							 | 
						||
| 
								 | 
							
								Tolerance = 2.22045e-011%.
							 | 
						||
| 
								 | 
							
								Tolerance 5 eps = 1.11022e-015%.
							 | 
						||
| 
								 | 
							
								Tolerance = 2.22045e-011%.
							 | 
						||
| 
								 | 
							
								Tolerance 5 eps = 1.11022e-015%.
							 | 
						||
| 
								 | 
							
								Tolerance = 2.22045e-011%.
							 | 
						||
| 
								 | 
							
								Tolerance 5 eps = 1.11022e-015%.
							 | 
						||
| 
								 | 
							
								*** No errors detected
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*/
							 |