WSJT-X/boost/libs/math/example/airy_zeros_example.cpp

166 lines
6.3 KiB
C++
Raw Normal View History

// Copyright Christopher Kormanyos 2013.
// Copyright Paul A. Bristow 2013.
// Copyright John Maddock 2013.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or
// copy at http://www.boost.org/LICENSE_1_0.txt).
#ifdef _MSC_VER
# pragma warning (disable : 4512) // assignment operator could not be generated.
# pragma warning (disable : 4996) // assignment operator could not be generated.
#endif
#include <iostream>
#include <limits>
#include <vector>
#include <algorithm>
#include <iomanip>
#include <iterator>
// Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/BesselFunctionZeros.html
// Test values can be calculated using [@wolframalpha.com WolframAplha]
// See also http://dlmf.nist.gov/10.21
//[airy_zeros_example_1
/*`This example demonstrates calculating zeros of the Airy functions.
It also shows how Boost.Math and Boost.Multiprecision can be combined to provide
a many decimal digit precision. For 50 decimal digit precision we need to include
*/
#include <boost/multiprecision/cpp_dec_float.hpp>
/*`and a `typedef` for `float_type` may be convenient
(allowing a quick switch to re-compute at built-in `double` or other precision)
*/
typedef boost::multiprecision::cpp_dec_float_50 float_type;
//`To use the functions for finding zeros of the functions we need
#include <boost/math/special_functions/airy.hpp>
/*`This example shows obtaining both a single zero of the Airy functions,
and then placing multiple zeros into a container like `std::vector` by providing an iterator.
The signature of the single-value Airy Ai function is:
template <class T>
T airy_ai_zero(unsigned m); // 1-based index of the zero.
The signature of multiple zeros Airy Ai function is:
template <class T, class OutputIterator>
OutputIterator airy_ai_zero(
unsigned start_index, // 1-based index of the zero.
unsigned number_of_zeros, // How many zeros to generate.
OutputIterator out_it); // Destination for zeros.
There are also versions which allows control of the __policy_section for error handling and precision.
template <class T, class OutputIterator, class Policy>
OutputIterator airy_ai_zero(
unsigned start_index, // 1-based index of the zero.
unsigned number_of_zeros, // How many zeros to generate.
OutputIterator out_it, // Destination for zeros.
const Policy& pol); // Policy to use.
*/
//] [/airy_zeros_example_1]
int main()
{
try
{
//[airy_zeros_example_2
/*`[tip It is always wise to place code using Boost.Math inside `try'n'catch` blocks;
this will ensure that helpful error messages are shown when exceptional conditions arise.]
First, evaluate a single Airy zero.
The precision is controlled by the template parameter `T`,
so this example has `double` precision, at least 15 but up to 17 decimal digits
(for the common 64-bit double).
*/
double aiz1 = boost::math::airy_ai_zero<double>(1);
std::cout << "boost::math::airy_ai_zero<double>(1) = " << aiz1 << std::endl;
double aiz2 = boost::math::airy_ai_zero<double>(2);
std::cout << "boost::math::airy_ai_zero<double>(2) = " << aiz2 << std::endl;
double biz3 = boost::math::airy_bi_zero<double>(3);
std::cout << "boost::math::airy_bi_zero<double>(3) = " << biz3 << std::endl;
/*`Other versions of `airy_ai_zero` and `airy_bi_zero`
allow calculation of multiple zeros with one call,
placing the results in a container, often `std::vector`.
For example, generate and display the first five `double` roots
[@http://mathworld.wolfram.com/AiryFunctionZeros.html Wolfram Airy Functions Zeros].
*/
unsigned int n_roots = 5U;
std::vector<double> roots;
boost::math::airy_ai_zero<double>(1U, n_roots, std::back_inserter(roots));
std::cout << "airy_ai_zeros:" << std::endl;
std::copy(roots.begin(),
roots.end(),
std::ostream_iterator<double>(std::cout, "\n"));
/*`The first few real roots of Ai(x) are approximately -2.33811, -4.08795, -5.52056, -6.7867144, -7.94413, -9.02265 ...
Or we can use Boost.Multiprecision to generate 50 decimal digit roots.
We set the precision of the output stream, and show trailing zeros to display a fixed 50 decimal digits.
*/
std::cout.precision(std::numeric_limits<float_type>::digits10); // float_type has 50 decimal digits.
std::cout << std::showpoint << std::endl; // Show trailing zeros too.
unsigned int m = 1U;
float_type r = boost::math::airy_ai_zero<float_type>(1U); // 1st root.
std::cout << "boost::math::airy_bi_zero<float_type>(" << m << ") = " << r << std::endl;
m = 2;
r = boost::math::airy_ai_zero<float_type>(2U); // 2nd root.
std::cout << "boost::math::airy_bi_zero<float_type>(" << m << ") = " << r << std::endl;
m = 7U;
r = boost::math::airy_bi_zero<float_type>(7U); // 7th root.
std::cout << "boost::math::airy_bi_zero<float_type>(" << m << ") = " << r << std::endl;
std::vector<float_type> zeros;
boost::math::airy_ai_zero<float_type>(1U, 3, std::back_inserter(zeros));
std::cout << "airy_ai_zeros:" << std::endl;
// Print the roots to the output stream.
std::copy(zeros.begin(), zeros.end(),
std::ostream_iterator<float_type>(std::cout, "\n"));
//] [/airy_zeros_example_2]
}
catch (std::exception ex)
{
std::cout << "Thrown exception " << ex.what() << std::endl;
}
} // int main()
/*
Output:
Description: Autorun "J:\Cpp\big_number\Debug\airy_zeros_example.exe"
boost::math::airy_ai_zero<double>(1) = -2.33811
boost::math::airy_ai_zero<double>(2) = -4.08795
boost::math::airy_bi_zero<double>(3) = -4.83074
airy_ai_zeros:
-2.33811
-4.08795
-5.52056
-6.78671
-7.94413
boost::math::airy_bi_zero<float_type>(1) = -2.3381074104597670384891972524467354406385401456711
boost::math::airy_bi_zero<float_type>(2) = -4.0879494441309706166369887014573910602247646991085
boost::math::airy_bi_zero<float_type>(7) = -9.5381943793462388866329885451560196208390720763825
airy_ai_zeros:
-2.3381074104597670384891972524467354406385401456711
-4.0879494441309706166369887014573910602247646991085
-5.5205598280955510591298555129312935737972142806175
*/