WSJT-X/lib/timf2.f90

143 lines
3.6 KiB
Fortran
Raw Normal View History

subroutine timf2(x0,k,nfft,nwindow,nb,peaklimit,x1, &
slimit,lstrong,px,nzap)
! Sequential processing of time-domain I/Q data, using Linrad-like
! "first FFT" and "first backward FFT", treating frequencies with
! strong signals differently. Noise blanking is applied to weak
! signals only.
! x0 - real input data
! nfft - length of FFTs
! nwindow - 0 for no window, 2 for sin^2 window
! x1 - real output data
! Non-windowed processing means no overlap, so kstep=nfft.
! Sin^2 window has 50% overlap, kstep=nfft/2.
! Frequencies with strong signals are identified and separated. Back
! transforms are done separately for weak and strong signals, so that
! noise blanking can be applied to the weak-signal portion. Strong and
! weak are finally re-combined, in the time domain.
parameter (MAXFFT=1024,MAXNH=MAXFFT/2)
parameter (MAXSIGS=100)
real x0(0:nfft-1),x1(0:nfft-1)
real x(0:MAXFFT-1),xw(0:MAXFFT-1),xs(0:MAXFFT-1)
real xwov(0:MAXNH-1),xsov(0:MAXNH-1)
complex cx(0:MAXFFT-1),cxt(0:MAXFFT-1)
complex cxs(0:MAXFFT-1) !Strong signals
complex cxw(0:MAXFFT-1) !Weak signals
real*4 w(0:MAXFFT-1)
real*4 s(0:MAXNH)
logical*1 lstrong(0:MAXNH),lprev
integer ia(MAXSIGS),ib(MAXSIGS)
logical first
equivalence (x,cx),(xw,cxw),(xs,cxs)
data first/.true./
data k0/99999999/
save
if(first) then
pi=4.0*atan(1.0)
do i=0,nfft-1
w(i)=(sin(i*pi/nfft))**2
enddo
s=0.
nh=nfft/2
kstep=nfft
if(nwindow.eq.2) kstep=nh
fac=1.0/nfft
slimit=1.e30
first=.false.
endif
if(k.lt.k0) then
xsov=0.
xwov=0.
endif
k0=k
x(0:nfft-1)=x0
if(nwindow.eq.2) x(0:nfft-1)=w(0:nfft-1)*x(0:nfft-1)
call four2a(cx,nfft,1,-1,0) !First forward FFT, r2c
cxt(0:nh)=cx(0:nh)
! Identify frequencies with strong signals.
do i=0,nh
p=real(cxt(i))**2 + aimag(cxt(i))**2
s(i)=p
enddo
ave=sum(s(0:nh))/nh
lstrong(0:nh)=s(0:nh).gt.10.0*ave
nsigs=0
lprev=.false.
iwid=1
ib=-99
do i=0,nh
if(lstrong(i) .and. (.not.lprev)) then
if(nsigs.lt.MAXSIGS) nsigs=nsigs+1
ia(nsigs)=i-iwid
if(ia(nsigs).lt.0) ia(nsigs)=0
endif
if(.not.lstrong(i) .and. lprev) then
ib(nsigs)=i-1+iwid
if(ib(nsigs).gt.nh) ib(nsigs)=nh
endif
lprev=lstrong(i)
enddo
if(nsigs.gt.0) then
do i=1,nsigs
ja=ia(i)
jb=ib(i)
if(ja.lt.0 .or. ja.gt.nh .or. jb.lt.0 .or. jb.gt.nh) then
cycle
endif
if(jb.eq.-99) jb=ja + min(2*iwid,nh)
lstrong(ja:jb)=.true.
enddo
endif
! Copy frequency-domain data into array cs (strong) or cw (weak).
do i=0,nh
if(lstrong(i)) then
cxs(i)=fac*cxt(i)
cxw(i)=0.
else
cxw(i)=fac*cxt(i)
cxs(i)=0.
endif
enddo
call four2a(cxw,nfft,1,1,-1) !Transform weak and strong back
call four2a(cxs,nfft,1,1,-1) !to time domain, separately (c2r)
if(nwindow.eq.2) then
xw(0:nh-1)=xw(0:nh-1)+xwov(0:nh-1) !Add previous segment's 2nd half
xwov(0:nh-1)=xw(nh:nfft-1) !Save 2nd half
xs(0:nh-1)=xs(0:nh-1)+xsov(0:nh-1) !Ditto for strong signals
xsov(0:nh-1)=xs(nh:nfft-1)
endif
! Apply noise blanking to weak data
if(nb.ne.0) then
do i=0,kstep-1
peak=abs(xw(i))
if(peak.gt.peaklimit) then
xw(i)=0.
nzap=nzap+1
endif
enddo
endif
! Compute power levels from weak data only
do i=0,kstep-1
px=px + xw(i)**2
enddo
x1(0:kstep-1)=xw(0:kstep-1) + xs(0:kstep-1) !Recombine weak + strong
return
end subroutine timf2