mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-19 10:32:02 -05:00
171 lines
5.2 KiB
C++
171 lines
5.2 KiB
C++
|
/* Boost example/findroot_demo.cpp
|
||
|
* find zero points of some function by dichotomy
|
||
|
*
|
||
|
* Copyright 2000 Jens Maurer
|
||
|
* Copyright 2002-2003 Guillaume Melquiond
|
||
|
*
|
||
|
* Distributed under the Boost Software License, Version 1.0.
|
||
|
* (See accompanying file LICENSE_1_0.txt or
|
||
|
* copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
*
|
||
|
* The idea and the 2D function are based on RVInterval,
|
||
|
* which contains the following copyright notice:
|
||
|
|
||
|
This file is copyrighted 1996 by Ronald Van Iwaarden.
|
||
|
|
||
|
Permission is hereby granted, without written agreement and
|
||
|
without license or royalty fees, to use, copy, modify, and
|
||
|
distribute this software and its documentation for any
|
||
|
purpose, subject to the following conditions:
|
||
|
|
||
|
The above license notice and this permission notice shall
|
||
|
appear in all copies or substantial portions of this software.
|
||
|
|
||
|
The name "RVInterval" cannot be used for any modified form of
|
||
|
this software that does not originate from the authors.
|
||
|
Nevertheless, the name "RVInterval" may and should be used to
|
||
|
designate the optimization software implemented and described
|
||
|
in this package, even if embedded in any other system, as long
|
||
|
as any portion of this code remains.
|
||
|
|
||
|
The authors specifically disclaim any warranties, including,
|
||
|
but not limited to, the implied warranties of merchantability
|
||
|
and fitness for a particular purpose. The software provided
|
||
|
hereunder is on an "as is" basis, and the authors have no
|
||
|
obligation to provide maintenance, support, updates,
|
||
|
enhancements, or modifications. In no event shall the authors
|
||
|
be liable to any party for direct, indirect, special,
|
||
|
incidental, or consequential damages arising out of the use of
|
||
|
this software and its documentation.
|
||
|
*/
|
||
|
|
||
|
#include <boost/numeric/interval.hpp> // must be first for <limits> workaround
|
||
|
#include <list>
|
||
|
#include <deque>
|
||
|
#include <vector>
|
||
|
#include <fstream>
|
||
|
#include <iostream>
|
||
|
|
||
|
|
||
|
template<class T>
|
||
|
struct test_func2d
|
||
|
{
|
||
|
T operator()(T x, T y) const
|
||
|
{
|
||
|
return sin(x)*cos(y) - exp(x*y)/45.0 * (pow(x+y, 2)+100.0) -
|
||
|
cos(sin(y))*y/4.0;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class T>
|
||
|
struct test_func1d
|
||
|
{
|
||
|
T operator()(T x) const
|
||
|
{
|
||
|
return sin(x)/(x*x+1.0);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<class T>
|
||
|
struct test_func1d_2
|
||
|
{
|
||
|
T operator()(T x) const
|
||
|
{
|
||
|
using std::sqrt;
|
||
|
return sqrt(x*x-1.0);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<class Function, class I>
|
||
|
void find_zeros(std::ostream & os, Function f, I searchrange)
|
||
|
{
|
||
|
std::list<I> l, done;
|
||
|
l.push_back(searchrange);
|
||
|
while(!l.empty()) {
|
||
|
I range = l.front();
|
||
|
l.pop_front();
|
||
|
I val = f(range);
|
||
|
if (zero_in(val)) {
|
||
|
if(width(range) < 1e-6) {
|
||
|
os << range << '\n';
|
||
|
continue;
|
||
|
}
|
||
|
// there's still a solution hidden somewhere
|
||
|
std::pair<I,I> p = bisect(range);
|
||
|
l.push_back(p.first);
|
||
|
l.push_back(p.second);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<class T>
|
||
|
std::ostream &operator<<(std::ostream &os, const std::pair<T, T> &x) {
|
||
|
os << "(" << x.first << ", " << x.second << ")";
|
||
|
return os;
|
||
|
}
|
||
|
|
||
|
template<class T, class Policies>
|
||
|
std::ostream &operator<<(std::ostream &os,
|
||
|
const boost::numeric::interval<T, Policies> &x) {
|
||
|
os << "[" << x.lower() << ", " << x.upper() << "]";
|
||
|
return os;
|
||
|
}
|
||
|
|
||
|
static const double epsilon = 5e-3;
|
||
|
|
||
|
template<class Function, class I>
|
||
|
void find_zeros(std::ostream & os, Function f, I rx, I ry)
|
||
|
{
|
||
|
typedef std::pair<I, I> rectangle;
|
||
|
typedef std::deque<rectangle> container;
|
||
|
container l, done;
|
||
|
// l.reserve(50);
|
||
|
l.push_back(std::make_pair(rx, ry));
|
||
|
for(int i = 1; !l.empty(); ++i) {
|
||
|
rectangle rect = l.front();
|
||
|
l.pop_front();
|
||
|
I val = f(rect.first, rect.second);
|
||
|
if (zero_in(val)) {
|
||
|
if(width(rect.first) < epsilon && width(rect.second) < epsilon) {
|
||
|
os << median(rect.first) << " " << median(rect.second) << " "
|
||
|
<< lower(rect.first) << " " << upper(rect.first) << " "
|
||
|
<< lower(rect.second) << " " << upper(rect.second)
|
||
|
<< '\n';
|
||
|
} else {
|
||
|
if(width(rect.first) > width(rect.second)) {
|
||
|
std::pair<I,I> p = bisect(rect.first);
|
||
|
l.push_back(std::make_pair(p.first, rect.second));
|
||
|
l.push_back(std::make_pair(p.second, rect.second));
|
||
|
} else {
|
||
|
std::pair<I,I> p = bisect(rect.second);
|
||
|
l.push_back(std::make_pair(rect.first, p.first));
|
||
|
l.push_back(std::make_pair(rect.first, p.second));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if(i % 10000 == 0)
|
||
|
std::cerr << "\rIteration " << i << ", l.size() = " << l.size();
|
||
|
}
|
||
|
std::cerr << '\n';
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
using namespace boost;
|
||
|
using namespace numeric;
|
||
|
using namespace interval_lib;
|
||
|
|
||
|
typedef interval<double,
|
||
|
policies<save_state<rounded_transc_opp<double> >,
|
||
|
checking_base<double> > > I;
|
||
|
|
||
|
std::cout << "Zero points of sin(x)/(x*x+1)\n";
|
||
|
find_zeros(std::cout, test_func1d<I>(), I(-11, 10));
|
||
|
std::cout << "Zero points of sqrt(x*x-1)\n";
|
||
|
find_zeros(std::cout, test_func1d_2<I>(), I(-5, 6));
|
||
|
std::cout << "Zero points of Van Iwaarden's 2D function\n";
|
||
|
std::ofstream f("func2d.data");
|
||
|
find_zeros(f, test_func2d<I>(), I(-20, 20), I(-20, 20));
|
||
|
std::cout << "Use gnuplot, command 'plot \"func2d.data\" with dots' to plot\n";
|
||
|
}
|