mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
	
	
		
			284 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
		
		
			
		
	
	
			284 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
|  | <html> | ||
|  | <head> | ||
|  | <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII"> | ||
|  | <title>Minimax Approximations and the Remez Algorithm</title> | ||
|  | <link rel="stylesheet" href="../../math.css" type="text/css"> | ||
|  | <meta name="generator" content="DocBook XSL Stylesheets V1.79.1"> | ||
|  | <link rel="home" href="../../index.html" title="Math Toolkit 2.5.1"> | ||
|  | <link rel="up" href="../internals.html" title="Internal tools"> | ||
|  | <link rel="prev" href="tuples.html" title="Tuples"> | ||
|  | <link rel="next" href="error_test.html" title="Relative Error and Testing"> | ||
|  | </head> | ||
|  | <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"> | ||
|  | <table cellpadding="2" width="100%"><tr> | ||
|  | <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td> | ||
|  | <td align="center"><a href="../../../../../../index.html">Home</a></td> | ||
|  | <td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td> | ||
|  | <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td> | ||
|  | <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td> | ||
|  | <td align="center"><a href="../../../../../../more/index.htm">More</a></td> | ||
|  | </tr></table> | ||
|  | <hr> | ||
|  | <div class="spirit-nav"> | ||
|  | <a accesskey="p" href="tuples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="error_test.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a> | ||
|  | </div> | ||
|  | <div class="section"> | ||
|  | <div class="titlepage"><div><div><h3 class="title"> | ||
|  | <a name="math_toolkit.internals.minimax"></a><a class="link" href="minimax.html" title="Minimax Approximations and the Remez Algorithm">Minimax Approximations | ||
|  |       and the Remez Algorithm</a> | ||
|  | </h3></div></div></div> | ||
|  | <p> | ||
|  |         The directory libs/math/minimax contains a command line driven program for | ||
|  |         the generation of minimax approximations using the Remez algorithm. Both | ||
|  |         polynomial and rational approximations are supported, although the latter | ||
|  |         are tricky to converge: it is not uncommon for convergence of rational forms | ||
|  |         to fail. No such limitations are present for polynomial approximations which | ||
|  |         should always converge smoothly. | ||
|  |       </p> | ||
|  | <p> | ||
|  |         It's worth stressing that developing rational approximations to functions | ||
|  |         is often not an easy task, and one to which many books have been devoted. | ||
|  |         To use this tool, you will need to have a reasonable grasp of what the Remez | ||
|  |         algorithm is, and the general form of the approximation you want to achieve. | ||
|  |       </p> | ||
|  | <p> | ||
|  |         Unless you already familar with the Remez method, you should first read the | ||
|  |         <a class="link" href="../remez.html" title="The Remez Method">brief background article explaining the | ||
|  |         principles behind the Remez algorithm</a>. | ||
|  |       </p> | ||
|  | <p> | ||
|  |         The program consists of two parts: | ||
|  |       </p> | ||
|  | <div class="variablelist"> | ||
|  | <p class="title"><b></b></p> | ||
|  | <dl class="variablelist"> | ||
|  | <dt><span class="term">main.cpp</span></dt> | ||
|  | <dd><p> | ||
|  |               Contains the command line parser, and all the calls to the Remez code. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">f.cpp</span></dt> | ||
|  | <dd><p> | ||
|  |               Contains the function to approximate. | ||
|  |             </p></dd> | ||
|  | </dl> | ||
|  | </div> | ||
|  | <p> | ||
|  |         Therefore to use this tool, you must modify f.cpp to return the function | ||
|  |         to approximate. The tools supports multiple function approximations within | ||
|  |         the same compiled program: each as a separate variant: | ||
|  |       </p> | ||
|  | <pre class="programlisting"><span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span> <span class="identifier">f</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span><span class="special">&</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">variant</span><span class="special">);</span> | ||
|  | </pre> | ||
|  | <p> | ||
|  |         Returns the value of the function <span class="emphasis"><em>variant</em></span> at point | ||
|  |         <span class="emphasis"><em>x</em></span>. So if you wish you can just add the function to approximate | ||
|  |         as a new variant after the existing examples. | ||
|  |       </p> | ||
|  | <p> | ||
|  |         In addition to those two files, the program needs to be linked to a <a class="link" href="../high_precision/use_ntl.html" title="Using NTL Library">patched NTL library to compile</a>. | ||
|  |       </p> | ||
|  | <p> | ||
|  |         Note that the function <span class="emphasis"><em>f</em></span> must return the rational part | ||
|  |         of the approximation: for example if you are approximating a function <span class="emphasis"><em>f(x)</em></span> | ||
|  |         then it is quite common to use: | ||
|  |       </p> | ||
|  | <pre class="programlisting"><span class="identifier">f</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">g</span><span class="special">(</span><span class="identifier">x</span><span class="special">)(</span><span class="identifier">Y</span> <span class="special">+</span> <span class="identifier">R</span><span class="special">(</span><span class="identifier">x</span><span class="special">))</span> | ||
|  | </pre> | ||
|  | <p> | ||
|  |         where <span class="emphasis"><em>g(x)</em></span> is the dominant part of <span class="emphasis"><em>f(x)</em></span>, | ||
|  |         <span class="emphasis"><em>Y</em></span> is some constant, and <span class="emphasis"><em>R(x)</em></span> is | ||
|  |         the rational approximation part, usually optimised for a low absolute error | ||
|  |         compared to |Y|. | ||
|  |       </p> | ||
|  | <p> | ||
|  |         In this case you would define <span class="emphasis"><em>f</em></span> to return <span class="emphasis"><em>f(x)/g(x)</em></span> | ||
|  |         and then set the y-offset of the approximation to <span class="emphasis"><em>Y</em></span> | ||
|  |         (see command line options below). | ||
|  |       </p> | ||
|  | <p> | ||
|  |         Many other forms are possible, but in all cases the objective is to split | ||
|  |         <span class="emphasis"><em>f(x)</em></span> into a dominant part that you can evaluate easily | ||
|  |         using standard math functions, and a smooth and slowly changing rational | ||
|  |         approximation part. Refer to your favourite textbook for more examples. | ||
|  |       </p> | ||
|  | <p> | ||
|  |         Command line options for the program are as follows: | ||
|  |       </p> | ||
|  | <div class="variablelist"> | ||
|  | <p class="title"><b></b></p> | ||
|  | <dl class="variablelist"> | ||
|  | <dt><span class="term">variant N</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the current function variant to N. This allows multiple functions | ||
|  |               that are to be approximated to be compiled into the same executable. | ||
|  |               Defaults to 0. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">range a b</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the domain for the approximation to the range [a,b], defaults | ||
|  |               to [0,1]. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">relative</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the Remez code to optimise for relative error. This is the default | ||
|  |               at program startup. Note that relative error can only be used if f(x) | ||
|  |               has no roots over the range being optimised. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">absolute</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the Remez code to optimise for absolute error. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">pin [true|false]</span></dt> | ||
|  | <dd><p> | ||
|  |               "Pins" the code so that the rational approximation passes | ||
|  |               through the origin. Obviously only set this to <span class="emphasis"><em>true</em></span> | ||
|  |               if R(0) must be zero. This is typically used when trying to preserve | ||
|  |               a root at [0,0] while also optimising for relative error. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">order N D</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the order of the approximation to <span class="emphasis"><em>N</em></span> in the | ||
|  |               numerator and <span class="emphasis"><em>D</em></span> in the denominator. If <span class="emphasis"><em>D</em></span> | ||
|  |               is zero then the result will be a polynomial approximation. There will | ||
|  |               be N+D+2 coefficients in total, the first coefficient of the numerator | ||
|  |               is zero if <span class="emphasis"><em>pin</em></span> was set to true, and the first | ||
|  |               coefficient of the denominator is always one. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">working-precision N</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the working precision of NTL::RR to <span class="emphasis"><em>N</em></span> binary | ||
|  |               digits. Defaults to 250. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">target-precision N</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the precision of printed output to <span class="emphasis"><em>N</em></span> binary | ||
|  |               digits: set to the same number of digits as the type that will be used | ||
|  |               to evaluate the approximation. Defaults to 53 (for double precision). | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">skew val</span></dt> | ||
|  | <dd><p> | ||
|  |               "Skews" the initial interpolated control points towards one | ||
|  |               end or the other of the range. Positive values skew the initial control | ||
|  |               points towards the left hand side of the range, and negative values | ||
|  |               towards the right hand side. If an approximation won't converge (a | ||
|  |               common situation) try adjusting the skew parameter until the first | ||
|  |               step yields the smallest possible error. <span class="emphasis"><em>val</em></span> should | ||
|  |               be in the range [-100,+100], the default is zero. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">brake val</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets a brake on each step so that the change in the control points | ||
|  |               is braked by <span class="emphasis"><em>val%</em></span>. Defaults to 50, try a higher | ||
|  |               value if an approximation won't converge, or a lower value to get speedier | ||
|  |               convergence. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">x-offset val</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the x-offset to <span class="emphasis"><em>val</em></span>: the approximation will | ||
|  |               be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code> | ||
|  |               where <span class="emphasis"><em>X</em></span> is the x-offset, <span class="emphasis"><em>S</em></span> | ||
|  |               is the x-scale and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults | ||
|  |               to zero. To avoid rounding errors, take care to specify a value that | ||
|  |               can be exactly represented as a floating point number. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">x-scale val</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the x-scale to <span class="emphasis"><em>val</em></span>: the approximation will | ||
|  |               be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code> | ||
|  |               where <span class="emphasis"><em>S</em></span> is the x-scale, <span class="emphasis"><em>X</em></span> | ||
|  |               is the x-offset and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults | ||
|  |               to one. To avoid rounding errors, take care to specify a value that | ||
|  |               can be exactly represented as a floating point number. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">y-offset val</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the y-offset to <span class="emphasis"><em>val</em></span>: the approximation will | ||
|  |               be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code> | ||
|  |               where <span class="emphasis"><em>X</em></span> is the x-offset, <span class="emphasis"><em>S</em></span> | ||
|  |               is the x-scale and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults | ||
|  |               to zero. To avoid rounding errors, take care to specify a value that | ||
|  |               can be exactly represented as a floating point number. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">y-offset auto</span></dt> | ||
|  | <dd><p> | ||
|  |               Sets the y-offset to the average value of f(x) evaluated at the two | ||
|  |               endpoints of the range plus the midpoint of the range. The calculated | ||
|  |               value is deliberately truncated to <span class="emphasis"><em>float</em></span> precision | ||
|  |               (and should be stored as a <span class="emphasis"><em>float</em></span> in your code). | ||
|  |               The approximation will be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">Y</span></code> where <span class="emphasis"><em>X</em></span> is | ||
|  |               the x-offset and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults to | ||
|  |               zero. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">graph N</span></dt> | ||
|  | <dd><p> | ||
|  |               Prints N evaluations of f(x) at evenly spaced points over the range | ||
|  |               being optimised. If unspecified then <span class="emphasis"><em>N</em></span> defaults | ||
|  |               to 3. Use to check that f(x) is indeed smooth over the range of interest. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">step N</span></dt> | ||
|  | <dd><p> | ||
|  |               Performs <span class="emphasis"><em>N</em></span> steps, or one step if <span class="emphasis"><em>N</em></span> | ||
|  |               is unspecified. After each step prints: the peek error at the extrema | ||
|  |               of the error function of the approximation, the theoretical error term | ||
|  |               solved for on the last step, and the maximum relative change in the | ||
|  |               location of the Chebyshev control points. The approximation is converged | ||
|  |               on the minimax solution when the two error terms are (approximately) | ||
|  |               equal, and the change in the control points has decreased to a suitably | ||
|  |               small value. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">test [float|double|long]</span></dt> | ||
|  | <dd><p> | ||
|  |               Tests the current approximation at float, double, or long double precision. | ||
|  |               Useful to check for rounding errors in evaluating the approximation | ||
|  |               at fixed precision. Tests are conducted at the extrema of the error | ||
|  |               function of the approximation, and at the zeros of the error function. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">test [float|double|long] N</span></dt> | ||
|  | <dd><p> | ||
|  |               Tests the current approximation at float, double, or long double precision. | ||
|  |               Useful to check for rounding errors in evaluating the approximation | ||
|  |               at fixed precision. Tests are conducted at N evenly spaced points over | ||
|  |               the range of the approximation. If none of [float|double|long] are | ||
|  |               specified then tests using NTL::RR, this can be used to obtain the | ||
|  |               error function of the approximation. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">rescale a b</span></dt> | ||
|  | <dd><p> | ||
|  |               Takes the current Chebeshev control points, and rescales them over | ||
|  |               a new interval [a,b]. Sometimes this can be used to obtain starting | ||
|  |               control points for an approximation that can not otherwise be converged. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">rotate</span></dt> | ||
|  | <dd><p> | ||
|  |               Moves one term from the numerator to the denominator, but keeps the | ||
|  |               Chebyshev control points the same. Sometimes this can be used to obtain | ||
|  |               starting control points for an approximation that can not otherwise | ||
|  |               be converged. | ||
|  |             </p></dd> | ||
|  | <dt><span class="term">info</span></dt> | ||
|  | <dd><p> | ||
|  |               Prints out the current approximation: the location of the zeros of | ||
|  |               the error function, the location of the Chebyshev control points, the | ||
|  |               x and y offsets, and of course the coefficients of the polynomials. | ||
|  |             </p></dd> | ||
|  | </dl> | ||
|  | </div> | ||
|  | </div> | ||
|  | <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr> | ||
|  | <td align="left"></td> | ||
|  | <td align="right"><div class="copyright-footer">Copyright © 2006-2010, 2012-2014 Nikhar Agrawal, | ||
|  |       Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert | ||
|  |       Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan Råde, Gautam Sewani, | ||
|  |       Benjamin Sobotta, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p> | ||
|  |         Distributed under the Boost Software License, Version 1.0. (See accompanying | ||
|  |         file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>) | ||
|  |       </p> | ||
|  | </div></td> | ||
|  | </tr></table> | ||
|  | <hr> | ||
|  | <div class="spirit-nav"> | ||
|  | <a accesskey="p" href="tuples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="error_test.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a> | ||
|  | </div> | ||
|  | </body> | ||
|  | </html> |