mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 13:30:52 -05:00 
			
		
		
		
	
		
			
	
	
		
			69 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			69 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								/* Boost libs/numeric/odeint/examples/multiprecision/cmp_precision.cpp
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 Copyright 2013 Karsten Ahnert
							 | 
						||
| 
								 | 
							
								 Copyright 2013 Mario Mulansky
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 example comparing double to multiprecision using Boost.Multiprecision
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 Distributed under the Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								(See accompanying file LICENSE_1_0.txt or
							 | 
						||
| 
								 | 
							
								 copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <iostream>
							 | 
						||
| 
								 | 
							
								#include <boost/numeric/odeint.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/multiprecision/cpp_dec_float.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								using namespace std;
							 | 
						||
| 
								 | 
							
								using namespace boost::numeric::odeint;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef boost::multiprecision::cpp_dec_float_50 mp_50;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* we solve the simple ODE x' = 3/(2t^2) + x/(2t)
							 | 
						||
| 
								 | 
							
								 * with initial condition x(1) = 0.
							 | 
						||
| 
								 | 
							
								 * Analytic solution is x(t) = sqrt(t) - 1/t
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void rhs_m( const mp_50 x , mp_50 &dxdt , const mp_50 t )
							 | 
						||
| 
								 | 
							
								{   // version for multiprecision
							 | 
						||
| 
								 | 
							
								    dxdt = mp_50(3)/(mp_50(2)*t*t) + x/(mp_50(2)*t);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void rhs_d( const double x , double &dxdt , const double t )
							 | 
						||
| 
								 | 
							
								{   // version for double precision
							 | 
						||
| 
								 | 
							
								    dxdt = 3.0/(2.0*t*t) + x/(2.0*t);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// state_type = mp_50 = deriv_type = time_type = mp_50
							 | 
						||
| 
								 | 
							
								typedef runge_kutta4< mp_50 , mp_50 , mp_50 , mp_50 , vector_space_algebra , default_operations , never_resizer > stepper_type_m;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef runge_kutta4< double , double , double , double , vector_space_algebra , default_operations , never_resizer > stepper_type_d;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int main()
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    stepper_type_m stepper_m;
							 | 
						||
| 
								 | 
							
								    stepper_type_d stepper_d;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    mp_50 dt_m( 0.5 );
							 | 
						||
| 
								 | 
							
								    double dt_d( 0.5 );
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    cout << "dt" << '\t' << "mp" << '\t' << "double" << endl;
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    while( dt_m > 1E-20 )
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        mp_50 x_m = 0; //initial value x(1) = 0
							 | 
						||
| 
								 | 
							
								        stepper_m.do_step( rhs_m , x_m , mp_50( 1 ) , dt_m );
							 | 
						||
| 
								 | 
							
								        double x_d = 0;
							 | 
						||
| 
								 | 
							
								        stepper_d.do_step( rhs_d , x_d , 1.0 , dt_d );        
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        cout << dt_m << '\t';
							 | 
						||
| 
								 | 
							
								        cout << abs((x_m - (sqrt(1+dt_m)-mp_50(1)/(1+dt_m)))/x_m) << '\t' ;
							 | 
						||
| 
								 | 
							
								        cout << abs((x_d - (sqrt(1+dt_d)-mp_50(1)/(1+dt_d)))/x_d) << endl ;
							 | 
						||
| 
								 | 
							
								        dt_m /= 2;
							 | 
						||
| 
								 | 
							
								        dt_d /= 2;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								}
							 |