mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
	
	
		
			122 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
		
		
			
		
	
	
			122 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| 
								 | 
							
								<html>
							 | 
						||
| 
								 | 
							
								<head>
							 | 
						||
| 
								 | 
							
								<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
							 | 
						||
| 
								 | 
							
								<title>Quaternion Creation Functions</title>
							 | 
						||
| 
								 | 
							
								<link rel="stylesheet" href="../math.css" type="text/css">
							 | 
						||
| 
								 | 
							
								<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
							 | 
						||
| 
								 | 
							
								<link rel="home" href="../index.html" title="Math Toolkit 2.5.1">
							 | 
						||
| 
								 | 
							
								<link rel="up" href="../quaternions.html" title="Chapter 9. Quaternions">
							 | 
						||
| 
								 | 
							
								<link rel="prev" href="value_op.html" title="Quaternion Value Operations">
							 | 
						||
| 
								 | 
							
								<link rel="next" href="trans.html" title="Quaternion Transcendentals">
							 | 
						||
| 
								 | 
							
								</head>
							 | 
						||
| 
								 | 
							
								<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
							 | 
						||
| 
								 | 
							
								<table cellpadding="2" width="100%"><tr>
							 | 
						||
| 
								 | 
							
								<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="../../../../../index.html">Home</a></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
							 | 
						||
| 
								 | 
							
								<td align="center"><a href="../../../../../more/index.htm">More</a></td>
							 | 
						||
| 
								 | 
							
								</tr></table>
							 | 
						||
| 
								 | 
							
								<hr>
							 | 
						||
| 
								 | 
							
								<div class="spirit-nav">
							 | 
						||
| 
								 | 
							
								<a accesskey="p" href="value_op.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="trans.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
							 | 
						||
| 
								 | 
							
								</div>
							 | 
						||
| 
								 | 
							
								<div class="section">
							 | 
						||
| 
								 | 
							
								<div class="titlepage"><div><div><h2 class="title" style="clear: both">
							 | 
						||
| 
								 | 
							
								<a name="math_toolkit.create"></a><a class="link" href="create.html" title="Quaternion Creation Functions">Quaternion Creation Functions</a>
							 | 
						||
| 
								 | 
							
								</h2></div></div></div>
							 | 
						||
| 
								 | 
							
								<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">quaternion</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">spherical</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">phi1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">phi2</span><span class="special">);</span>
							 | 
						||
| 
								 | 
							
								<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">quaternion</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">semipolar</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">alpha</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta2</span><span class="special">);</span>
							 | 
						||
| 
								 | 
							
								<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">quaternion</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">multipolar</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">rho2</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">theta2</span><span class="special">);</span>
							 | 
						||
| 
								 | 
							
								<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">quaternion</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">cylindrospherical</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">t</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">radius</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">longitude</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">latitude</span><span class="special">);</span>
							 | 
						||
| 
								 | 
							
								<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">quaternion</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">cylindrical</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">angle</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">h1</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">h2</span><span class="special">);</span>
							 | 
						||
| 
								 | 
							
								</pre>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      These build quaternions in a way similar to the way polar builds complex numbers,
							 | 
						||
| 
								 | 
							
								      as there is no strict equivalent to polar coordinates for quaternions.
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      <a name="math_quaternions.creation_spherical"></a><code class="computeroutput"><span class="identifier">spherical</span></code>
							 | 
						||
| 
								 | 
							
								      is a simple transposition of <code class="computeroutput"><span class="identifier">polar</span></code>,
							 | 
						||
| 
								 | 
							
								      it takes as inputs a (positive) magnitude and a point on the hypersphere, given
							 | 
						||
| 
								 | 
							
								      by three angles. The first of these, <code class="computeroutput"><span class="identifier">theta</span></code>
							 | 
						||
| 
								 | 
							
								      has a natural range of <code class="computeroutput"><span class="special">-</span><span class="identifier">pi</span></code>
							 | 
						||
| 
								 | 
							
								      to <code class="computeroutput"><span class="special">+</span><span class="identifier">pi</span></code>,
							 | 
						||
| 
								 | 
							
								      and the other two have natural ranges of <code class="computeroutput"><span class="special">-</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code>
							 | 
						||
| 
								 | 
							
								      to <code class="computeroutput"><span class="special">+</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code> (as is the
							 | 
						||
| 
								 | 
							
								      case with the usual spherical coordinates in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>).
							 | 
						||
| 
								 | 
							
								      Due to the many symmetries and periodicities, nothing untoward happens if the
							 | 
						||
| 
								 | 
							
								      magnitude is negative or the angles are outside their natural ranges. The expected
							 | 
						||
| 
								 | 
							
								      degeneracies (a magnitude of zero ignores the angles settings...) do happen
							 | 
						||
| 
								 | 
							
								      however.
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      <a name="math_quaternions.creation_cylindrical"></a><code class="computeroutput"><span class="identifier">cylindrical</span></code>
							 | 
						||
| 
								 | 
							
								      is likewise a simple transposition of the usual cylindrical coordinates in
							 | 
						||
| 
								 | 
							
								      <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>, which in turn is another
							 | 
						||
| 
								 | 
							
								      derivative of planar polar coordinates. The first two inputs are the polar
							 | 
						||
| 
								 | 
							
								      coordinates of the first <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>
							 | 
						||
| 
								 | 
							
								      component of the quaternion. The third and fourth inputs are placed into the
							 | 
						||
| 
								 | 
							
								      third and fourth <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span> components
							 | 
						||
| 
								 | 
							
								      of the quaternion, respectively.
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      <a name="math_quaternions.creation_multipolar"></a><code class="computeroutput"><span class="identifier">multipolar</span></code>
							 | 
						||
| 
								 | 
							
								      is yet another simple generalization of polar coordinates. This time, both
							 | 
						||
| 
								 | 
							
								      <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span> components of the quaternion
							 | 
						||
| 
								 | 
							
								      are given in polar coordinates.
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      <a name="math_quaternions.creation_cylindrospherical"></a><code class="computeroutput"><span class="identifier">cylindrospherical</span></code>
							 | 
						||
| 
								 | 
							
								      is specific to quaternions. It is often interesting to consider <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span> as the cartesian product of <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span> by <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
							 | 
						||
| 
								 | 
							
								      (the quaternionic multiplication as then a special form, as given here). This
							 | 
						||
| 
								 | 
							
								      function therefore builds a quaternion from this representation, with the
							 | 
						||
| 
								 | 
							
								      <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span> component given in usual
							 | 
						||
| 
								 | 
							
								      <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span> spherical coordinates.
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      <a name="math_quaternions.creation_semipolar"></a><code class="computeroutput"><span class="identifier">semipolar</span></code>
							 | 
						||
| 
								 | 
							
								      is another generator which is specific to quaternions. It takes as a first
							 | 
						||
| 
								 | 
							
								      input the magnitude of the quaternion, as a second input an angle in the range
							 | 
						||
| 
								 | 
							
								      <code class="computeroutput"><span class="number">0</span></code> to <code class="computeroutput"><span class="special">+</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code>
							 | 
						||
| 
								 | 
							
								      such that magnitudes of the first two <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>
							 | 
						||
| 
								 | 
							
								      components of the quaternion are the product of the first input and the sine
							 | 
						||
| 
								 | 
							
								      and cosine of this angle, respectively, and finally as third and fourth inputs
							 | 
						||
| 
								 | 
							
								      angles in the range <code class="computeroutput"><span class="special">-</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code> to <code class="computeroutput"><span class="special">+</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span></code> which represent the arguments of the first
							 | 
						||
| 
								 | 
							
								      and second <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span> components
							 | 
						||
| 
								 | 
							
								      of the quaternion, respectively. As usual, nothing untoward happens if what
							 | 
						||
| 
								 | 
							
								      should be magnitudes are negative numbers or angles are out of their natural
							 | 
						||
| 
								 | 
							
								      ranges, as symmetries and periodicities kick in.
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								<p>
							 | 
						||
| 
								 | 
							
								      In this version of our implementation of quaternions, there is no analogue
							 | 
						||
| 
								 | 
							
								      of the complex value operation <code class="computeroutput"><span class="identifier">arg</span></code>
							 | 
						||
| 
								 | 
							
								      as the situation is somewhat more complicated. Unit quaternions are linked
							 | 
						||
| 
								 | 
							
								      both to rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
							 | 
						||
| 
								 | 
							
								      and in <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>, and the correspondences
							 | 
						||
| 
								 | 
							
								      are not too complicated, but there is currently a lack of standard (de facto
							 | 
						||
| 
								 | 
							
								      or de jure) matrix library with which the conversions could work. This should
							 | 
						||
| 
								 | 
							
								      be remedied in a further revision. In the mean time, an example of how this
							 | 
						||
| 
								 | 
							
								      could be done is presented here for <a href="../../../example/HSO3.hpp" target="_top"><span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span></a>, and here for <a href="../../../example/HSO4.hpp" target="_top"><span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span></a> (<a href="../../../example/HSO3SO4.cpp" target="_top">example
							 | 
						||
| 
								 | 
							
								      test file</a>).
							 | 
						||
| 
								 | 
							
								    </p>
							 | 
						||
| 
								 | 
							
								</div>
							 | 
						||
| 
								 | 
							
								<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
							 | 
						||
| 
								 | 
							
								<td align="left"></td>
							 | 
						||
| 
								 | 
							
								<td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal,
							 | 
						||
| 
								 | 
							
								      Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
							 | 
						||
| 
								 | 
							
								      Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam Sewani,
							 | 
						||
| 
								 | 
							
								      Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p>
							 | 
						||
| 
								 | 
							
								        Distributed under the Boost Software License, Version 1.0. (See accompanying
							 | 
						||
| 
								 | 
							
								        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
							 | 
						||
| 
								 | 
							
								      </p>
							 | 
						||
| 
								 | 
							
								</div></td>
							 | 
						||
| 
								 | 
							
								</tr></table>
							 | 
						||
| 
								 | 
							
								<hr>
							 | 
						||
| 
								 | 
							
								<div class="spirit-nav">
							 | 
						||
| 
								 | 
							
								<a accesskey="p" href="value_op.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="trans.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
							 | 
						||
| 
								 | 
							
								</div>
							 | 
						||
| 
								 | 
							
								</body>
							 | 
						||
| 
								 | 
							
								</html>
							 |