mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
	
	
		
			181 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			181 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								//  (C) Copyright John Maddock 2015.
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <pch.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_NO_CXX11_HDR_TUPLE
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define BOOST_TEST_MAIN
							 | 
						||
| 
								 | 
							
								#include <boost/test/unit_test.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/test/floating_point_comparison.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/tools/roots.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/test/results_collector.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/test/unit_test.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/special_functions/cbrt.hpp>
							 | 
						||
| 
								 | 
							
								#include <iostream>
							 | 
						||
| 
								 | 
							
								#include <iomanip>
							 | 
						||
| 
								 | 
							
								#include <tuple>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// No derivatives - using TOMS748 internally.
							 | 
						||
| 
								 | 
							
								struct cbrt_functor_noderiv
							 | 
						||
| 
								 | 
							
								{ //  cube root of x using only function - no derivatives.
							 | 
						||
| 
								 | 
							
								   cbrt_functor_noderiv(double to_find_root_of) : a(to_find_root_of)
							 | 
						||
| 
								 | 
							
								   { // Constructor just stores value a to find root of.
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   double operator()(double x)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      double fx = x*x*x - a; // Difference (estimate x^3 - a).
							 | 
						||
| 
								 | 
							
								      return fx;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								   double a; // to be 'cube_rooted'.
							 | 
						||
| 
								 | 
							
								}; // template <class T> struct cbrt_functor_noderiv
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Using 1st derivative only Newton-Raphson
							 | 
						||
| 
								 | 
							
								struct cbrt_functor_deriv
							 | 
						||
| 
								 | 
							
								{ // Functor also returning 1st derviative.
							 | 
						||
| 
								 | 
							
								   cbrt_functor_deriv(double const& to_find_root_of) : a(to_find_root_of)
							 | 
						||
| 
								 | 
							
								   { // Constructor stores value a to find root of,
							 | 
						||
| 
								 | 
							
								      // for example: calling cbrt_functor_deriv<double>(x) to use to get cube root of x.
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   std::pair<double, double> operator()(double const& x)
							 | 
						||
| 
								 | 
							
								   { // Return both f(x) and f'(x).
							 | 
						||
| 
								 | 
							
								      double fx = x*x*x - a; // Difference (estimate x^3 - value).
							 | 
						||
| 
								 | 
							
								      double dx = 3 * x*x; // 1st derivative = 3x^2.
							 | 
						||
| 
								 | 
							
								      return std::make_pair(fx, dx); // 'return' both fx and dx.
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								   double a; // to be 'cube_rooted'.
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								// Using 1st and 2nd derivatives with Halley algorithm.
							 | 
						||
| 
								 | 
							
								struct cbrt_functor_2deriv
							 | 
						||
| 
								 | 
							
								{ // Functor returning both 1st and 2nd derivatives.
							 | 
						||
| 
								 | 
							
								   cbrt_functor_2deriv(double const& to_find_root_of) : a(to_find_root_of)
							 | 
						||
| 
								 | 
							
								   { // Constructor stores value a to find root of, for example:
							 | 
						||
| 
								 | 
							
								      // calling cbrt_functor_2deriv<double>(x) to get cube root of x,
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   std::tuple<double, double, double> operator()(double const& x)
							 | 
						||
| 
								 | 
							
								   { // Return both f(x) and f'(x) and f''(x).
							 | 
						||
| 
								 | 
							
								      double fx = x*x*x - a; // Difference (estimate x^3 - value).
							 | 
						||
| 
								 | 
							
								      double dx = 3 * x*x; // 1st derivative = 3x^2.
							 | 
						||
| 
								 | 
							
								      double d2x = 6 * x; // 2nd derivative = 6x.
							 | 
						||
| 
								 | 
							
								      return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								   double a; // to be 'cube_rooted'.
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								BOOST_AUTO_TEST_CASE( test_main )
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   int newton_limits = static_cast<int>(std::numeric_limits<double>::digits * 0.6);
							 | 
						||
| 
								 | 
							
								   int halley_limits = static_cast<int>(std::numeric_limits<double>::digits * 0.4);
							 | 
						||
| 
								 | 
							
								   double arg = 1e-50;
							 | 
						||
| 
								 | 
							
								   while(arg < 1e50)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      double result = boost::math::cbrt(arg);
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Start with a really bad guess 5 times below the result:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      double guess = result / 5;
							 | 
						||
| 
								 | 
							
								      boost::uintmax_t iters = 1000;
							 | 
						||
| 
								 | 
							
								      // TOMS algo first:
							 | 
						||
| 
								 | 
							
								      std::pair<double, double> r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 14);
							 | 
						||
| 
								 | 
							
								      // Newton next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      double dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, guess / 2, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 12);
							 | 
						||
| 
								 | 
							
								      // Halley next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 7);
							 | 
						||
| 
								 | 
							
								      // Schroder next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 11);
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // Over again with a bad guess 5 times larger than the result:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      guess = result * 5;
							 | 
						||
| 
								 | 
							
								      r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 14);
							 | 
						||
| 
								 | 
							
								      // Newton next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 12);
							 | 
						||
| 
								 | 
							
								      // Halley next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 7);
							 | 
						||
| 
								 | 
							
								      // Schroder next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 11);
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // A much better guess, 1% below result:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      guess = result * 0.9;
							 | 
						||
| 
								 | 
							
								      r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 12);
							 | 
						||
| 
								 | 
							
								      // Newton next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 5);
							 | 
						||
| 
								 | 
							
								      // Halley next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 3);
							 | 
						||
| 
								 | 
							
								      // Schroder next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 4);
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // A much better guess, 1% above result:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      guess = result * 1.1;
							 | 
						||
| 
								 | 
							
								      r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 12);
							 | 
						||
| 
								 | 
							
								      // Newton next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 5);
							 | 
						||
| 
								 | 
							
								      // Halley next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 3);
							 | 
						||
| 
								 | 
							
								      // Schroder next:
							 | 
						||
| 
								 | 
							
								      iters = 1000;
							 | 
						||
| 
								 | 
							
								      dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_LE(iters, 4);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      arg *= 3.5;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int main() { return 0; }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 |