mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-18 01:52:05 -05:00
214 lines
8.6 KiB
C++
214 lines
8.6 KiB
C++
|
// Copyright Paul A. Bristow 2014, 2015.
|
||
|
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0.
|
||
|
// (See accompanying file LICENSE_1_0.txt
|
||
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
// Note that this file contains Quickbook mark-up as well as code
|
||
|
// and comments, don't change any of the special comment mark-ups!
|
||
|
|
||
|
// Example of finding nth root using 1st and 2nd derivatives of x^n.
|
||
|
|
||
|
#include <boost/math/tools/roots.hpp>
|
||
|
//using boost::math::policies::policy;
|
||
|
//using boost::math::tools::newton_raphson_iterate;
|
||
|
//using boost::math::tools::halley_iterate;
|
||
|
//using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
|
||
|
//using boost::math::tools::bracket_and_solve_root;
|
||
|
//using boost::math::tools::toms748_solve;
|
||
|
|
||
|
#include <boost/math/special_functions/next.hpp>
|
||
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
||
|
#include <boost/math/special_functions/pow.hpp>
|
||
|
#include <boost/math/constants/constants.hpp>
|
||
|
|
||
|
#include <boost/multiprecision/cpp_dec_float.hpp> // For cpp_dec_float_50.
|
||
|
#include <boost/multiprecision/cpp_bin_float.hpp> // using boost::multiprecision::cpp_bin_float_50;
|
||
|
#ifndef _MSC_VER // float128 is not yet supported by Microsoft compiler at 2013.
|
||
|
# include <boost/multiprecision/float128.hpp>
|
||
|
#endif
|
||
|
|
||
|
#include <iostream>
|
||
|
// using std::cout; using std::endl;
|
||
|
#include <iomanip>
|
||
|
// using std::setw; using std::setprecision;
|
||
|
#include <limits>
|
||
|
using std::numeric_limits;
|
||
|
#include <tuple>
|
||
|
#include <utility> // pair, make_pair
|
||
|
|
||
|
|
||
|
//[root_finding_nth_functor_2deriv
|
||
|
template <int N, class T = double>
|
||
|
struct nth_functor_2deriv
|
||
|
{ // Functor returning both 1st and 2nd derivatives.
|
||
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
||
|
BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!");
|
||
|
|
||
|
nth_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
|
||
|
{ /* Constructor stores value a to find root of, for example: */ }
|
||
|
|
||
|
// using boost::math::tuple; // to return three values.
|
||
|
std::tuple<T, T, T> operator()(T const& x)
|
||
|
{
|
||
|
// Return f(x), f'(x) and f''(x).
|
||
|
using boost::math::pow;
|
||
|
T fx = pow<N>(x) - a; // Difference (estimate x^n - a).
|
||
|
T dx = N * pow<N - 1>(x); // 1st derivative f'(x).
|
||
|
T d2x = N * (N - 1) * pow<N - 2 >(x); // 2nd derivative f''(x).
|
||
|
|
||
|
return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
|
||
|
}
|
||
|
private:
|
||
|
T a; // to be 'nth_rooted'.
|
||
|
};
|
||
|
|
||
|
//] [/root_finding_nth_functor_2deriv]
|
||
|
|
||
|
/*
|
||
|
To show the progress, one might use this before the return statement above?
|
||
|
#ifdef BOOST_MATH_ROOT_DIAGNOSTIC
|
||
|
std::cout << " x = " << x << ", fx = " << fx << ", dx = " << dx << ", dx2 = " << d2x << std::endl;
|
||
|
#endif
|
||
|
*/
|
||
|
|
||
|
// If T is a floating-point type, might be quicker to compute the guess using a built-in type,
|
||
|
// probably quickest using double, but perhaps with float or long double, T.
|
||
|
|
||
|
// If T is a type for which frexp and ldexp are not defined,
|
||
|
// then it is necessary to compute the guess using a built-in type,
|
||
|
// probably quickest (but limited range) using double,
|
||
|
// but perhaps with float or long double, or a multiprecision T for the full range of T.
|
||
|
// typedef double guess_type; is used to specify the this.
|
||
|
|
||
|
//[root_finding_nth_function_2deriv
|
||
|
|
||
|
template <int N, class T = double>
|
||
|
T nth_2deriv(T x)
|
||
|
{ // return nth root of x using 1st and 2nd derivatives and Halley.
|
||
|
|
||
|
using namespace std; // Help ADL of std functions.
|
||
|
using namespace boost::math::tools; // For halley_iterate.
|
||
|
|
||
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
||
|
BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!");
|
||
|
BOOST_STATIC_ASSERT_MSG((N > 1000) == false, "root N is too big!");
|
||
|
|
||
|
typedef double guess_type; // double may restrict (exponent) range for a multiprecision T?
|
||
|
|
||
|
int exponent;
|
||
|
frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
|
||
|
T guess = ldexp(static_cast<guess_type>(1.), exponent / N); // Rough guess is to divide the exponent by n.
|
||
|
T min = ldexp(static_cast<guess_type>(1.) / 2, exponent / N); // Minimum possible value is half our guess.
|
||
|
T max = ldexp(static_cast<guess_type>(2.), exponent / N); // Maximum possible value is twice our guess.
|
||
|
|
||
|
int digits = std::numeric_limits<T>::digits * 0.4; // Accuracy triples with each step, so stop when
|
||
|
// slightly more than one third of the digits are correct.
|
||
|
const boost::uintmax_t maxit = 20;
|
||
|
boost::uintmax_t it = maxit;
|
||
|
T result = halley_iterate(nth_functor_2deriv<N, T>(x), guess, min, max, digits, it);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
//] [/root_finding_nth_function_2deriv]
|
||
|
|
||
|
|
||
|
template <int N, typename T = double>
|
||
|
T show_nth_root(T value)
|
||
|
{ // Demonstrate by printing the nth root using all possibly significant digits.
|
||
|
//std::cout.precision(std::numeric_limits<T>::max_digits10);
|
||
|
// or use cout.precision(max_digits10 = 2 + std::numeric_limits<double>::digits * 3010/10000);
|
||
|
// Or guaranteed significant digits:
|
||
|
std::cout.precision(std::numeric_limits<T>::digits10);
|
||
|
|
||
|
T r = nth_2deriv<N>(value);
|
||
|
std::cout << "Type " << typeid(T).name() << " value = " << value << ", " << N << "th root = " << r << std::endl;
|
||
|
return r;
|
||
|
} // print_nth_root
|
||
|
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
std::cout << "nth Root finding Example." << std::endl;
|
||
|
using boost::multiprecision::cpp_dec_float_50; // decimal.
|
||
|
using boost::multiprecision::cpp_bin_float_50; // binary.
|
||
|
#ifndef _MSC_VER // Not supported by Microsoft compiler.
|
||
|
using boost::multiprecision::float128; // Requires libquadmath
|
||
|
#endif
|
||
|
try
|
||
|
{ // Always use try'n'catch blocks with Boost.Math to get any error messages.
|
||
|
|
||
|
//[root_finding_n_example_1
|
||
|
double r1 = nth_2deriv<5, double>(2); // Integral value converted to double.
|
||
|
|
||
|
// double r2 = nth_2deriv<5>(2); // Only floating-point type types can be used!
|
||
|
|
||
|
//] [/root_finding_n_example_1
|
||
|
|
||
|
//show_nth_root<5, float>(2); // Integral value converted to float.
|
||
|
//show_nth_root<5, float>(2.F); // 'initializing' : conversion from 'double' to 'float', possible loss of data
|
||
|
|
||
|
//[root_finding_n_example_2
|
||
|
|
||
|
|
||
|
show_nth_root<5, double>(2.);
|
||
|
show_nth_root<5, long double>(2.);
|
||
|
#ifndef _MSC_VER // float128 is not supported by Microsoft compiler 2013.
|
||
|
show_nth_root<5, float128>(2);
|
||
|
#endif
|
||
|
show_nth_root<5, cpp_dec_float_50>(2); // dec
|
||
|
show_nth_root<5, cpp_bin_float_50>(2); // bin
|
||
|
//] [/root_finding_n_example_2
|
||
|
|
||
|
// show_nth_root<1000000>(2.); // Type double value = 2, 555th root = 1.00124969405651
|
||
|
// Type double value = 2, 1000th root = 1.00069338746258
|
||
|
// Type double value = 2, 1000000th root = 1.00000069314783
|
||
|
}
|
||
|
catch (const std::exception& e)
|
||
|
{ // Always useful to include try & catch blocks because default policies
|
||
|
// are to throw exceptions on arguments that cause errors like underflow, overflow.
|
||
|
// Lacking try & catch blocks, the program will abort without a message below,
|
||
|
// which may give some helpful clues as to the cause of the exception.
|
||
|
std::cout <<
|
||
|
"\n""Message from thrown exception was:\n " << e.what() << std::endl;
|
||
|
}
|
||
|
return 0;
|
||
|
} // int main()
|
||
|
|
||
|
|
||
|
/*
|
||
|
//[root_finding_example_output_1
|
||
|
Using MSVC 2013
|
||
|
|
||
|
nth Root finding Example.
|
||
|
Type double value = 2, 5th root = 1.14869835499704
|
||
|
Type long double value = 2, 5th root = 1.14869835499704
|
||
|
Type class boost::multiprecision::number<class boost::multiprecision::backends::cpp_dec_float<50,int,void>,1> value = 2,
|
||
|
5th root = 1.1486983549970350067986269467779275894438508890978
|
||
|
Type class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50,10,void,int,0,0>,0> value = 2,
|
||
|
5th root = 1.1486983549970350067986269467779275894438508890978
|
||
|
|
||
|
//] [/root_finding_example_output_1]
|
||
|
|
||
|
//[root_finding_example_output_2
|
||
|
|
||
|
Using GCC 4.91 (includes float_128 type)
|
||
|
|
||
|
nth Root finding Example.
|
||
|
Type d value = 2, 5th root = 1.14869835499704
|
||
|
Type e value = 2, 5th root = 1.14869835499703501
|
||
|
Type N5boost14multiprecision6numberINS0_8backends16float128_backendELNS0_26expression_template_optionE0EEE value = 2, 5th root = 1.148698354997035006798626946777928
|
||
|
Type N5boost14multiprecision6numberINS0_8backends13cpp_dec_floatILj50EivEELNS0_26expression_template_optionE1EEE value = 2, 5th root = 1.1486983549970350067986269467779275894438508890978
|
||
|
Type N5boost14multiprecision6numberINS0_8backends13cpp_bin_floatILj50ELNS2_15digit_base_typeE10EviLi0ELi0EEELNS0_26expression_template_optionE0EEE value = 2, 5th root = 1.1486983549970350067986269467779275894438508890978
|
||
|
|
||
|
RUN SUCCESSFUL (total time: 63ms)
|
||
|
|
||
|
//] [/root_finding_example_output_2]
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
Throw out of range using GCC release mode :-(
|
||
|
|
||
|
*/
|