mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 04:20:22 -04:00 
			
		
		
		
	
		
			
	
	
		
			97 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
		
		
			
		
	
	
			97 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
|  | <html> | ||
|  | <head> | ||
|  | <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII"> | ||
|  | <title>Overview</title> | ||
|  | <link rel="stylesheet" href="../math.css" type="text/css"> | ||
|  | <meta name="generator" content="DocBook XSL Stylesheets V1.79.1"> | ||
|  | <link rel="home" href="../index.html" title="Math Toolkit 2.5.1"> | ||
|  | <link rel="up" href="../quaternions.html" title="Chapter 9. Quaternions"> | ||
|  | <link rel="prev" href="../quaternions.html" title="Chapter 9. Quaternions"> | ||
|  | <link rel="next" href="quat_header.html" title="Header File"> | ||
|  | </head> | ||
|  | <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"> | ||
|  | <table cellpadding="2" width="100%"><tr> | ||
|  | <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td> | ||
|  | <td align="center"><a href="../../../../../index.html">Home</a></td> | ||
|  | <td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td> | ||
|  | <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td> | ||
|  | <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td> | ||
|  | <td align="center"><a href="../../../../../more/index.htm">More</a></td> | ||
|  | </tr></table> | ||
|  | <hr> | ||
|  | <div class="spirit-nav"> | ||
|  | <a accesskey="p" href="../quaternions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="quat_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a> | ||
|  | </div> | ||
|  | <div class="section"> | ||
|  | <div class="titlepage"><div><div><h2 class="title" style="clear: both"> | ||
|  | <a name="math_toolkit.quat_overview"></a><a class="link" href="quat_overview.html" title="Overview">Overview</a> | ||
|  | </h2></div></div></div> | ||
|  | <p> | ||
|  |       Quaternions are a relative of complex numbers. | ||
|  |     </p> | ||
|  | <p> | ||
|  |       Quaternions are in fact part of a small hierarchy of structures built upon | ||
|  |       the real numbers, which comprise only the set of real numbers (traditionally | ||
|  |       named <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span>), the set of | ||
|  |       complex numbers (traditionally named <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>), | ||
|  |       the set of quaternions (traditionally named <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span>) | ||
|  |       and the set of octonions (traditionally named <span class="emphasis"><em><span class="bold"><strong>O</strong></span></em></span>), | ||
|  |       which possess interesting mathematical properties (chief among which is the | ||
|  |       fact that they are <span class="emphasis"><em>division algebras</em></span>, <span class="emphasis"><em>i.e.</em></span> | ||
|  |       where the following property is true: if <span class="emphasis"><em><code class="literal">y</code></em></span> | ||
|  |       is an element of that algebra and is <span class="bold"><strong>not equal to zero</strong></span>, | ||
|  |       then <span class="emphasis"><em><code class="literal">yx = yx'</code></em></span>, where <span class="emphasis"><em><code class="literal">x</code></em></span> | ||
|  |       and <span class="emphasis"><em><code class="literal">x'</code></em></span> denote elements of that algebra, | ||
|  |       implies that <span class="emphasis"><em><code class="literal">x = x'</code></em></span>). Each member of | ||
|  |       the hierarchy is a super-set of the former. | ||
|  |     </p> | ||
|  | <p> | ||
|  |       One of the most important aspects of quaternions is that they provide an efficient | ||
|  |       way to parameterize rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span> | ||
|  |       (the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>. | ||
|  |     </p> | ||
|  | <p> | ||
|  |       In practical terms, a quaternion is simply a quadruple of real numbers (α,β,γ,δ), | ||
|  |       which we can write in the form <span class="emphasis"><em><code class="literal">q = α + βi + γj + δk</code></em></span>, | ||
|  |       where <span class="emphasis"><em><code class="literal">i</code></em></span> is the same object as for complex | ||
|  |       numbers, and <span class="emphasis"><em><code class="literal">j</code></em></span> and <span class="emphasis"><em><code class="literal">k</code></em></span> | ||
|  |       are distinct objects which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>. | ||
|  |     </p> | ||
|  | <p> | ||
|  |       An addition and a multiplication is defined on the set of quaternions, which | ||
|  |       generalize their real and complex counterparts. The main novelty here is that | ||
|  |       <span class="bold"><strong>the multiplication is not commutative</strong></span> (i.e. | ||
|  |       there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span> and <span class="emphasis"><em><code class="literal">y</code></em></span> | ||
|  |       such that <span class="emphasis"><em><code class="literal">xy ≠ yx</code></em></span>). A good mnemotechnical | ||
|  |       way of remembering things is by using the formula <span class="emphasis"><em><code class="literal">i*i = | ||
|  |       j*j = k*k = -1</code></em></span>. | ||
|  |     </p> | ||
|  | <p> | ||
|  |       Quaternions (and their kin) are described in far more details in this other | ||
|  |       <a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata | ||
|  |       and addenda</a>). | ||
|  |     </p> | ||
|  | <p> | ||
|  |       Some traditional constructs, such as the exponential, carry over without too | ||
|  |       much change into the realms of quaternions, but other, such as taking a square | ||
|  |       root, do not. | ||
|  |     </p> | ||
|  | </div> | ||
|  | <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr> | ||
|  | <td align="left"></td> | ||
|  | <td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal, | ||
|  |       Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert | ||
|  |       Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam Sewani, | ||
|  |       Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p> | ||
|  |         Distributed under the Boost Software License, Version 1.0. (See accompanying | ||
|  |         file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>) | ||
|  |       </p> | ||
|  | </div></td> | ||
|  | </tr></table> | ||
|  | <hr> | ||
|  | <div class="spirit-nav"> | ||
|  | <a accesskey="p" href="../quaternions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="quat_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a> | ||
|  | </div> | ||
|  | </body> | ||
|  | </html> |