mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 13:30:52 -05:00 
			
		
		
		
	
		
			
	
	
		
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								// Copyright Christopher Kormanyos 2013.
							 | 
						||
| 
								 | 
							
								// Copyright Paul A. Bristow 2013.
							 | 
						||
| 
								 | 
							
								// Copyright John Maddock 2013.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Distributed under the Boost Software License, Version 1.0.
							 | 
						||
| 
								 | 
							
								// (See accompanying file LICENSE_1_0.txt or
							 | 
						||
| 
								 | 
							
								// copy at http://www.boost.org/LICENSE_1_0.txt).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef _MSC_VER
							 | 
						||
| 
								 | 
							
								#  pragma warning (disable : 4512) // assignment operator could not be generated.
							 | 
						||
| 
								 | 
							
								#  pragma warning (disable : 4996) // assignment operator could not be generated.
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <iostream>
							 | 
						||
| 
								 | 
							
								#include <limits>
							 | 
						||
| 
								 | 
							
								#include <vector>
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								#include <iomanip>
							 | 
						||
| 
								 | 
							
								#include <iterator>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
							 | 
						||
| 
								 | 
							
								// http://mathworld.wolfram.com/BesselFunctionZeros.html
							 | 
						||
| 
								 | 
							
								// Test values can be calculated using [@wolframalpha.com WolframAplha]
							 | 
						||
| 
								 | 
							
								// See also http://dlmf.nist.gov/10.21
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//[bessel_zero_example_1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`This example demonstrates calculating zeros of the Bessel, Neumann and Airy functions.
							 | 
						||
| 
								 | 
							
								It also shows how Boost.Math and Boost.Multiprecision can be combined to provide
							 | 
						||
| 
								 | 
							
								a many decimal digit precision. For 50 decimal digit precision we need to include
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  #include <boost/multiprecision/cpp_dec_float.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`and a `typedef` for `float_type` may be convenient
							 | 
						||
| 
								 | 
							
								(allowing a quick switch to re-compute at built-in `double` or other precision)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								  typedef boost::multiprecision::cpp_dec_float_50 float_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//`To use the functions for finding zeros of the functions we need
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  #include <boost/math/special_functions/bessel.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//`This file includes the forward declaration signatures for the zero-finding functions:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//  #include <boost/math/special_functions/math_fwd.hpp>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`but more details are in the full documentation, for example at
							 | 
						||
| 
								 | 
							
								[@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions]
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`This example shows obtaining both a single zero of the Bessel function,
							 | 
						||
| 
								 | 
							
								and then placing multiple zeros into a container like `std::vector` by providing an iterator.
							 | 
						||
| 
								 | 
							
								The signature of the single value function is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  template <class T>
							 | 
						||
| 
								 | 
							
								  inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type
							 | 
						||
| 
								 | 
							
								    cyl_bessel_j_zero(T v,  // Floating-point value for Jv.
							 | 
						||
| 
								 | 
							
								    int m); // start index.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The result type is controlled by the floating-point type of parameter `v`
							 | 
						||
| 
								 | 
							
								(but subject to the usual __precision_policy and __promotion_policy).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The signature of multiple zeros function is:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  template <class T, class OutputIterator>
							 | 
						||
| 
								 | 
							
								  inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
							 | 
						||
| 
								 | 
							
								                                int start_index, // 1-based start index.
							 | 
						||
| 
								 | 
							
								                                unsigned number_of_zeros,
							 | 
						||
| 
								 | 
							
								                                OutputIterator out_it); // iterator into container for zeros.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								There is also a version which allows control of the __policy_section for error handling and precision.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  template <class T, class OutputIterator, class Policy>
							 | 
						||
| 
								 | 
							
								  inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
							 | 
						||
| 
								 | 
							
								                                int start_index, // 1-based start index.
							 | 
						||
| 
								 | 
							
								                                unsigned number_of_zeros,
							 | 
						||
| 
								 | 
							
								                                OutputIterator out_it,
							 | 
						||
| 
								 | 
							
								                                const Policy& pol); // iterator into container for zeros.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								//]  [/bessel_zero_example_1]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//[bessel_zero_example_iterator_1]
							 | 
						||
| 
								 | 
							
								/*`We use the `cyl_bessel_j_zero` output iterator parameter `out_it`
							 | 
						||
| 
								 | 
							
								to create a sum of 1/zeros[super 2] by defining a custom output iterator:
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								struct output_summation_iterator
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   output_summation_iterator(T* p) : p_sum(p)
							 | 
						||
| 
								 | 
							
								   {}
							 | 
						||
| 
								 | 
							
								   output_summation_iterator& operator*()
							 | 
						||
| 
								 | 
							
								   { return *this; }
							 | 
						||
| 
								 | 
							
								    output_summation_iterator& operator++()
							 | 
						||
| 
								 | 
							
								   { return *this; }
							 | 
						||
| 
								 | 
							
								   output_summation_iterator& operator++(int)
							 | 
						||
| 
								 | 
							
								   { return *this; }
							 | 
						||
| 
								 | 
							
								   output_summation_iterator& operator = (T const& val)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								     *p_sum += 1./ (val * val); // Summing 1/zero^2.
							 | 
						||
| 
								 | 
							
								     return *this;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								private:
							 | 
						||
| 
								 | 
							
								   T* p_sum;
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//] [/bessel_zero_example_iterator_1]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int main()
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								  try
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								//[bessel_zero_example_2]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks;
							 | 
						||
| 
								 | 
							
								this will ensure that helpful error messages can be shown when exceptional conditions arise.]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								First, evaluate a single Bessel zero.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The precision is controlled by the float-point type of template parameter `T` of `v`
							 | 
						||
| 
								 | 
							
								so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double).
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								    double root = boost::math::cyl_bessel_j_zero(0.0, 1);
							 | 
						||
| 
								 | 
							
								    // Displaying with default precision of 6 decimal digits:
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483
							 | 
						||
| 
								 | 
							
								    // And with all the guaranteed (15) digits:
							 | 
						||
| 
								 | 
							
								    std::cout.precision(std::numeric_limits<double>::digits10);
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577
							 | 
						||
| 
								 | 
							
								/*`But note that because the parameter `v` controls the precision of the result,
							 | 
						||
| 
								 | 
							
								`v` [*must be a floating-point type].
							 | 
						||
| 
								 | 
							
								So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus:
							 | 
						||
| 
								 | 
							
								``
							 | 
						||
| 
								 | 
							
								    root = boost::math::cyl_bessel_j_zero(0, 1);
							 | 
						||
| 
								 | 
							
								``
							 | 
						||
| 
								 | 
							
								with this error message
							 | 
						||
| 
								 | 
							
								``
							 | 
						||
| 
								 | 
							
								  error C2338: Order must be a floating-point type.
							 | 
						||
| 
								 | 
							
								``
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Optionally, we can use a policy to ignore errors, C-style, returning some value
							 | 
						||
| 
								 | 
							
								perhaps infinity or NaN, or the best that can be done. (See __user_error_handling).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								To create a (possibly unwise!) policy that ignores all errors:
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  typedef boost::math::policies::policy
							 | 
						||
| 
								 | 
							
								    <
							 | 
						||
| 
								 | 
							
								      boost::math::policies::domain_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								      boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								      boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								      boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								      boost::math::policies::pole_error<boost::math::policies::ignore_error>,
							 | 
						||
| 
								 | 
							
								      boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
							 | 
						||
| 
								 | 
							
								    > ignore_all_policy;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    double inf = std::numeric_limits<double>::infinity();
							 | 
						||
| 
								 | 
							
								    double nan = std::numeric_limits<double>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 0) " << std::endl;
							 | 
						||
| 
								 | 
							
								    double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 0, ignore_all_policy());
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN
							 | 
						||
| 
								 | 
							
								    double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy());
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN
							 | 
						||
| 
								 | 
							
								    double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy());
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`Another version of `cyl_bessel_j_zero` allows calculation of multiple zeros with one call,
							 | 
						||
| 
								 | 
							
								placing the results in a container, often `std::vector`.
							 | 
						||
| 
								 | 
							
								For example, generate five `double` roots of J[sub v] for integral order 2.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								showing the same results as column J[sub 2](x) in table 1 of
							 | 
						||
| 
								 | 
							
								[@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros].
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								    unsigned int n_roots = 5U;
							 | 
						||
| 
								 | 
							
								    std::vector<double> roots;
							 | 
						||
| 
								 | 
							
								    boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots));
							 | 
						||
| 
								 | 
							
								    std::copy(roots.begin(),
							 | 
						||
| 
								 | 
							
								              roots.end(),
							 | 
						||
| 
								 | 
							
								              std::ostream_iterator<double>(std::cout, "\n"));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`Or generate 50 decimal digit roots of J[sub v] for non-integral order `v = 71/19`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We set the precision of the output stream and show trailing zeros to display a fixed 50 decimal digits.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								    std::cout.precision(std::numeric_limits<float_type>::digits10); // 50 decimal digits.
							 | 
						||
| 
								 | 
							
								    std::cout << std::showpoint << std::endl; // Show trailing zeros.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    float_type x = float_type(71) / 19;
							 | 
						||
| 
								 | 
							
								    float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root.
							 | 
						||
| 
								 | 
							
								    std::cout << "x = " << x << ", r = " << r << std::endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root.
							 | 
						||
| 
								 | 
							
								    std::cout << "x = " << x << ", r = " << r << std::endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::vector<float_type> zeros;
							 | 
						||
| 
								 | 
							
								    boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::cout << "cyl_bessel_j_zeros" << std::endl;
							 | 
						||
| 
								 | 
							
								    // Print the roots to the output stream.
							 | 
						||
| 
								 | 
							
								    std::copy(zeros.begin(), zeros.end(),
							 | 
						||
| 
								 | 
							
								              std::ostream_iterator<float_type>(std::cout, "\n"));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`The Neumann function zeros are evaluated very similarly:
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								    using boost::math::cyl_neumann_zero;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    double zn = cyl_neumann_zero(2., 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::cout << "cyl_neumann_zero(2., 1) = " << std::endl;
							 | 
						||
| 
								 | 
							
								    //double zn0 = zn;
							 | 
						||
| 
								 | 
							
								    //    std::cout << "zn0 = " << std::endl;
							 | 
						||
| 
								 | 
							
								    //    std::cout << zn0 << std::endl;
							 | 
						||
| 
								 | 
							
								    //
							 | 
						||
| 
								 | 
							
								    std::cout << zn << std::endl;
							 | 
						||
| 
								 | 
							
								    //  std::cout << cyl_neumann_zero(2., 1) << std::endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::vector<float> nzeros(3); // Space for 3 zeros.
							 | 
						||
| 
								 | 
							
								    cyl_neumann_zero<float>(2.F, 1, nzeros.size(), nzeros.begin());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::cout << "cyl_neumann_zero<float>(2.F, 1, " << std::endl;
							 | 
						||
| 
								 | 
							
								    // Print the zeros to the output stream.
							 | 
						||
| 
								 | 
							
								    std::copy(nzeros.begin(), nzeros.end(),
							 | 
						||
| 
								 | 
							
								              std::ostream_iterator<float>(std::cout, "\n"));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    std::cout << cyl_neumann_zero(static_cast<float_type>(220)/100, 1) << std::endl;
							 | 
						||
| 
								 | 
							
								    // 3.6154383428745996706772556069431792744372398748422
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`Finally we show how the output iterator can be used to compute a sum of zeros.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(See [@http://dx.doi.org/10.1017/S2040618500034067 Ian N. Sneddon, Infinite Sums of Bessel Zeros],
							 | 
						||
| 
								 | 
							
								page 150 equation 40).
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								//] [/bessel_zero_example_2]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								//[bessel_zero_example_iterator_2]
							 | 
						||
| 
								 | 
							
								/*`The sum is calculated for many values, converging on the analytical exact value of `1/8`.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								    using boost::math::cyl_bessel_j_zero;
							 | 
						||
| 
								 | 
							
								    double nu = 1.;
							 | 
						||
| 
								 | 
							
								    double sum = 0;
							 | 
						||
| 
								 | 
							
								    output_summation_iterator<double> it(&sum);  // sum of 1/zeros^2
							 | 
						||
| 
								 | 
							
								    cyl_bessel_j_zero(nu, 1, 10000, it);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution.
							 | 
						||
| 
								 | 
							
								    std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum
							 | 
						||
| 
								 | 
							
								      << ", exact = " << s << std::endl;
							 | 
						||
| 
								 | 
							
								    // nu = 1.00000, sum = 0.124990, exact = 0.125000
							 | 
						||
| 
								 | 
							
								//] [/bessel_zero_example_iterator_2]
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception& ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Thrown exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//[bessel_zero_example_iterator_3]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`Examples below show effect of 'bad' arguments that throw a `domain_error` exception.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								  try
							 | 
						||
| 
								 | 
							
								  { // Try a negative rank m.
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << std::endl;
							 | 
						||
| 
								 | 
							
								    float dodgy_root = boost::math::cyl_bessel_j_zero(-1.F, -1);
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << dodgy_root << std::endl;
							 | 
						||
| 
								 | 
							
								    // Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
							 | 
						||
| 
								 | 
							
								    // Order argument is -1, but must be >= 0 !
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception& ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Throw exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*`[note The type shown is the type [*after promotion],
							 | 
						||
| 
								 | 
							
								using __precision_policy and __promotion_policy, from `float` to `double` in this case.]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								In this example the promotion goes:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Arguments are `float` and `int`.
							 | 
						||
| 
								 | 
							
								# Treat `int` "as if" it were a `double`, so arguments are `float` and `double`.
							 | 
						||
| 
								 | 
							
								# Common type is `double` - so that's the precision we want (and the type that will be returned).
							 | 
						||
| 
								 | 
							
								# Evaluate internally as `long double` for full `double` precision.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								See full code for other examples that promote from `double` to `long double`.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//] [/bessel_zero_example_iterator_3]
							 | 
						||
| 
								 | 
							
								    try
							 | 
						||
| 
								 | 
							
								  { // order v = inf
							 | 
						||
| 
								 | 
							
								     std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << std::endl;
							 | 
						||
| 
								 | 
							
								     float infF = std::numeric_limits<float>::infinity();
							 | 
						||
| 
								 | 
							
								     float inf_root = boost::math::cyl_bessel_j_zero(infF, 1);
							 | 
						||
| 
								 | 
							
								      std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << inf_root << std::endl;
							 | 
						||
| 
								 | 
							
								     //  boost::math::cyl_bessel_j_zero(-1.F, -1) 
							 | 
						||
| 
								 | 
							
								     //Thrown exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
							 | 
						||
| 
								 | 
							
								     // Requested the -1'th zero, but the rank must be positive !
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception& ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Thrown exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  try
							 | 
						||
| 
								 | 
							
								  { // order v = inf
							 | 
						||
| 
								 | 
							
								     double inf = std::numeric_limits<double>::infinity();
							 | 
						||
| 
								 | 
							
								     double inf_root = boost::math::cyl_bessel_j_zero(inf, 1);
							 | 
						||
| 
								 | 
							
								     std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl;
							 | 
						||
| 
								 | 
							
								     // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
							 | 
						||
| 
								 | 
							
								     // Order argument is 1.#INF, but must be finite >= 0 !
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception& ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Thrown exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  try
							 | 
						||
| 
								 | 
							
								  { // order v = NaN
							 | 
						||
| 
								 | 
							
								     double nan = std::numeric_limits<double>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								     double nan_root = boost::math::cyl_bessel_j_zero(nan, 1);
							 | 
						||
| 
								 | 
							
								     std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl;
							 | 
						||
| 
								 | 
							
								     // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
							 | 
						||
| 
								 | 
							
								     // Order argument is 1.#QNAN, but must be finite >= 0 !
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception& ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Thrown exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  try
							 | 
						||
| 
								 | 
							
								  {   // Try a negative m.
							 | 
						||
| 
								 | 
							
								    double dodgy_root = boost::math::cyl_bessel_j_zero(0.0, -1);
							 | 
						||
| 
								 | 
							
								    //  warning C4146: unary minus operator applied to unsigned type, result still unsigned.
							 | 
						||
| 
								 | 
							
								    std::cout << "boost::math::cyl_bessel_j_zero(0.0, -1) " << dodgy_root << std::endl;
							 | 
						||
| 
								 | 
							
								    //  boost::math::cyl_bessel_j_zero(0.0, -1) 6.74652e+009
							 | 
						||
| 
								 | 
							
								    // This *should* fail because m is unreasonably large.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception& ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Thrown exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  try
							 | 
						||
| 
								 | 
							
								  { // m = inf
							 | 
						||
| 
								 | 
							
								     double inf = std::numeric_limits<double>::infinity();
							 | 
						||
| 
								 | 
							
								     double inf_root = boost::math::cyl_bessel_j_zero(0.0, inf);
							 | 
						||
| 
								 | 
							
								     // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
							 | 
						||
| 
								 | 
							
								     std::cout << "boost::math::cyl_bessel_j_zero(0.0, inf) " << inf_root << std::endl;
							 | 
						||
| 
								 | 
							
								     // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
							 | 
						||
| 
								 | 
							
								     // Requested the 0'th zero, but must be > 0 !
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception& ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Thrown exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  try
							 | 
						||
| 
								 | 
							
								  { // m = NaN
							 | 
						||
| 
								 | 
							
								     std::cout << "boost::math::cyl_bessel_j_zero(0.0, nan) " << std::endl ;
							 | 
						||
| 
								 | 
							
								     double nan = std::numeric_limits<double>::quiet_NaN();
							 | 
						||
| 
								 | 
							
								     double nan_root = boost::math::cyl_bessel_j_zero(0.0, nan);
							 | 
						||
| 
								 | 
							
								     // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
							 | 
						||
| 
								 | 
							
								     std::cout << nan_root << std::endl;
							 | 
						||
| 
								 | 
							
								     // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
							 | 
						||
| 
								 | 
							
								     // Requested the 0'th zero, but must be > 0 !
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  catch (std::exception& ex)
							 | 
						||
| 
								 | 
							
								  {
							 | 
						||
| 
								 | 
							
								    std::cout << "Thrown exception " << ex.what() << std::endl;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 } // int main()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								Mathematica: Table[N[BesselJZero[71/19, n], 50], {n, 1, 20, 1}]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								7.2731751938316489503185694262290765588963196701623
							 | 
						||
| 
								 | 
							
								10.724858308883141732536172745851416647110749599085
							 | 
						||
| 
								 | 
							
								14.018504599452388106120459558042660282427471931581
							 | 
						||
| 
								 | 
							
								17.25249845917041718216248716654977734919590383861
							 | 
						||
| 
								 | 
							
								20.456678874044517595180234083894285885460502077814
							 | 
						||
| 
								 | 
							
								23.64363089714234522494551422714731959985405172504
							 | 
						||
| 
								 | 
							
								26.819671140255087745421311470965019261522390519297
							 | 
						||
| 
								 | 
							
								29.988343117423674742679141796661432043878868194142
							 | 
						||
| 
								 | 
							
								33.151796897690520871250862469973445265444791966114
							 | 
						||
| 
								 | 
							
								36.3114160002162074157243540350393860813165201842
							 | 
						||
| 
								 | 
							
								39.468132467505236587945197808083337887765967032029
							 | 
						||
| 
								 | 
							
								42.622597801391236474855034831297954018844433480227
							 | 
						||
| 
								 | 
							
								45.775281464536847753390206207806726581495950012439
							 | 
						||
| 
								 | 
							
								48.926530489173566198367766817478553992471739894799
							 | 
						||
| 
								 | 
							
								52.076607045343002794279746041878924876873478063472
							 | 
						||
| 
								 | 
							
								55.225712944912571393594224327817265689059002890192
							 | 
						||
| 
								 | 
							
								58.374006101538886436775188150439025201735151418932
							 | 
						||
| 
								 | 
							
								61.521611873000965273726742659353136266390944103571
							 | 
						||
| 
								 | 
							
								64.66863105379093036834648221487366079456596628716
							 | 
						||
| 
								 | 
							
								67.815145619696290925556791375555951165111460585458
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Mathematica: Table[N[BesselKZero[2, n], 50], {n, 1, 5, 1}]
							 | 
						||
| 
								 | 
							
								n |
							 | 
						||
| 
								 | 
							
								1 | 3.3842417671495934727014260185379031127323883259329
							 | 
						||
| 
								 | 
							
								2 | 6.7938075132682675382911671098369487124493222183854
							 | 
						||
| 
								 | 
							
								3 | 10.023477979360037978505391792081418280789658279097
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 /*
							 | 
						||
| 
								 | 
							
								[bessel_zero_output]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  boost::math::cyl_bessel_j_zero(0.0, 1) 2.40483
							 | 
						||
| 
								 | 
							
								  boost::math::cyl_bessel_j_zero(0.0, 1) 2.40482555769577
							 | 
						||
| 
								 | 
							
								  boost::math::cyl_bessel_j_zero(-1.0, 1) 1.#QNAN
							 | 
						||
| 
								 | 
							
								  boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN
							 | 
						||
| 
								 | 
							
								  boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN
							 | 
						||
| 
								 | 
							
								  5.13562230184068
							 | 
						||
| 
								 | 
							
								  8.41724414039986
							 | 
						||
| 
								 | 
							
								  11.6198411721491
							 | 
						||
| 
								 | 
							
								  14.7959517823513
							 | 
						||
| 
								 | 
							
								  17.9598194949878
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623
							 | 
						||
| 
								 | 
							
								  x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458
							 | 
						||
| 
								 | 
							
								  7.2731751938316489503185694262290765588963196701623
							 | 
						||
| 
								 | 
							
								  10.724858308883141732536172745851416647110749599085
							 | 
						||
| 
								 | 
							
								  14.018504599452388106120459558042660282427471931581
							 | 
						||
| 
								 | 
							
								  cyl_neumann_zero(2., 1) = 3.3842417671495935000000000000000000000000000000000
							 | 
						||
| 
								 | 
							
								  3.3842418193817139000000000000000000000000000000000
							 | 
						||
| 
								 | 
							
								  6.7938075065612793000000000000000000000000000000000
							 | 
						||
| 
								 | 
							
								  10.023477554321289000000000000000000000000000000000
							 | 
						||
| 
								 | 
							
								  3.6154383428745996706772556069431792744372398748422
							 | 
						||
| 
								 | 
							
								  nu = 1.00000, sum = 0.124990, exact = 0.125000
							 | 
						||
| 
								 | 
							
								  Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int): Order argument is -1, but must be >= 0 !
							 | 
						||
| 
								 | 
							
								  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#INF, but must be finite >= 0 !
							 | 
						||
| 
								 | 
							
								  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#QNAN, but must be finite >= 0 !
							 | 
						||
| 
								 | 
							
								  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -1'th zero, but must be > 0 !
							 | 
						||
| 
								 | 
							
								  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 !
							 | 
						||
| 
								 | 
							
								  Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 !
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								] [/bessel_zero_output]
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 |