mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-03 16:01:18 -05:00
182 lines
4.7 KiB
Fortran
182 lines
4.7 KiB
Fortran
|
program ldpcsim
|
||
|
|
||
|
use, intrinsic :: iso_c_binding
|
||
|
use hashing
|
||
|
use packjt
|
||
|
|
||
|
! To change to a new code, edit the following line and the filenames
|
||
|
! that contain the parity check and generator matrices.
|
||
|
! parameter (N=128, K=80) ! M and N are global variables on the C side.
|
||
|
|
||
|
character*22 msg,msgsent
|
||
|
integer*4 i4Msg6BitWords(12)
|
||
|
integer*1, target:: i1Msg8BitBytes(10) ! 72 bit msg + 8 bit hash
|
||
|
integer*1, target:: i1Dec8BitBytes(10) ! 72 bit msg + 8 bit hash
|
||
|
integer*1 i1hashdec
|
||
|
character*80 prefix
|
||
|
character*85 pchk_file,gen_file
|
||
|
character*8 arg
|
||
|
integer*1, allocatable :: codeword(:), decoded(:), message(:)
|
||
|
real*8, allocatable :: lratio(:), rxdata(:)
|
||
|
integer*1 i1hash(4),i1
|
||
|
equivalence (ihash,i1hash)
|
||
|
|
||
|
nargs=iargc()
|
||
|
if(nargs.ne.7) then
|
||
|
print*,'Usage: ldpcsim pchk/gen file prefix N K niter ndither #trials s '
|
||
|
print*,'eg: ldpcsim "128-80-peg-reg3" 128 80 10 1 1000 0.75'
|
||
|
return
|
||
|
endif
|
||
|
call getarg(1,prefix)
|
||
|
call getarg(2,arg)
|
||
|
read(arg,*) N
|
||
|
call getarg(3,arg)
|
||
|
read(arg,*) K
|
||
|
call getarg(4,arg)
|
||
|
read(arg,*) max_iterations
|
||
|
call getarg(5,arg)
|
||
|
read(arg,*) max_dither
|
||
|
call getarg(6,arg)
|
||
|
read(arg,*) ntrials
|
||
|
call getarg(7,arg)
|
||
|
read(arg,*) s
|
||
|
|
||
|
pchk_file=trim(prefix)//".pchk"
|
||
|
gen_file=trim(prefix)//".gen"
|
||
|
|
||
|
!rate=real(K)/real(N)
|
||
|
! don't count hash bits as data bits
|
||
|
rate=72.0/real(N)
|
||
|
|
||
|
write(*,*) "pchk file: ",pchk_file
|
||
|
write(*,*) "niter= ",max_iterations," ndither= ",max_dither," s= ",s
|
||
|
|
||
|
allocate ( codeword(N), decoded(K), message(K) )
|
||
|
allocate ( lratio(N), rxdata(N) )
|
||
|
call init_ldpc(trim(pchk_file)//char(0),trim(gen_file)//char(0))
|
||
|
|
||
|
msg="K1JT K9AN EN50"
|
||
|
call fmtmsg(msg,iz)
|
||
|
call packmsg(msg,i4Msg6BitWords,itype)
|
||
|
call unpackmsg(i4Msg6BitWords,msgsent)
|
||
|
write(*,*) "Message: ",msgsent
|
||
|
|
||
|
! Convert from 12 6-bit words to 10 8-bit words
|
||
|
i4=0
|
||
|
ik=0
|
||
|
im=0
|
||
|
do i=1,12
|
||
|
nn=i4Msg6BitWords(i)
|
||
|
do j=1, 6
|
||
|
ik=ik+1
|
||
|
i4=i4+i4+iand(1,ishft(nn,j-6))
|
||
|
i4=iand(i4,255)
|
||
|
if(ik.eq.8) then
|
||
|
im=im+1
|
||
|
! if(i4.gt.127) i4=i4-256
|
||
|
i1Msg8BitBytes(im)=i4
|
||
|
ik=0
|
||
|
endif
|
||
|
enddo
|
||
|
enddo
|
||
|
ihash=nhash(c_loc(i1Msg8BitBytes),int(9,c_size_t),146)
|
||
|
ihash=2*iand(ihash,255)
|
||
|
i1Msg8BitBytes(10)=i1hash(1)
|
||
|
|
||
|
mbit=0
|
||
|
do i=1, 10
|
||
|
i1=i1Msg8BitBytes(i)
|
||
|
do ibit=1,8
|
||
|
mbit=mbit+1
|
||
|
message(mbit)=iand(1,ishft(i1,ibit-8))
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
call ldpc_encode(message,codeword)
|
||
|
|
||
|
write(*,*) "Eb/N0 ngood nundetected nbadhash"
|
||
|
do idb = 0, 11
|
||
|
db=idb/2.0-0.5
|
||
|
sigma=1/sqrt( 2*rate*(10**(db/10.0)) )
|
||
|
|
||
|
ngood=0
|
||
|
nue=0
|
||
|
nbadhash=0
|
||
|
|
||
|
do itrial=1, ntrials
|
||
|
|
||
|
! create a realization of a noisy received word
|
||
|
do i=1,N
|
||
|
rxdata(i) = 2.0*(codeword(i)-0.5) + sigma*gran()
|
||
|
enddo
|
||
|
|
||
|
! correct signal normalization is important for this decoder.
|
||
|
rxav=sum(rxdata)/N
|
||
|
rx2av=sum(rxdata*rxdata)/N
|
||
|
rxsig=sqrt(rx2av-rxav*rxav)
|
||
|
rxdata=rxdata/rxsig
|
||
|
|
||
|
! To match the metric to the channel, s should be set to the noise standard deviation.
|
||
|
! For now we just set s to the value that optimizes decode probability near threshold.
|
||
|
! The s parameter can be tuned to trade a few tenth's dB of threshold for an order of
|
||
|
! magnitude in UER
|
||
|
do i=1,N
|
||
|
if( s .le. 0 ) then
|
||
|
ss=sigma
|
||
|
else
|
||
|
ss=s
|
||
|
endif
|
||
|
lratio(i)=exp(2.0*rxdata(i)/(ss*ss))
|
||
|
enddo
|
||
|
|
||
|
! call interface to Radford Neal implementation of binary belief propagation.
|
||
|
! max_iterations is max number of belief propagation iterations
|
||
|
! max_dither is the number of tries - try number 2 and beyond start with dithered likelihood ratios.
|
||
|
call ldpc_decode(lratio, decoded, max_iterations, niterations, max_dither, ndither)
|
||
|
|
||
|
! if the decoder finds a valid codeword, niterations will be .ge. 0
|
||
|
if( niterations .ge. 0 ) then
|
||
|
nueflag=0
|
||
|
nhashflag=0
|
||
|
! the decoder produced a codeword --- compare hash part of message (byte 10) with computed hash
|
||
|
! first collapse 80 decoded bits to 10 bytes
|
||
|
! the first 9 bytes are the message, 10'th byte is the hash.
|
||
|
do ibyte=1,10
|
||
|
itmp=0
|
||
|
do ibit=1,8
|
||
|
itmp=ishft(itmp,1)+iand(1,decoded((ibyte-1)*8+ibit))
|
||
|
enddo
|
||
|
i1Dec8BitBytes(ibyte)=itmp
|
||
|
enddo
|
||
|
! calculate the hash using the first 9 bytes
|
||
|
ihashdec=nhash(c_loc(i1Dec8BitBytes),int(9,c_size_t),146)
|
||
|
ihashdec=2*iand(ihashdec,255)
|
||
|
! compare calculated hash with received byte 10 - if they agree, keep the message
|
||
|
i1hashdec=ihashdec
|
||
|
if( i1hashdec .ne. i1Dec8BitBytes(10) ) then
|
||
|
nbadhash=nbadhash+1
|
||
|
nhashflag=1
|
||
|
endif
|
||
|
|
||
|
! check the message plus hash against what was sent
|
||
|
do i=1,K
|
||
|
if( message(i) .ne. decoded(i) ) then
|
||
|
nueflag=1
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
if( nhashflag .eq. 0 .and. nueflag .eq. 0 ) then
|
||
|
ngood=ngood+1
|
||
|
else if( nhashflag .eq. 0 .and. nueflag .eq. 1 ) then
|
||
|
nue=nue+1;
|
||
|
endif
|
||
|
endif
|
||
|
|
||
|
enddo
|
||
|
|
||
|
write(*,"(f4.1,1x,i8,1x,i8,1x,i8)") db,ngood,nue,nbadhash
|
||
|
|
||
|
enddo
|
||
|
|
||
|
end program ldpcsim
|